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ABSTRACT
This work sheds a new light on the spectral whitening effects of

the sliding discrete Fourier transform (DFT) and uses it as a basis for
a novel technique for circularity-preserving spectral estimation. This
makes it possible to utilise full available spectral information, un-
like the existing methods which ignore the phase spectrum. We then
use the so introduced circularity-preserving DFT to show that the
Wiener filter can be used to estimate the recently introduced second-
order complementary spectral measure, termed the panorama, even
in the critical cases of short data windows and incoherent sampling.
Numerical examples demonstrate the ability of the proposed proce-
dure to estimate the spectral circularity and the panorama, even in a
streaming-data setting for which the current methods are inadequate.

Index Terms— complex circularity, panorama, sliding DFT,
spectral noncircularity, Wiener filtering.

1. INTRODUCTION

Spectral analysis techniques for real-valued signals typically oper-
ate in the complex-valued frequency domain based on magnitude-
only models, thus not accounting for the phase information [1]. In
other words, conventional spectral estimation makes a fundamental
assumption that the phase of these complex representations is uni-
form and thus not informative. Such an assumption implies that the
probability density function (pdf) of an observed complex random
variable is circular, or rotation-invariant, in the complex plane [2].

It has now been widely accepted that for a complete statistical
description of complex random variables, we need to employ the
so-called augmented complex statistics which, for a complex-valued
random variable x ∈ CN , incorporates both the standard covariance,
R = E

{
xxH

}
, and another second-order moment, the pseudo-

covariance, P = E
{
xxT

}
[3, 4]. Therefore, as with general com-

plex random variables, the Fourier coefficient X[m] at a frequency
m has two distinctive second-order statistics: (i) the real-valued Her-
mitian variance E {X[m]X∗[m]} = E

{
|X[m]|2

}
, also known as

the power spectrum; (ii) the lesser-known, complex complementary
variance E

{
X2[m]

}
, also termed the spectral pseudo-variance or

the panorama [5]. If the panorama is equal to zero, then the ran-
dom variableX[m] is said to be proper [3], or second-order circular
[6]. Otherwise, for improper or second-order noncircular random
variables the panorama does not vanish. This implies a rotation-
dependent probability distribution which manifests itself in unequal
powers or degree of correlation between the real and imaginary part
of X[m]. Unlike the time domain, the second-order noncircular-
ity (impropriety) in the spectral domain has received comparatively
little coverage, yet it offers much scope and additional degrees of
freedom for enhanced estimation [5, 7].

It was first noted in [6] that wide-sense stationary (WSS) random
signals have circular Fourier components, whereas deterministic sig-
nals yield highly noncircular Fourier components; the evidence that
real-valued nonstationary random signals are second-order noncir-
cular (or improper) was presented in [8]. Spectral noncircularity
in complex-valued speech spectra was observed in [9, 10], and has
been related to the modulation frequency content [11, 12], while the
effectiveness of spectral noncircularity for detection of speech was
empirically demonstrated in [13, 14, 15].

Going back to the rotation-dependence of the pdf, impropri-
ety is strongly related to the phase characteristics of a signal in the
time and frequency domains. Indeed, the complementary variance,
E
{
X2[m]

}
, parametrizes the eccentricity and angle of an ellipti-

cal probability distribution in the complex plane [16], which sug-
gests that impropriety in the frequency domain corresponds to a
deterministic-like, relative timing of harmonic components in the
time domain. In this way, phase information becomes indispensable
in the analysis of approximately periodic signals [11].

This all suggests the importance of designing novel estimators
of spectral circularity, especially given that the existing solutions are
scattered across several areas of engineering. The panorama was
formally introduced in [5], defined as the Fourier transform of a zero-
mean autoconvolution estimated using ensemble averaging. In con-
junction with the conventional power spectrum, that is, the Fourier
transform of the zero-mean autocorrelation, a detector for determin-
istic sinusoidal components in the presence of Gaussian noise was
proposed. On the other hand, computing the panorama from a single
realization would simply estimate the power spectrum, as it is max-
imally noncircular. To overcome this issue, the same authors intro-
duced a technique for estimating the absolute value of the panorama
of a single-channel signal [7], using block processing based on time-
domain averages of the DFT. Subsequently, estimators of spectral
circularity were proposed in [17, 2].
There remain several issues that need to be addressed prior to a more
widespread application of spectral circularity, these include:
1. Current methods estimate the absolute value of the spectral circu-

larity quotient, as opposed to its inherent complex value, which
is essential to maintaining the phase information [4, 5, 7].

2. Existing methods for single-channel panorama estimation are
block-based and their performances are highly dependent on the
window length and window function. Indeed, non-rectangular
window functions may be detrimental to the performance as the
autoconvolution vector contains the most recent information at its
right-hand end, which is suppressed by most window functions.

3. The effect of incoherent sampling on the circularity of the Fourier
coefficients was discussed in [15], however no rigorous solution
is provided to counteract this effect.
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In this work, we extend the work in [5, 15, 7] to address the above
caveats encountered when estimating spectral circularity and the
panorama using the sliding DFT. This is achieved by first revisiting
the spectral whitening property of the sliding DFT in order to exploit
the effects of the sliding phase frame of reference and incoherent
sampling. Next, the circularity-preserving DFT is proposed as a key
tool for reliable single-realisation estimation of the panorama, and
its relation to spectral circularity is highlighted. Finally, an adaptive
method for single-realisation panorama estimation is proposed and
its usefulness is demonstrated over an example in harmonic analysis.

2. SPECTRAL CIRCULARITY ESTIMATION
2.1. Spectral whitening of the DFT
We next show that the well-known whitening effect of the sliding
DFT arises from a phase-spectrum shift which is inherent between
every two discrete time increments, n and (n + 1). This, in turn,
causes deterministic phase progressions, eωm , which destroy the
alignment of complex-valued samples in time within each frequency
bin [2]. To address the causes of this phase progression, consider
a sliding segment of a real-valued signal at time instant n, xn =
[xn, ..., xn+N−1]

T ∈ RN , the DFT of which is defined as

XDFT
n [m] =

N−1∑
k=0

xn+ke
−ωmk (1)

where ωm = 2πm
N

. A more theoretically appropriate definition of
the DFT is obtained by projecting onto the normalized DFT sinu-
soids [18], to obtain the normalized DFT (NDFT) of x given by

XDFT
n [m] =

1√
N

N−1∑
k=0

xn+ke
−ωmk (2)

Importantly for this work, and contrary to the conventional DFT,
only the NDFT provides a rigorous mapping of coordinates from the
time-domain to the frequency-domain, that is, it is the NDFT that
represents a pure rotation in CN which preserves both the orthogo-
nality and the unit-norm properties of the basis sine and cosine func-
tions. The DFT, in contrast, preserves orthogonality, but the norms
of the basis functions have the value of

√
N [18]. The NDFT can

thus be rearranged as

XDFT
n [m] =

1√
N

N−1∑
k=0

xn+ke
−ωmk

=
1√
N

[
N−1∑
k=0

xn−1+ke
−ωmk + xn+N−1 − xn−1

]
eωm

=

[
XDFT
n−1[m] +

1√
N

(xn+N−1 − xn−1)

]
eωm (3)

which is, in effect, a recursive expression for the sliding DFT [19,
20], using normalized DFT sinusoids.

Upon unfolding (3) backward in time, we have

XDFT
n [m] =

[[
XDFT
n−2[m] +

1√
N

(xn+N−2 − xn−2)

]
eωm

+
1√
N

(xn+N−1 − xn−1)

]
eωm = · · ·

= XDFT
0 [m]eωmn +

1√
N

n−1∑
k=0

(xk+N − xk) e−ωm(k−n)

=

[
XDFT

0 [m]+
1√
N

n−1∑
k=0

(xk+N − xk) e−ωmk
]
eωmn

=

[
1√
N

N−1∑
k=0

xn+ke
−ωm(n+k)

]
eωmn

= Xn[m]eωmn (4)

where Xn[m] = 1√
N

∑N−1
k=0 xn+ke

−ωm(n+k) is the term which
we refer to as the circularity-preserving DFT (CPDFT), the opera-
tion of which is illustrated in Fig. 1 (left panel).

The conventional DFT computes the phase, ∠XDFT
n [m], relative

to an arbitrary fixed frame of reference. When performing the sliding
DFT, a new reference frame is adopted at each time instant n. Such a
repeated change in coordinates with each time step increment leads
to a rotation in the phase spectrum over time. This follows from the
DFT time shift property [21], which states that if

xn
F←→ XDFT

n [m] then xn+τ
F←→ XDFT

n [m]eωmτ (5)
which models the dependence of the phase of the sliding DFT on the
time instant n. To account for this dependence, we shall redefine the
CPDFT as

Xn[m] , XDFT
n [m]e−ωmn, (6)

so that the phase is projected onto a stationary reference frame, as
marked in red in Fig. 1.
Remark 1: Fig. 1 (left panel) shows that the sliding DFT vector
rotates counter-clockwise in the complex plane (black dots, phase
shifting), while, as desired, the CPDFT maintains a stationary phase
(red dot, no rotation).

At each frequency bin, the CPDFT rotates the DFT frame of ref-
erence at a rate equal to the frequency at bin index m. This, in turn,
shifts the phase spectrum such that the DFT coefficients become sta-
tionary over time. This is convenient since time-invariant statistics
can then be estimated from the stationary quantities, as the effects of
time-varying statistics are eliminated. We can therefore surpass the
fictitious circular distributions observed when performing the sliding
DFT. In other words, the CPDFT can be thought of as the projection
of the complex-valued DFT coefficients onto a stationary reference
frame.

Next, we examine the circularity quotient obtained from the slid-
ing DFT [22], that is, %DFT

n [m] = E
{
XDFT2
n [m]

}
/E
{
|XDFT

n [m]|2
}

:

%DFT
n [m] =

1
n

∑n−1
k=0 X

DFT2
k [m]

1
n

∑n−1
k=0 X

DFT
k [m]XDFT

∗

k [m]

=
1
n

∑n−1
k=0 X

2
k [m]e2ωmk

1
n

∑n−1
k=0 Xk[m]X

∗
k [m]

= %n[m]
1

n

n−1∑
k=0

e2ωmk

= %n[m]e2ωm
(n−1)

2 Dn(2ωm) (7)
where %n[m] is the circularity quotient of the CPDFT in (6), at time
instant n. The last step in (7) relies on the identity

N−1∑
k=0

eωk = Neω
(N−1)

2
sin
(
Nω
2

)
N sin

(
ω
2

) = Neω
(N−1)

2 DN (ω) (8)

where DN (ω) =
sin(Nω2 )
N sin(ω2 )

is the Dirichlet kernel [23], with

lim
N→∞

DN (ω) = 0. (9)

It then follows that the longer the sequence use to compute %n[m],
the more circular the DFT, which is obvious from (9), and leads to

lim
n→∞

|%n[m]| = 0. (10)
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Fig. 1: A scatter diagram of the sliding DFT sequence, XDFT
m [m],

(black dots in left panel), its circularity-preserved version under in-
coherent sampling,Xn[m+ε], (black dots in right panel), and under
coherent sampling, Xn[m], (red dots).

2.2. Spectral whitening and incoherent sampling
The phase spectrum adjustment performed in (6) is only effective
when the sampling frequency is an integer multiple of the frequency
of interest. In practice, perfect coherent sampling is not guaranteed
due to either: (i) a finite duration of the data segments or (ii) random
frequency fluctuations (intra-wave modulation), which yields further
deterministic phase progression and consequently enforces circular
complex distributions in time along each frequency bin.
Remark 2: Fig. 1 (right panel) illustrates the slow phase drift asso-
ciated with incoherent sampling (black dots) of a signal composed of
a single sinusoidal component. The mismatch between the sampling
frequency, (m + ε), and the fundamental frequency of the sinusoid,
m, causes a phase progression of e−ωε per time step increment, as
proven analytically next.

Consider a signal xn = [xn, ..., xn+N−1]
T ∈ RN composed

of a sinusoidal component at a frequency bin m, and assume that
the signal is sampled at a frequency (m + ε), that is, with a small
frequency offset ε. From the frequency translation property

xn
F←→ XDFT

n [m] then xne
−ωεn F←→ XDFT

n [m+ ε] (11)
and we therefore have

XDFT
n [m+ ε]=

N−1∑
k=0

(
xn+ke

−ωεn) e−ωmk=Xn[m]e−ωεn (12)

that is, Xn[m] is rotated by −ωε with each time step increment.
Remark 3: Under incoherent sampling, the sampling frequency mis-
match,−ε, will yield a slow rotation in the sliding DFT, at a speed of
ωε in time. This causes the sliding DFT to exhibit less noncircular
distribution; observe that the more samples over which the sample
circularity quotient is computed in (7), the more circular the distri-
bution of Xn[m]. In other words, for a finite number of samples, the
degree of noncircularity of an incoherently sampled signal will be
under-estimated.

To derive a closed-form expression for the sample circularity of
Xn[m] under incoherent sampling [15], from (7) we have

%n[m+ ε] =
1
n

∑n−1
k=0 X

2
k [m+ ε]

1
n

∑n−1
k=0 Xk[m+ ε]X

∗
k [m+ ε]

=
1
n

∑n−1
k=0 X

2
k [m]e−2ωεk

1
n

∑n−1
k=0 Xk[m]X

∗
k [m]

= %n[m]
1

n

n−1∑
k=0

e−2ωεk

= %n[m]e−2ωε
(n−1)

2 Dn(2ωε). (13)
Using properties of Dirichlet’s kernel [23], the following holds

lim
ε→0

%n[m+ ε] = %n[m], lim
ε→±∞

|%n[m+ ε]| = 0 (14)

Remark 4: The spectral circularity quotient %n[m+ ε] is dependent
on the sampling frequency mismatch ε.

We next propose a method to remove the effects of the incoher-
ent sampling by tracking the expected frequency mismatch. From
(12), the effects of incoherent sampling can be mitigated by an ad-
ditional phase adjustment. In other words, to cancel out the effect
of incoherent sampling, the circularity-preserved phase spectrum,
∠Xn[m], must be shifted by the expected phase progression from
the frequency mismatch at each frequency bin, φm, between the con-
secutive CPDFT values, that is,

φm = E {∠Xn[m+ ε]− ∠Xn−1[m+ ε]}
= E {−ωεn+ ωε(n− 1)}
= E {−ωε} (15)

The overall adjustment to the conventional DFT, when accounting
for incoherent sampling, therefore becomes

Xn[m] =
1√
N

N−1∑
k=0

xn+ke
−[ωm(n+k)+φmn]

= Xn[m+ ε]e−φmn

= XDFT
n [m+ ε]e−[ωm+φm]n (16)

Remark 5: The behaviour of the phase mismatch, φm in (15), de-
pends on whether the input signal, xn, is a deterministic or a stochas-
tic process.

2.2.1. Behaviour of φm for a deterministic input

If at themth frequency bin the sampling frequency is an integer mul-
tiple of m (coherent sampling), then the expected phase mismatch
between the consecutive Xn[m] and Xn−1[m] will equal 0, that is

φm = E {∠Xn[m+ ε]− ∠Xn−1[m+ ε]}
= E {∠Xn[m]− ∠Xn−1[m]} = 0

(17)

This holds even if the signal is contaminated with noise, owing to
the expectation operator E {·}. Intuition into why the determinism
within Xn[m] will manifest itself as a noncircular distribution is in
that the distribution of Xn[m] will lie on a line of constant phase, as
shown in Fig. 1 (red dot), which in turn means that its distribution
will inherently be rotation-variant, and thus noncircular.

Under incoherent sampling, the expected phase mismatch be-
tween the consecutive Xn[m + ε] and Xn−1[m + ε] will become
approximately constant, that is,

φm = E {∠Xn[m+ ε]− ∠Xn−1[m+ ε]} = −ωε, (18)
where ωε is the constant phase mismatch between the sampling
frequency (m+ ε) and the neighbouring deterministic “interhar-
monic” true frequency m. Condition (18) also holds true in the
presence of noise. Similarly, Xn[m + ε] will lie on a line of con-
stant phase, which means that the distribution will inherently be
rotation-dependent, and thus noncircular.

2.2.2. Behaviour of φm for a stochastic input

Regardless of the sampling coherence at the mth frequency bin,
if Xn[m] is complex-Gaussian distributed then the expected phase
mismatch between the consecutiveXn[m+ε] andXn−1[m+ε] will
be uniformly distributed in the dense set [0, 2π), that is

φn = E {∠Xn[m+ ε]− ∠Xn−1[m+ ε]} ∈ [0, 2π). (19)
This provides intuition into why a uniformly distributed XDFT

n [m]
will remain uniformly distributed upon phase-rotating to Xn[m].
The distribution of ∠Xn[m] will also be uniform within the dense set
[0, 2π), so that the distribution ofXn[m] will inherently be rotation-
invariant, and thus circular. This property inherits from the definition
of a circular distribution, that is, that the distribution of XDFT

n [m] is
equivalent to the distribution of XDFT

n [m]eθ ∀θ [24].
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To track the expected phase mismatch at a time instant n, φm,n,
for simplicity and robustness we can employ a moving-average of
the phase mismatch

φm,n =
1

N

L−1∑
l=0

[
∠Xn−l[m]− ∠Xn−1−l[m]

]
(20)

More sophisticated procedures employ the Kalman filter or recursive
least squares [25, 26, 27, 28, 29, 30], but require tuning of additional
parameters.
Remark 6: Fig. 1 (right panel) illustrates that under incoherent sam-
pling the sliding DFT vector rotates clockwise (black dots), while,
as desired, the CPDFT maintains a stationary phase (red dot).

3. ADAPTIVE ESTIMATION OF THE PANORAMA
There is an intricate link between the circularity quotient and the
frequency-domain Wiener solution [31], given by

w[m] =
E {D∗n[m]Xn[m]}
E {|Xn[m]|2} (21)

for an input signal, xn ∈ RN with xn
F←→ Xn[m], and a desired

signal dn ∈ RN with dn
F←→ Dn[m]. We next provide a novel

insight through the circularity quotient of a complex-valued random
variable x ∈ C , defined as % = E

{
x2
}
/E
{
|x|2
}

[22].
Since the Wiener filter is computationally expensive and can-

not operate in real time, the recent work in [31] demonstrates that a
complex least mean-square (CLMS) algorithm can be used to recur-
sively track the circularity quotient of complex-valued signal. We
next utilise the CLMS to estimate the panorama from the CPDFT,
Pn[m] = E

{
X2
n[m]

}
, and in this way bypass the key stumbling

block in the practical applications of the panorama - the requirement
for ensemble averages.

Consider using a zero-mean random variable z ∈ C to estimate
the zero-mean random variable d ∈ C, in the form d = w∗z, where
w ∈ C is a weight coefficient. The minimum mean square error
(MMSE) estimator seeks the optimal value of w [31] by minimizing
the cost function JMSE = E{ee∗}, where e = d − w∗z is the es-
timation error. The solution sets ∂JMSE

∂w∗ = 0 and solves for w. For
convenience, we utilize the CR (or Wirtinger) derivative chain rule
[32, 4] to simplify ∂JMSE

∂w∗ to ∂JMSE
∂w∗ = ∂JMSE

∂e
∂e
∂w∗ + ∂JMSE

∂e∗
∂e∗

∂w∗ = 0.
Upon inserting ∂e

∂w∗ = −z, ∂e
∗

∂w∗ = 0 and ∂JMSE
∂e

= e∗ we have
∂JMSE

∂w∗
= −E {e∗x} = −E{d∗z − wzz∗} = 0. (22)

Therefore, for the optimal circularity tracker

wopt =
E{d∗z}
E{zz∗} . (23)

Finally, the gradient descent update, wn+1 = wn − µ ∂JMSE
∂w∗ , gives

wn+1 = wn + µe∗x. (24)
Remark 7: Real time spectral circularity tracking can be performed
based on (23) with the choice of parameters, d∗ = z = Xn[m], to
yield

wopt =
E{X2

n[m]}
E{Xn[m]X∗

n[m]} =
Pn[m]

Rn[m]
= %n[m], (25)

which is the spectral circularity of xn at a frequency bin m.
Remark 8: From (25), the panorama can be computed from CPDFT
in real time, based on the single-realisation of the input signal as

Pn[m] = E
{
X2
n[m]

}
. (26)

Remark 9: Unlike the existing ensemble or block-based estimators
of the panorama, based on (25) the panorama can be estimated from
the standard power spectrum and spectral circularity for a single
streaming realisation as Pn[m] = %n[m]Rn[m].
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Fig. 2: The panorama estimators, block and recursive.

4. SIMULATIONS

The performance of the proposed spectral circularity estimator is il-
lustrated through an example, which for continuity is identical to that
from [5, 7], where the signal of interest if given by

xn = cos
(
0.15(2πn)− π

6

)
+ 0.25 cos

(
0.25(2πn) +

π

3

)
+ 0.1 cos

(
0.4(2πn) +

π

8

)
+ ηn,

(27)

and ηn is a zero-mean Gaussian random process generated by filter-
ing a zero-mean uncorrelated Gaussian random process with a digital
filter with the system function given by

H(z) =
1

1− 1.6 cos(2π0.2)z−1 + 0.64z−2
. (28)

A single 100,000-sample realization was generated, and the sliding
DFT of xn was estimated using (16), with a window of N = 256
samples in length. Fig. 2 compares the performance of the proposed
panorama estimator against the power spectrum and the recently in-
troduced time-average based panorama estimator [7].

For a fair comparison, the method from [7] was employed using
a window length of sizeN = 256. The CLMS-based panorama esti-
mator had a filter length of L = 1, and the moving-average window
used to estimate the phase mismatch from (20), φm, was N = 256
samples in length.

While the single-realisation panorama estimator in [7] is block-
based, the proposed CLMS-based estimator operates in a real-time
fashion and achieved a very similar performance to the existing
method, offering 20 dB noise suppression. An additional signifi-
cant advantage is that in this way, it makes it possible to estimate
the panorama adaptively, with minimal computational complexity,
making it suitable for the use with real-time and streaming data. The
proposed estimator also allows for causal processing as the estimate
at a time instant n depends on the past and current inputs only, in
contrast to the method in [7] which employs a non-causal approach.

5. CONCLUSIONS

We have introduced a procedure for preserving the spectral circular-
ity of the sliding DFT of noisy real-valued signals in real-time, for
the critical cases of incoherent sampling and short data lengths. In
conjunction with Wiener filtering and its recursive estimation, this
has served as a basis to estimate both the spectral circularity and the
panorama, from a single realisation of a signal. Numerical evalu-
ations have demonstrated the usefulness of the proposed technique
for both online spectral estimation and noise suppression. The dis-
tinguishing advantage of the proposed framework has been shown
to arise from the additional degree of freedom in the analysis, stem-
ming from the complex-valued nature of the panorama (cf. standard
real-valued power spectrum).
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