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ABSTRACT

This paper considers the problem of determining the sparse covari-
ance matrix X of an unknown data vector x by observing the covari-
ance matrix Y of a compressive measurement vector y = Ax. We
construct deterministic sensing matrices A for which the recovery
of a k-sparse covariance matrix X from m values of Y is guaran-
teed with high probability. In particular, we show that the number of
measurements m scales linearly with the sparsity k.

Index Terms— Compressive sensing, covariance estimation,
matrix sketching, statistical RIP

1. INTRODUCTION
Let ¢ = (ml,mz,...,xN)T e CV be a vector of N indepen-
dent, zero-mean random variables (r.v.) with covariance matrix X =
E [xx*], and let y = Aa be m linear measurements of & with the
m x N measurement matrix A € C™*"_ This paper considers the
problem of determining X from the known covariance matrix

Y =E[yy'|=AE[zz"] A" = AXA"~ (D

of the observed measurements y. This problem, also known as ma-
trix sketching, appears in several problems of signal processing, like
in array signal processing or communications [1].

In many applications, the covariance matrix X can assumed to
be sparse in some sense. For example, if two r.v. ; and x; are known
to be uncorrelated then the corresponding entries in the covariance
matrix, namely [X]; ; = E[x,;Z;] and [X];,; = E[z,Z;], are equal
to zero. So in cases where only a few entries of @ are correlated, the
matrix X will be sparse. Therefore, ideas from compressive sensing
(CS) may be applied to find efficient sampling schemes which only
need a few measurements to determine X [2]. In particular, it is
natural to ask whether it is possible to find sensing matrices A with
m < N rows and such that X can uniquely recovered from Y.

One common approach [3] is based on rewriting (1) as a standard
linear compressive sensing (CS) problem by stacking the columns of
X and Y into vectors = vec(X) € cv’ andy = vec(Y) € c’
respectively. This yields

y=Cz with C=AR®A 2)
and wherein ® stands for the usual Kronecker product of matrices.
The problem is now to find a measurement matrix A such that the
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corresponding matrix C = A ® A in (2) is a good measurement ma-
trix for CS. Then the problem (2) can be solved uniquely by standard
CS algorithms [4, 5].

In order to decide whether a given A is a good measurement
matrix for CS, the so called restricted isometric property (RIP) is
often applied [4, 6]:

Definition 1: The k-th restricted isometry constant (RIC) §(A) of
a matrix A € C™*N is the smallest § > 0 such that
(1= 0) llell; < lAz]3 < (1 +0) [l

forall x € Efcv ,

wherein S denotes the set of all k-sparse vectors x € CN.

The importance of the RIC stem from the fact that it provides guar-
antees for unique CS recovery. The following theorem gives just an
example of such recovery guarantees (see, e.g., [4]).

Theorem 1: Assume that the RIC for a matrix A € C™*N satisfies
02k (A) < 1/3, then every = € Xy is the unique solution of

min,cen ||2]|, subjectto Az = Ax . 3)
So, if d2x (A) is sufficiently small any k-sparse vector ¢ € X7 can
be uniquely recovered from the m measurements y = Ax by the
optimization problem (3), known as basis pursuit [7]. There are two
major problems with the RIP of matrices.

First, for a given matrix A the calculation of dx(A) requires
a combinatorial search which is computationally infeasible for N
large. Therefore, it is practically impossible to decide whether a
given A satisfies the condition of Theorem 1. Mainly for this reason,
probabilistic constructions where the entries of A are generated by
independent identical distributed (i.i.d.) random variables are very
common. Such probabilistic matrices are known to satisfy the k-RIP
(with high probability) and the number of necessary measurements
m is in the order of k log(N/k) [4,6].

Secondly, in view of measurement matrices C = A ® A with
Kronecker structure, it is known [8] that 6x(A ® A) > §i(A).
So if A € CM*¥ satisfies the condition of Theorem 1, then ev-
ery k-sparse vector in CV can be recovered from the m measure-
ments taken with A, and in the best case the number of neces-
sary measurements m ~ k scales linearly with k. However, since
55(A ® A) > 6x(A) Theorem 1 guarantees also only the recov-
ery of k-sparse vectors in C"~ from m? measurements taken with
A®Ac cmxN 2, even though the signal space has a much larger
dimension and although one has much more measurements. So this
way, one only obtains recovery guarantees for matrices with Kro-
necker structure for measurement numbers m = m? ~ k2 which
scale at least quadratically in the sparsity k, instead of the linear
scaling for measurement matrices without Kronecker structure.
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To overcome the first problem, an alternative approach to char-
acterize good CS matrices was proposed in [9]. This approach is
based on the so called statistical RIP (StRIP), and we will recapture
the main definitions and ideas shortly in Sec. 2. Then Sec. 3 applies
this framework to study StRIP for sensing matrices with Kronecker
structure. In particular, we will construct matrices A € C™* such
that AR A € C™**N? satisfies a statistical recovery guaranty with
m = m? ~ klog(N) measurements.

2. NOTATIONS AND STRIP

General notations Let & € C™* be a matrix with m rows and
N columns. The j-th column of & will be denoted by ¢, and ¢, [k]
stands for the k-th entry of ¢; € C™. Assume that the columns
of ® are normalized by HgoJH = 1forallj = 1,...,N. Then
the coherence of ® is defined to be p(®) = max;z; [{p;, ¥;)|-
Moreover, if K is a subset of {1,2,..., N} then ®x stands for the
matrix consisting of the columns of ® indexed by K.

Statistical RIP In [9] a statistical version of the RIP was in-
troduced to investigate deterministic measurement matrices for CS.
Since the matrices are deterministic, the probability enters in the sig-
nal model. In the following we briefly discuss the main definitions
and concepts.

Definition 2: A matrix A = ﬁ{) € C™*N with #5-normalized
columns is said to have (k, 6, €)-StRIP if

(1= 0) lll3 < [|Az; < (1+0) [l

holds with probability exceeding 1 — € for a random vector = € ¥
drawn from a uniform distribution over all {z € 8 : ||z||= = 1}.
Further, we say that A has (k, 0, €)-uniqueness-guaranteed StRIP
(abbr. (k, 6, €)-UStRIP) if

{zex) Az = Az} = {z}
is also satisfied with probability exceeding 1 — e.

So a sensing matrix having (k, 0, €)-StRIP satisfies the standard re-
stricted isometry property (RIP) with high probability. Nevertheless,
the StRIP property does not guarantee unique recovery in general,
not even with high probability. The unique recovery is guaranteed
for the class of UStRIP-matrices (by definition).

To identify matrices which have UStRIP, the following condi-
tions were introduced in [9].

Definition 3: A matrix A = \/—%Q € C™N with all entries of ®

having absolute value 1, is said to be n-StRIP-able if the following
three conditions are satisfied.

(Stl) The rows of ® are mutually orthogonal, and the sum of all
entries in each row is zero, l.e.,

SN, 65k 65 =0
SN gslk] =0

(St2) The columns of ® form a group under pointwise multipli-
cation, ie., for all j,7 € {1,...,N} there exists j' €
1,..., N such that

¢4lk] 5 [k] = ¢ [K]

In particular, there is one column of ® (the identity element
of this group) with all its entries equal to 1. Without loss of
generality, we assume that @ is this identity vector.

ifk#¢,
forallk =1,...,m.

forallk=1,...,m.

(St3) There exists n > 0 such that
1>, cpj[k]’2 <m®>™" forallj=2,3,...,N .

Remark 1: Condition (St2) implies that |, [k]| = 1 for all j and k,
and that the set of column vectors {cp J };V: ) is closed under complex
conjugation, i.e., for any j there is j' so that P =9,

Remark 2: The parameter > 0 is closely related to the coherence

of A. Using (St2) and (St3), it follows that u(A) < m~"2. Soa
large 7 implies small coherence of A.

Remark 3: (St1)—~(St3) imply that {¢, }j\; | is a tight frame for C™
with frame bound m, i.e., Zj\;l |(zx, gaj>|2 =m|z|? Vx € C™.

The next theorem shows that any 7)-StRIP-able matrix has (k, 9, €)-
UStRIP if 5 > 1/2 and if the sparsity k satisfies some conditions.

Theorem 2 (Theorem 8 in [9]): Let A = & € C™*" be an

n-StRIP-able matrix with n > 1/2. If k < 1+ (N — 1) and
m > c(klog N) /82 for some constant ¢ > 0 then A has (k, 8, 2¢)-

USHRIP with € = 2 exp (*(5 - %)2%:)

This theorem reduces the search of good deterministic sensing ma-
trices to finding matrices that satisfy the conditions (St1)—(St3) with
an 7 > 1/2. Whereas it is basically impossible to calculate the
RIC for a given matrix A, it is fairly easy to check whether A is
n-StRIP-able. On the other side, conditions (St1)—(St3) are fairly
strong restrictions on the structure of A. Nevertheless, [9] derived
numerous StRIP-able matrices.

The next section will apply this framework to characterize ma-
trices of Kronecker structure which are US?RIP.

3. STRIP-ABLE KRONECKER MATRICES

We consider the following problem. Let A be a matrix which is
known to be n-StRIP-able for some i > 0. Is the Kronecker product
A ® A again n’-StRIP-able for some " > 0? If so, what would be
the value of 7’? The next theorem will give a complete answer to
these questions.
Theorem 3: Assume A € C™*V is na-StRIP-able and B € C™*™
is nB-StRIP-able, then the following holds.

(a) A is 1g-StRIP-able with g = na.

(b) The matrixC =A @ B € C"™*NM s o -StRIP-able with

In(n) ¢ oma nB
NAtnmmy U n' <m
ne = { In(nm) 4)

12%«3) if n14 >mI".
; H — 1 N _ _1
Proof: Let us write A = ﬁ<I>, B = \/H\I” and C = \/WF’

Clearly, the matrices ®, ¥, I" are related by I' = & ® ¥ and the
entry of T in the (k,¢)-th column and (z,y)-th row is given by
Y ko) [ 4] = @l lyl.

Part (a) is immediate by observing that each conditions (Stl),
(St2), (St3) for ® implies the respective condition for ®. Therefore
A is 15-StRIP-able with 77 = 14 (the same constant as A).

To prove (b), we check conditions (St1), (St2) and (St3) for I'.
First, observe that for (z,y) # («',v'),

fo:l Zé\il Y (k,0) [z, 9] Y (k,0) [z, 9]
= Zszl Zév; ezl Yoyl pila] ¥, [y]
=0 erlal rle] - 0L, dely] dely’] = 0,
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using the fact that 3"~ ¢, [z]¢,[2'] = 0if z # 2, and that
Soomy Yelylly'] = 0if y # 3. Moreover, for any (z,y),

ZII;’:1 Zej\il Y (k,0) [z,y] = ZII;’:1 Z?il prlz]Y,[y]

=21 enle] - ol Yely] = 0,
where we have used that 3"1_, ¢, [z] = 307, 9,[y] = 0. There-
fore, I satisfies the condition (St1).

To verify the (St2) for T, fix any (k, £) and (k’,£'), where 1 <
k,E' < N,1<£,¢ < M. Since ® and W satisfy (St2) there exist
1 <K' < Nand1l < ¢ < M such that @, [z]p, [x] = @y (2]
for all z and ¥, [y]t, [y] = ¥, [y] for all y. Then

Y (k,0) [z, y] "‘/(k',z')[l’: yl = o[z [y] - pr ]t [y]
khﬂwkdw] Y[yl [y]
o (@] Pyl = ’7(1@”,2”)[%11}

which proves (St2).
Finally, we verify (St3) for I'. For (k,¢) # (
1<k<Nandl</{< M, we get

1,1) and with

S S Yol ol =[S S el |

n 2 m 2
=|Xr_elel]” - [ 0 Yyl
n?.m2"B if k=1, 0+#1,
={ n?>7"14.m? if k=1, 0+#1,

n2="a . m2-nB

if kA1 0£1,

and since 94,15 > 0, we have

ZZ ke) z,y]
=1y=1

Setting (nm)2 "¢ = max{n®m? "B n?""Am?} gives

2

= max {n m27B n277’Am2}.
(k2 (1,1)

In(n)
_ nA In(nm)
ne = In(m)

In(nm)

if n"A < m"B

if n"4 > m"B

which finishes the proof. ]

Theorem 3 shows that the Kronecker product C = A ® B of
two StRIP-able matrices A and B is again StRIP-able. However,
the constant n¢ given in (4) is always strictly smaller than both n4
and g, i.e., nc < min{na,ns}. In view of Remark 2, this means
that the coherence of a Kronecker product matrix is always worse
(i.e., larger) than the coherence of the original matrices.

Motivated by the applications described in the introduction, we
are interested in sensing matrices of the form A ® A (cf. (2)). For
such matrices, Theorem 3 immediately yields the following state-
ment.

Corollary 4: IfA € C™ Y is an n-StRIP-able matrix then the Kro-
necker structured matrix A ® A € C™ XN js (n/2)-StRIP-able.
Combining Theorem 2 and Corollary 4, one obtains a sufficient con-

dition under which a Kronecker product matrix A @ A € N
satisfies UStRIP.

Corollary 5: Let A = \/%Q € C™N pe an n-StRIP-able matrix

withn > 1. Ifk < 1+ (N* —1)6 and m* > c(2klog N)/5° for
some constant ¢ > 0, then A ® A has (k, 0, 2¢)-UStRIP with

E—1\2m?"
e:2em><f@ng2_1) 8k> . (5)

So if a matrix A satisfies the conditions of Corollary 5 then one
needs in the order of M := m? > ck log N measurements of the
formy = (K@A)  to recover k-sparse vectors & € CV * with high
probability. Equivalently, every covariance matrix X € CY*¥ can

be recovered from m values of the covariance matrix Y = AXA”™.

4. KRONECKER MATRICES WITH RECOVERY
GUARANTEE

Corollary 5 requires that the StRIP constant 7 of an StRIP-able ma-
trix A € C™*¥ has to be larger than 1 for A ® A to have UStRIP.
To get a first idea which matrices might satisfy this condition, we
recall from Remark 2 that the coherence of an 7-StRIP-able matrix
is upper bounded by x(A) < m~"2. On the other side, p(A)
is known to be lower bounded by the Welsh bound [10]. So u(A)
always satisfies

%SM(A)S !

From these inequalities, one easily derives an upper bound on 7:

N
77< 1+1n(N 711) ln(lm) .

For m > 1, this upper bound is strictly larger than 1 but it gets
very close to 1 for m < N (as usually desired in CS). Since we are
looking for matrices with > 1, this means that we are searching
for matrices A whose coherence is very close to the Welch bound,
which means that the columns of A have to be close to an equiangu-
lar tight frame (ETF). In particular, we observe that if the coherence
of A would achieve the Welch bound with equality then the Kro-
necker product A ® A would have UStRIP. Additionally, such an
equal norm ETF needs to fulfill (St1) — (St3). A class of ETFs ful-
filling these conditions are equiangular harmonic frames (EHF) [11,
Chap. 5]. These frames are constructed by selecting certain rows
from the DFT matrix. The selected rows are indexed by a so-called
difference sets [12]. Note that by selecting arbitrary rows (apart from
the first all ones row) of the DFT matrix, the partial DFT matrix ful-
fills (St1) and (St2), but not necessarily (St3). To be self-contained
we give a short description of the construction of EHFs.

Definition 4: An (N, m, p)-difference set is a set K C Zn of size
m such that every nonzero element of the N-element cyclic group
Zn = Z/NZ can be expressed as a difference of two elements from
KC in exactly p ways.
Example 1: Theset K = {1,2,4}isa (7,3, 1)-difference set in the
group Zr. Indeed, we have
1-2=6,
1—-4=4,

2-1=1,
2-4=75,

4—-1=3,
4-2=2
which shows that every nonzero element of Zr is expressed as a
difference of two elements from /C in exactly one way.

Many types of difference sets are known. One particular example is
the (¢> + ¢ + 1, ¢ + 1, 1)-difference set (due to Singer [13]).

Proposition 1: Let K C Zn be an (N, m, p)-difference set. Then
the partial Fourier matrix Fxx € C™ Y is n-StRIP-able with
., In(m—p)
= In(m)

[eiZij/N}

> 1,

where Fi = kek,j=0,...,N—1 IS the partial Fourier matrix
Sformed with the rows indexed by K.
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Non-Kronecker Reconstruction error

1.2
1+
0.8
&
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© 0.6
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0.2 —6—Random Partial Fourier| |
' j EHF
o o /,/T ‘ —e—Fixed Parfial Fourier
0 0.1 0.2 0.3 0.4 0.5

Fig. 1. Quadratic error of the solutions of (7) for non-Kronecker
structured matrices C. Horizontal axis: k/m (sparsity over number
of measurements). Vertical axis: £y-error (||& — x||* / ||||*).

Proof: Conditions (Stl) and (St2) follow from the properties of the
N x N DFT matrix. To verify (St3), let K = {a1,a2,...,am} C
Zn be given in increasing order. The entry of F in the j-th column
and k-th row is given by f;[k] = w’®*, where w := €™/~ Then
forany j € {2,3,..., N},

m 2 m a2 m e —a
’Zk:1 fj[k’” = |Zk:1 w’ k| = Zk,z:1 wilak—ag)
:m+2k¢gwj(ak_”):m+P(w+w2—|—..,+wM_1)

=m-—p, (6)
where we used the that K is an (IV, m, p)-difference set and that
Z’;Ol w’ = 0. Setting (6) equal to m*~" yields the desired ex-
pression for 7). ]

Since the constructed matrix F i is n-StRIP-able with > 1, the
corresponding Kronecker product Fx ® Fx is n-StRIP-able with
n > 1/2 (cf. Corollary 4). Consequently Fx ® Fx has UStRIP
according to Theorem 2, i.e. we have the following statement.

Corollary 6: LetFi € C™*N be a matrix constructed as in Propo-
sition 1 and let Cx = Fx @ Fx. Ifk < 1+ (N2 —1)6 and
if m? > ¢(2klog N)/62 for some constant ¢ > 0 then Cx has
(k, 8, 2€)-UStRIP with € given by (5).

We remark again, that Corollary 6 implies in particular a statistical
recovery guarantee (in the sense of Def. 2) for a Kronecker structured
measurement matrix and where the number of measurements m =
m? scales linearly with the sparsity k.

5. NUMERICAL EXPERIMENTS

Finally, we present numerical experiments showing the effectiveness
of the proposed measurement matrices. Before comparing the recov-
ery performance of Kronecker product matrices C = (A ® A), we
first check the performance of matrices C without Kronecker struc-
ture. To this end, we consider the following matrices C, all of them
having m = 50 rows and N = 2451 columns:

(i) EHF: C = F is the matrix constructed according to Prop. 1.

(ii) deterministic partial Fourier: the columns of C coincide with
the first m columns of the N x N DFT matrix.

Kronecker Reconstruction error
: :

1.2
1 L
0.8+
-
=}
b
0 06F
&'
04" Kronecker Random Gaussian
’ —o—Kronecker Random Partial Fourier
Kronecker EHF
02F —o—Kronecker Fixed Partial Fourier i
—+—Random Gaussian
—“—Random Partial Fourier
0 o PPN a3 | |
0 0.1 0.2 0.3 0.4 0.5

k/m

Fig. 2. Quadratic error of the optimal solutions of (7) for Kronecker
structured matrices C, and comparison with random Gaussian and
random partial Fourier matrices. Axis as in Fig. 1.

(iii) random partial Fourier: the rows of C are randomly chosen
from the N x N DFT matrix.

(iv) random Gaussian: the entries of C are i.i.d normal distributed
random variables.

Fig. 1 shows the corresponding simulation result for recovering a k-
sparse vector & € CV from linear measurements y = C z, using
basis pursuit (3), i.e. by solving

Z = argmin||z||, subjectto Cz=y,z2€CN. ()
For these simulations, we varied the sparsity k£ of the data vector
x. On the horizontal axis we plot the normalized /> reconstruction
error ||& — ||® / ||x||®>. For each k we generated 100 random k-
sparse vectors & and averaged the reconstruction error over these
100 experiments. The simulation result for the deterministic partial
Fourier matrix in Fig. 1 shows that not every choice of rows from
the DFT matrix yields a good CS matrix. However, for a choice of
rows that corresponds to an EHF the resulting measurement matrix is
essentially as good as random Gaussian and random partial Fourier
matrices, which are known to be good CS matrices.

In Fig 2, we compare the recovery performance of Kronecker
product matrices C = (A ® A) for matrices A € C™* as under
(1)-(iv), denoted respectively by (i’)-(iv’). Additionally, we consider
random matrices C of size m? x N2 (without Kronecker product):

(v’) random partial Fourier: the rows of C are randomly chosen
from the N2 x N2 DFT matrix.

(vi’) random Gaussian: the entries of C are i.i.d normal distributed
random variables.

For these simulations, we fixed m = 10 and N = 91, and the
results where averaged over 100 random vectors . We observe that
the Kronecker structure destroys the good behavior of the random
Gaussian matrix which now performs worse. On the other side, we
see that the Kronecker structured EHF matrix performs almost as
good as the non-Kronecker-structured random partial Fourier and
random Gaussian matrices. So for our deterministic EHF matrix the
Kronecker structure does not harm its good CS properties. A similar
behavior is observed for the random partial Fourier matrix.
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