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ABSTRACT

The application of Compressed Sensing techniques to bandlimited
functions is investigated in this paper. It is shown that under the as-
sumption of sparsity, stable reconstruction of a bandlimited function
is possible from finitely many samples, contrary to classical results
from signal processing theory. The number of measurements that
need to be taken is proportional to the sparsity of the function. In
compact intervals, it is shown that the number of pointwise measure-
ments required scales quadratically with the size of the largest ex-
pansion coefficient (in a basis in which sparsity is measured) which
is sufficient for a faithful function approximation.

Index Terms— Bandlimited Functions, Irregular Sampling,
Compressed Sensing

1. INTRODUCTION

The approximate reconstruction of a bandlimited function in an in-
terval from a finite number of samples is a well-studied problem.
The classical Whittaker-Shannon-Kotelnikov sampling theorem re-
quires infinitely many samples for the reconstruction of the entire
bandlimited function [1]; reconstruction within a compact interval
from samples taken at the Nyquist rate can lead to major errors as
the sinc-function decays only with a rate of 1

t
for t → ∞, i.e.

samples from far outside the interval to be reconstructed can influ-
ence the values of the function in the interval to a major extent.
Such truncation errors have been thoroughly studied in the liter-
ature. By introducing oversampling, local reconstruction can be
achieved with far greater accuracy, as the reconstruction function
can be chosen to decay much faster in time than the sinc-function as-
sociated with Nyquist-rate sampling. Errors arising from truncated
sinc-expansions in the oversampling regime have been studied by
Helms and Thomas [2]; the same authors also developed bounds for
the truncation errors in case of self-truncating sampling expansions.
Truncation error bounds for finite-energy signals were derived by
Brown [3]. A related approach was followed by Knab who ana-
lyzed error bounds arising from estimating a bandlimited function
in an interval from a finite number of equidistant samples using La-
grange interpolation [4]. Error bounds for Lagrange interpolation
from equidistant samples of a bandlimited function depending on
the sampling rate and the Nyquist rate were developed by Radzyner
and Bason [5]. Klamer and Masry studied error bounds arising from
Lagrange interpolation of bandlimited functions with finitely many
sampling points distributed according to a point process [6]. They
derived error bounds for sampling points distributed according to a
Poisson point process in particular. Strohmer and Tanner considered
nonuniform periodic sampling, deriving a reconstruction algorithm
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using a finite number of samples [7]. Returning to Lagrange interpo-
lation, Selva considered a weighted Lagrange interpolation scheme
for the local approximation of a bandlimited function from nonuni-
form samples [8]. Explicit error bounds were given for nonuniform
sampling schemes with a maximum deviation of individual samples
from a uniform grid.

Compressed Sensing (CS) studies the solution of highly under-
determined linear systems, exploiting random measurements and the
sparsity of the signal to be reconstructed [9]. Classical CS theory
applies to finite-dimensional spaces. Recently, Adcock and Hansen
extended CS theory to infinite-dimensional spaces, thereby enabling
the application of CS to functions living in Hilbert spaces [10].

By combining infinite-dimensional CS with the theory of Pro-
late Spheroidal Wave Functions (PSWF), we derive approximation
methods for bandlimited functions. A similar approach which can
be found in [11] uses CS to recover functions sampled pointwise, as-
suming that the functions are sparse in a PSWF basis. The main dif-
ference of our work from [11] is that we lower the lower bounds on
the number of measurements sufficient for faithful approximation;
additionally, our method does not require sampling points distributed
according to a Chebyshev distribution for reconstructing expansion
coefficients above a certain index. Instead, uniform sampling can
be used throughout in our formulation. In Section 2 we discuss the
main aspects of infinite-dimensional CS and recapitulate the basics
of PSWF and Reproducing Kernel Hilbert Spaces (RKHS). There-
after we derive our main results.

1.1. Notation

The version of the Fourier transform used in this paper is f̂(ω) =
1√
2π

∫∞
−∞ f(t)e−iωtdt. All considered functions live in the Paley-

Wiener space PWπw := {f : f ∈ L2(R)
⋂
C(R), suppf̂ ⊆

[−πw, πw], w > 0}, where L2(R) is the space of all square-
integrable (Lebesgue) functions over R, C(R) is the space of all
continuous functions on the real line, supp is the support of a
function, and f̂ is the Fourier transform of the function f . The
reproducing kernel of PWπw is kπw(t, s) = w · sinc(w(t − s)),
where sinc(t) = sin(πt)

πt
. The coherence v(U) of an infinite matrix

U is defined as v(U) = supi,j∈N|uij | with uij the entries of matrix
U . 〈·, ·〉 denotes the inner product in a generic Hilbert space H over
C. The effective interval in which most of the function energy is
concentrated has length T > 0.

2. INFINITE-DIMENSIONAL COMPRESSED SENSING

Let H be a separable Hilbert space with an orthonormal basis
{φj}j∈N. Then every function in H can be expanded as f =∑∞
j=1 αjφj with αj = 〈f, φj〉. Let ∆ = supp(f) ⊂ {1, . . . , M}

with M ∈ N and supp(f) = {j ∈ N : αj 6= 0}. If |∆| = r, f is
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(r,M)-sparse in the basis {φj}j∈N. The best approximation error
for compressible signals (see [9]) can then be defined as

σr,M (α) = min{‖α− η‖1 : η is (r,M)-sparse}. (1)

Let ζ1(f), ζ2(f), . . . , be a countable collection of samples with
ζj(f) = 〈f, ψj〉 and {ψj}j∈N an orthonormal basis for H. The
infinite matrix

U =

〈φ1, ψ1〉 〈φ2, ψ1〉 〈φ3, ψ1〉 . . .
〈φ1, ψ2〉 〈φ2, ψ2〉 〈φ3, ψ2〉 . . .

...
...

...
. . .

 , (2)

is an isometry. Suppose that m of the first N measurements ζj(f)
are chosen uniformly at random with the position of the chosen mea-
surements being indicated by Ω ⊂ {1, . . . , N} and |Ω| = m. De-
fine PΩ to be the orthogonal projection from l2(N) to span{ej : j ∈
Ω} with {ej : j ∈ N} the canonical basis of l2(N) and PM the
orthogonal projection to span{ej : j = 1, . . . , M}. One result
from [10] reads then as follows: Provided certain technical require-
ments on N and m are met, then by solving the finite-dimensional
problem

inf
η∈l1(N)

‖η‖1 subject to PΩUPMη = PΩζ, (3)

a solution ξ can be found with probability 1 − ε, ε > 0, which is
close in norm to the true solution α:

‖ξ − α‖ ≤ 8

(
1 +

2N

m

)
σ|∆|,M (α). (4)

One requirement on m is

m ≥ C ·N ·v2(U)·|∆|·
(
log
(
ε−1)+ 1

)
·log

(
MN

√
|∆|

m

)
, (5)

i.e. the number of necessary measurements m in order to obtain a
faithful reconstruction with sufficiently high probability is bounded
from below. C is a fixed constant in Eq. (5).

2.1. Prolate Spheroidal Wave Functions

We recapitulate the basics of Prolate Spheroidal Wave Functions
(PSWF) briefly. The PSWF were introduced into signal analysis in
a series of papers [12–14]. They are solutions to both a differential
equation and to an integral equation, forming an orthonormal basis
for the Paley-Wiener space on the real line. The PSWF satisfy the
integral equation∫ 1

−1

sin(c(x− y))

π(x− y)
φ(y)dy = λφ(x), |x| ≤ 1, (6)

where c = πwT
2

. The differential equation which the PSWF satisfy
is

d

dx
(1− x2)

dφ

dx
+ (χ− c2x2)φ = 0. (7)

Equation (6) has solutions for discrete values of λ which can be
sorted in a descending order:

λ0 > λ1 > λ2 > · · · > 0 . (8)

Possible eigenvalues λ are functions of c, i.e. λi = λi(c), i ∈ N0.
The PSWF basis numbering starts with 0, contrary to the generic
basis {φ}i∈N. The PSWF constitute an optimal basis for the space

of bandlimited functions [15]. We consider a subclass of the Paley-
Wiener space of functions with maximum energy E. Then the Kol-
mogorov n-width dn inL2(−T

2
, T

2
) of the energy-bounded subclass

of the Paley-Wiener space equipped with the L2-norm in
(
−T

2
, T

2

)
is equal to dn =

√
Eλn and the subspace which leads to this in-

finum is Sn = span(φ0, φ1, . . . , φn−1), φj being the PSWF. The
best approximation to a function f in an interval living in the energy-
bounded Paley-Wiener space in any n-dimensional subspace is then∑n−1
j=0 〈f, φj〉φj . The worst case error arising from this approxima-

tion is equal to
√
Eλn.

2.2. Reproducing Kernel Hilbert Space

PWπw is a Reproducing Kernel Hilbert Space (RKHS). The repro-
ducing kernel is given by kπw(t, s) = w · sinc(w(t − s)). If s is
chosen to correspond to { n

w
}n∈Z, then the set 1√

w
{kπw(t, n

w
)}n∈Z

is an orthonormal basis for PWπw. Sampling at the Nyquist rate
corresponds therefore implicitly (after normalization of sample val-
ues by 1√

w
) to inner products with an orthonormal basis. In the case

of oversampling (samples are taken at the rate { n
w′ }n∈Z, w′ > w)

the induced set of functions
1√
w′
{kπw′(t,

n

w′
)}n∈Z, (9)

forms a tight frame with unit frame bound in PWπw. Consider now
the infinite matrix U from Eq. (2) with {ψi}i∈N a tight frame with
unit frame bound and {φi}i∈N an orthonormal basis for PWπw. U
is an isometry. Indeed,

Uα = U


〈f, φ1〉
〈f, φ2〉
〈f, φ3〉

...

 =


〈f, ψ1〉
〈f, ψ2〉
〈f, ψ3〉

...

 = ζ(f), (10)

with f ∈ PWπw. By Parseval’s identity it holds that ‖α‖2 = ‖f‖2.
‖ζ(f)‖2 is furthermore equal to ‖f‖2 as the set {ψi}i∈N is a tight
frame with unit frame bound. Hence ‖Uα‖2 = ‖α‖2 and U is an
isometry.

2.3. Infinite Dimensional Compressed Sensing with PSWF basis

2.3.1. Approximation on the real line

We estimate an upper bound for the coherence of matrix U defined
in Eq. (2) with the PSWF basis {φi} and the tight frame {ψi} from
Eq. (9). All PSWF have unit energy on the real line. A standard
result from the theory of RKHS (see [16]) yields that the maximum
value attainable by a function from the RKHS at an arbitrary point
t0 ∈ R, R being the domain, assuming that the function has energy
E, is given by max‖f‖2≤E |f (t0)|2 = Ek (t0, t0), k(t, s) being
the reproducing kernel. It follows that the coherence of the infinite
matrix U is bounded from above by v (U) ≤

√
w
w′ . We conclude

that the coherence of the infinite matrix U in Eq. (2) depends on the
bandwidth πw and on the sampling rate w′ > w. By oversampling
suitably, the coherence of U can be made as small as required.

Let us now study the termN ·v2 (U) from Eq. (5). As discussed
above, an upper bound for the squared coherence v2 (U) of matrix
U in Eq. (2) is equal to w divided by w′. Furthermore, the following
is valid:

f ∈ PWπw ⇒ f → 0 as t→ ±∞. (11)
Therefore, for every function in PWπw there exists a T > 0 such
that almost all of the energy of the function is located in

[
−T

2
, T

2

]
.
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We consider equispaced sampling points in
[
−T

2
, T

2

]
, spaced apart

by 1
w′ . N , the number of sampling points in

[
−T

2
, T

2

]
, is therefore

linear in w′. The matrix PNUPM from which m rows are drawn
with uniform distribution is therefore close to an isometry, implying
that the theorems from [10] apply. The product of N and v2 (U)
reduces to a constant value which depends on w. Disregarding log-
terms, the number of measurements needed scales then linearly with
|∆| as can be seen from Eq. (5):

m ≥ C · T ·w · |∆| ·
(
log
(
ε−1)+ 1

)
· log

(
MN

√
|∆|

m

)
. (12)

In the case of sampling the function globally, the number of
measurements would therefore be proportional to the support |∆|
and the time-bandwidth product T · w. For a general bandlimited
function, one cannot assume a priori knowledge on ∆. By assuming
sparsity, however, a bandlimited function can be fully reconstructed
from finitely many samples in a stable way. Without the assumption
of sparsity, infinitely many samples are necessary for a sampling set
to be stable [1]. A stable sampling scheme in this sense is then also a
set of uniqueness, i.e. there is only one bandlimited function whose
values at the sampling set correspond to the sampled values.

Remark 1. In principle, one could choose a different orthonormal
basis for PWπw than the one set up by the PSWF. Since bandlimited
functions are contained in L2 (R) on the real line, any orthonormal
basis for L2 (R) would suffice. The reproducing kernel for PWπw,
however, acts as a lowpass filter, implying that any non-bandlimited
basis element from such a hypothetical orthonormal basis would first
have to be ideally lowpass-filtered before being evaluated at a spe-
cific point. Since the PSWF are bandlimited themselves, pointwise
evaluation suffices.

Remark 2. The size of N (or equivalently of w′) influences the ir-
regularity of the sampling pattern. The larger N becomes, the more
the sampling process resembles truly uniform sampling on the inter-
val
[
−T

2
, T

2

]
. In fact, a largerN implies a greater possible sampling

pattern irregularity in
[
−T

2
, T

2

]
. This can be seen as follows: Set

C′ = C ·N · v2(U) ·
(
log
(
ε−1
)

+ 1
)

(C′ is a constant for fixed ε),
and |∆| = M . We obtain the following inequality from Eq. (5):

emmC′M ≥ C′′NC′M , (13)

with C′′ =
(
M
√
M
)C′M

. In the case of a growing N , the re-
quired m in order to fulfil Eq. (13) (and hence Eq. (5)) will grow
slower than N . This can be seen by comparing the derivative of
the left hand side of Eq. (13) with respect to m with the deriva-
tive of the right hand side with respect to N . For the left hand side
one obtains emmC′Me−1 (C′M +m) and for the right hand side
C′′NC′MN−1C′M . If N and m are chosen in such a way as to
fulfil Eq. (13) it follows that

emmC′Me−1 (C′M +m
)
≥ C′′NC′Me−1 (C′M +m

)
≥ C′′NC′MN−1C′M, (14)

provided that C′M + m ≥ eN−1C′M . The latter inequality is
certainly fulfilled as N is always larger than e.

2.3.2. Approximation in intervals

Assume now that we are only interested in the approximation of a
bandlimited function in an interval. In general, finitely many sam-
ples in an interval do not determine a bandlimited function uniquely.

By restricting a bandlimited function to an interval, the resulting
function space ceases to be a RKHS, that is, pointwise sampling is
no longer continuous. After normalization, the PSWF form an or-
thonormal basis for the interval of interest. Within the interval, an
upper bound for the values of the PSWF cannot be obtained from
RKHS techniques as in Section 2.3.1. It is known, however, that for
large enough integers n ≥ 0 the largest absolute value of the normal-
ized PSWF can be found at −T

2
and T

2
[17]. Furthermore, an upper

bound for this largest value is proportional to
√
n [17]. Hence the

approach from Section 2.3.1 cannot be used, as no upper bound for
the coherence can be given. Following Corollary 7.1 in [18], we use
a weighted minimization scheme to solve the interpolation problem
in the interval by introducing weights {wi} which grow as fast as
the maximum value of the PSWF in our interval of interest, i.e. with
rate
√
i. Following the line of argument given in [18], it transpires

that the number of measurements needed in the interval of interest is
proportional to M2, with M the largest integer for which a coeffi-
cient that is nonzero is expected. As discussed above in Section 2.1,
the worst case error of functions from the energy-bounded Paley-
Wiener space expanded in a subspace spanned by the first n PSWF
basis elements is equal to

√
Eλn. Given that λ decays rapidly for

n > 2c
π

, in general one will need more than 2c
π

PSWF basis ele-
ments for an acceptable worst case approximation error. Equating n
with M and setting ∆ = {1, . . . , M} (in general, all coefficients
〈f, φj〉 for j ∈ {1, . . . , M} will be nonzero), one can conclude
that one has to oversample locally, as 2c

π
corresponds to the number

of Nyquist-rate samples in an interval [−T
2
, T

2
].

It is interesting to observe the qualitative difference between the
sampling of bandlimited functions on the real line and on intervals
assuming sparsity. In the former case, the number of sampling points
sufficient scales linearly with |∆|, in the latter case quadratically. As
mentioned above, one of the reasons for this behavior is the lack of
continuity in the sampling process in the time-limited case since the
space is no longer a RKHS.

Remark 3. A different approach to approximate a bandlimited func-
tion locally from uniformly distributed samples can be based on
previous work showing how to determine the Restricted Isome-
try Property (RIP) for finitely many measurements in potentially
infinite-dimensional Hilbert spaces [19]. It is known (see [20])
that for sampling times {tn}n∈Z with a maximum separation
δ = supn∈Z (tn+1 − tn) < 1

w
the following is true for any

f ∈ PWπw:

(1− δw)2 ‖f‖2 ≤
∑
n∈Z

ωn |f (tn)|2 ≤ (1 + δw)2 ‖f‖2 (15)

with ωn =
tn+1−tn−1

2
. We assume that nearly all of the energy of

f is located in the interval of interest. This assumption is in contrast
to the first part of Section 2.3.2 in which it was not assumed that the
interval of interest contains most of the signal energy. By suitable
time-windowing that leaves the function bandlimited (albeit with a
potentially different bandlimit), however, one can enforce this en-
ergy condition. By sampling only in the interval of interest, Eq. (15)
will not be strictly fulfilled; we disregard this error from now on as
it can be made arbitrarily small by increasing our interval. Using
Theorem II.2 from [19] and Eq. (15), we now show that uniformly
distributed sampling points satisfy the RIP with a large probability.
Define the continuous linear map L that operates on the coefficients
η of f ∈ PWπw in the PSWF basis and that returns m pointwise
evaluations of f distributed uniformly in the interval

[
−T

2
, T

2

]
,

each sample being rescaled by
√
ωn. Let µ be the probability

measure which leads to uniformly distributed rescaled sampling
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points in
[
−T

2
, T

2

]
. Then Eµ‖L(η)‖2 = ω

∑m
i=1

∣∣f (−T
2

+ iΛ
)∣∣2

with Λ = T
m+1

and ω = Λ = 1
w′ . Hence, if m is chosen such

that the induced w′ ≥ w, it follows that Eµ‖L(η)‖2 = ‖f‖2.
As in [19], define δS,µ,2 = supx∈S

∣∣‖L (η) ‖2 − Eµ‖L(η)‖2
∣∣ =(

2δw + δ2w2
)
‖f‖2 using Eq. (15), with S being the set of 2|∆|-

sparse coefficient vectors η with unit energy ‖f‖2 = 1. Since the
RIP constant δRIP ≥ δS,µ,2, it is necessary to oversample for a RIP
constant below one to be feasible: (2δw+δ2w2) < 1⇔ δ <

√
2−1
w

.
If, as above, ∆ ⊂ {1, . . . ,M}, then S has a finite upper box-
counting dimension (cf. [19] for definitions). Additionally, for
Theorem II.2 from [19] to work, the following probability must be
bounded from above:

P
{∣∣∣‖L(η1)‖2 − Eµ‖L(η1)‖2 − ‖L(η2)‖2 + Eµ‖L(η2)‖2

∣∣∣ ≥
λ‖η1 − η2‖

}
, (16)

with η1 and η2 ∈ S or zero in all its entries and λ ≥ 0. For η1 and
η2 either all zero or identical, a bound is trivial, i.e. statement (16)
has probability one. For η1 and η2 distinct, we can use Hoeffding’s
inequality to obtain an upper bound. Using Eq. (15), we derive:

P
{∣∣∣‖L(η1)‖2 − Eµ‖L(η1)‖2 − ‖L(η2)‖2 + Eµ‖L(η2)‖2

∣∣∣ ≥
λ‖η1 − η2‖

}
≤ 2exp

(
− λ2

8δ2w2

)
. (17)

Equation (17) is valid for all λ. It is worth emphasizing that Eq.
(17) is only a correct statement insofar as Eq. (15) is true which ne-
cessitates oversampling. In case m points are chosen with uniform
probability independently in an interval

[
−T

2
, T

2

]
and sorted in as-

cending order, the distribution for the greatest distance between any

two consecutive points is given by Fδ(z) =
(

1− (T−z)m
Tm

)m−1

with z ranging from zero to T . Fδ2(z) is then given by Fδ2(z) =(
1−

(
T−z

1
2

)m

Tm

)m−1

. Hence it follows that δ2 < Λ (assuming

δ < 1) with overwhelming probability for even slight oversampling
(factor two); Eq. (17) can then be manipulated to yield:

P
{∣∣∣‖L(η1)‖2 − Eµ‖L(η1)‖2 − ‖L(η2)‖2 + Eµ‖L(η2)‖2

∣∣∣ ≥
λ‖η1 − η2‖

}
≤ 2exp

(
− λ2m

8Tw2

)
. (18)

Given that the continuous linear map L has a finite upper box-
counting dimension and that inequality (18) holds, we conclude by
invoking Theorem II.2 from [19]: The RIP holds with probability
1− ξ, i.e. δS,µ,2 ≤ δRIP for any ξ, δRIP ∈ (0, 1) if

m ≥ 8CTw2

δ2
RIP

max
{

(2 |∆|+ 1) log
(

1

εS

)
, log

(
6

ξ

)}
, (19)

with C > 0 a constant independent of all other parameters and εS
given in [19]. The bound shown in Eq. (19) is structurally similar to
the one derived in Eq. (12).

3. IMPLEMENTATION AND RESULTS

The PSWF are generated by using a freely available numerical soft-
ware package [21]. Since the generation of PSWF with a large pa-
rameter c is numerically difficult, we have restricted our practical
investigation to c = 30. To test the algorithm, a speech signal is

bandpass-filtered and the resulting bandpass-filtered signal is repre-
sented in its equivalent baseband form. This equivalent baseband
form is then sampled uniformly in an interval. An illustrative ex-
ample is shown in Fig. 1. In this example, T is set to 2, while
c = 30. 90 sampling points are uniformly distributed within the in-
terval

[
−T

2
, T

2

]
. The approximation via weighted l1-minimization

in the interval is essentially perfect. It is worth pointing out that the
actual number of measurements needed is smaller than the number
required by theory. The upper bound discussed in Section 2.3.2 for
the normalized PSWF element i (proportional to

√
i) seems to be a

conservative estimate in practice. The homotopy method is used in
our implementation for the minimization of the CS problem. In the
case of noisy measurements, a weighted l1-minimization is able to
recover a solution with an error proportional to the noise term. Fig. 2
depicts the same signal as Fig. 1; contrary to the case in Fig. 1, how-
ever, uniform i.i.d. noise (SNR≈ 4) is added to the perfect sampling
values.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Time [s]

-1

-0.5

0

0.5

1

1.5

2

2.5

A
m

p
li
tu

d
e

×10
-4

Ground Truth

L1-Approximation

Sampled Values

Fig. 1. Example of a reconstructed equivalent baseband signal (real
part): M = 30; 90 uniformly distributed sampling points; c = 30
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Fig. 2. Example of a reconstructed equivalent baseband signal (real
part): M = 30; 90 uniformly distributed sampling points; c = 30;
SNR ≈ 4, i.i.d. uniformly distributed noise on sampling values

4. CONCLUSION

We have discussed and derived methods for approximating bandlim-
ited functions on the real line or in finite intervals from finitely many
samples generated by a uniformly distributed sampling process, as-
suming sparsity in the PSWF basis. In the case that nearly all of
the signal energy is concentrated in the interval of interest, the num-
ber of sampling points necessary is proportional to the sparsity in
the PSWF basis. In the case that a significant portion of the sig-
nal energy is outside the interval of interest, we have derived results
showing that a lower bound for the number of sampling points suf-
ficient is proportional to M2, assuming all coefficients up to M are
to be recovered. Future work includes investigating the reason for
this qualitative change in behavior when moving from the real line
to finite intervals.
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