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ABSTRACT

In this work, we propose a new inference procedure for

understanding non-stationary processes, under the framework

of evolutionary spectra developed by Priestley. Among var-

ious frameworks of modeling non-stationary processes, the

distinguishing feature of the evolutionary spectra is its focus

on the physical meaning of frequency. The classical estimate

of the evolutionary spectral density is based on a double-

window technique consisting of a short-Fourier transform and

a smoothing. However, smoothing is known to suffer from the

so-called bias leakage problem. By incorporating Thomson’s

multitaper method that was originally designed for stationary

processes, we propose an improved estimate of the evolution-

ary spectral density, and analyze its bias/variance/resolution

tradeoff. As an application of the new estimate, we further

propose a non-parametric rank-based stationarity test, and

provide various experimental studies.

Index Terms— Non-stationary Processes, Evolutionary

Spectra, Spectral Analysis, Multitaper Method, Stationarity

Test.

1. INTRODUCTION

Nonstationary processes are common across a variety of ar-

eas and serve as a natural generalization of the classical wide-

sense stationary processes. Because of their wide range of ap-

plications, they have been an active research area in many dif-

ferent areas including statistics, neuroscience, and economics.

However, the intrinsic complexity of the non-stationarity

precludes a unique way of modeling the non-stationary pro-

cesses. Various frameworks have been developed over the

past few decades: instantaneous power spectra [1], evolution-

ary spectra [2], Wigner-Ville spectral analysis [3], locally sta-

tionary processes [4], and local cosine basis [5] among others.

In this work, we adopt the evolutionary spectra framework

developed by Priestley [2], [6] and his colleagues [7], [8],

which takes a spectral analysis approach and is one of the
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first frameworks on modeling non-stationary processes. The

appealing aspect of this framework is its emphasize on the

physical meaning of frequency, while generalizing the spec-

tral representation of the stationary processes to that of the

non-stationary processes [9]. Detailed discussions on the dif-

ferent frameworks can be found in [9] and [10] and the refer-

ences therein.

The estimation procedure of the evolutionary spectra is

based on a so-called double-window technique, consisting

of a short Fourier transform and smoothing. However, the

smoothing step is known nowadays to suffer from bias leak-

age. To overcome this problem, tapering methods have been

developed and the multitaper method by Thomson [11] is

one of the most widely methods. In a recent work by Abreu

and Romero [12], for stationary processes, the mean squared

error (MSE) of the spectral estimate based on the multitaper

method is characterized. In this work, the analysis is ex-

tended to the evolutionary spectra framework, which shows

that the non-stationarity calls for additional considerations

of the bias/variance/resolution tradeoff. As an application of

the estimate, a non-parametric rank-based stationarity test is

proposed and compared with the stationarity test investigated

by Priestley and Subba Rao in [7] but using the multitaper

method instead of smoothing.

Due to the space limit, all the proofs and a few simulations

are omitted in this paper. The full version of this work can be

found in [13].

2. PRIESTLEY’S EVOLUTIONARY SPECTRA

FRAMEWORK

2.1. Brief Review of the framework

In [2], the main focus is the continuous time setting and the

discrete time setting follows immediately. In this work, we

will focus on the discrete time setting. In the following,

we first briefly review the evolutionary spectra framework.

Consider a class of non-stationary processes {X(t)}, with

E[X(t)] = 0 and E[X2(t)] <∞ for t ∈ Z, such that

X(t) =

∫ π

−π

φt(w)dZ(w), t ∈ Z, (1)
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for some family F of functions φt(w) (defined on [−π, π] in-

dexed by t) and a measure µ(w), whereZ(w) is an orthogonal

process with E |dZ(w)|2 = dµ(w). If there exists a family F
such that

X(t) =

∫ π

−π

eiwtAt(w)dZ(w), t ∈ Z, (2)

where, for fixed w, the (generalized) Fourier transform

Hw(v) of hw(t) := At(w) (viewed as a function of t) has

an absolute maximum at the origin, then {X(t)} is called an

osciliatory process, and the evolutionary spectrum at time t
with respect to F is dFt(w) = |At(w)|2dµ(w).

Throughout this paper, assume that µ(w) is absolutely

continuous with respect to Lebesgue measure. Thus the evo-

lutionary spectral density at time t is ft(w) = |At(w)|2
dµ(w)
dw .

Normalize At(w) so that for all w, A0(w) = 1, which im-

plies that dµ(w) represents the evolutionary spectrum at

t = 0 and |At(w)|2 represents the change relative to t = 0.

Let BF (w) :=
∫ π

−π |v||Hw(v)|dv, and each family F is

called semi-stationary if BF(w) is bounded for all w. Then

BF =
(

supw BF (w)
)−1

is call the characteristic width of F .

A semi-stationary process {X(t)} is defined as one that can

be represented as (1) with respect to a semi-stationary family

F . Let C denote the class of semi-stationary families such that

{X(t)} can be represented as (2). Then BX = supF∈C BF

is called the characteristic width of {X(t)}.

In the double-window technique, the first window is for

the short-window Fourier transform and the second window

is for smoothing. In this work, however, the second window

will be replaced by the multitaper method as smoothing is

known to suffer from the bias leakage problem (see Section 4

for details). The width of the first window {g(u), u ∈ R}
is defined as Bg :=

∑∞

u=−∞
|u||g(u)|. Let G(w) denote

the Fourier transform of g(u). Assume that g(u) is square

integrable and normalized.

3. UNBIASED ESTIMATE OF THE EVOLUTIONARY

SPECTRA

In this section, we first revisit Theorem 8.1 [2] and provide

an alternative and simplified proof of it as in Proposition 2 in

this section. The main difference is that the pseudo δ-function

argument (see Definition 1) is directly applied to the time do-

main instead of the frequency domain as in [2]. This alterna-

tive approach facilitates the analysis of the variance in Sec-

tion 4.2 and highlight the relationship between the window

choice g(u) and the estimate |Jt(w)|2 of ft(w). First intro-

duce Jt(w) as follows, for fixed t ∈ Z and w ∈ [−π, π],

Jt(w) =

∞
∑

u=−∞

g(u− t)X(u)e−iwu

=

∫ π

−π

e−i(w−λ)t
∞
∑

v=−∞

g(v)Av+t(λ)e
−i(w−λ)vdZ(λ).

For two nonnegative functions f(x) and g(x), f(x) =
O(g(x)) means there exists some constant 0 < C < ∞ such

that f(x) ≤ Cg(x) for sufficiently large x. The analysis of

the spectra estimate of ft(w) in [2] depends on an approxi-

mation called pseudo δ-function and the discrete counterpart

can be defined as below.

Definition 1 Consider two functions a(·) : Z → R and b(·) :
Z → R. Then a(u) is a pseudo δ-function of order ǫ with

respect to b(u) if, for any t ∈ Z, there exists ǫ not depending

on k s.t.
∣

∣

∑∞

u=−∞
a(u)b(u+ t)− b(t)

∑∞

u=−∞
a(u)

∣

∣ < ǫ.

Lemma 1 For family F∗, a(u) := g(u)e−iwu is a pseudo

δ-function of b(u) := Au(w) with order O
(

Bg/BX

)

.

Proposition 1

Jt(w) =

∫ π

−π

At(λ)G(w − λ)e−i(w−λ)tdZ(λ)

+O
(

Bg/BX

)

∫ π

−π

e−i(w−λ)tdZ(λ),

where G(w) =
∑+∞

v=−∞
g(v)e−iwv.

Proposition 2

E[|Jt(w)|
2] =

∫ π

−π

|G(w − λ)|2ft(λ)dλ +O
(

Bg/BX

)

.

Given a sample record {X(0), X(1), ..., X(T − 1)} of

length T , for 0 ≤ t ≤ T − 1, let Ut(w) =
∑T−1

u=0 g(u −
t)X(u)e−iwu. Assume that Bg ≪ BX ≪ T , then for t≫ 0,

Ut(w) becomes almost identical to Jt(w) and the end effects

are negligible. This can be made precise by further assum-

ing that g(u) is time-limited, i.e., g(u) = 0 for |u| > N
for some N . Thus we have for t > N/2, E[|Ut(w)|2] =
∫ π

−π
|G(w − λ)|2ft(λ)dλ +O

(

Bg/BX

)

.

For stationary processes, one aims to design tapers so that

the spectra is concentrated between [−W,W ] with 2π/T <
W < π. We will refer to W as the resolution of the estimate.

For the evolutionary spectra, however, additional constraint

O
(

Bg/BX

)

is crucial to the performance of the estimate.

4. ESTIMATE BASED ON THE MULTITAPER

METHOD

4.1. Thomson’s Multitaper Method

ConsiderN sample records {X(0), . . . , X(N−1)}. Assume

that the sampling frequency is 1, then for a sequence of length

N , the fundamental frequency is 2π/N and the Nyquist fre-

quency is π. For 2π/N < W < π, one wishes to find se-

quences with spectral densities concentrated over [−W,W ].
The solution turns out to be a set of sequences vk(N,W ;u),
0 ≤ u ≤ N − 1, 0 ≤ k ≤ N − 1, which satisfy a cer-

tain eigenvalue equation. These N eigenvectors vk(N,W ;u)

3995



are called the discrete prolate spheroidal and they are ordered

by their eigenvalues 1 > λ0(N,W ) > λ1(N,W ) > · · · >
λN−1(N,W ) > 0. Only the first K = ⌊2NW ⌋ eigenvalues

are close to 1.

The discrete prolate spheroidal wave functions are de-

noted by Vk(N,W ;λ). For simplicity of notation, we sup-

press N and W and write vk(u) := vk(N,K;u), Vk(λ) :=
Vk(N,W ;λ), and λk := λk(N,K). These K functions sat-

isfy two types of orthogonality over [−W,W ] and [−π, π],
respectively. Consider the average of theK tapered estimates,
1
K ρK(λ) := 1

K

∑K−1
k=0 |Vk(λ)|2.

It has been observed numerically that (1/K)ρK(λ) is

close to (1/2W )1[−W,W ](·) by Thomson [11], which is jus-

tified recently by Abreu and Romero [12] as given below.

Theorem 1 ([12]) Let N ≥ 2 denote the length of the se-

quence, 2π/N < W < π and set K := ⌊2NW ⌋. Then

∥

∥

∥

∥

1

K
ρK(·)−

1

2W
1[−W,W ](·)

∥

∥

∥

∥

1

= O

(

logN

K

)

.

In the following section, we apply this result to analyze the

performance of the multitaper method for semi-stationary

processes.

4.2. Estimate of the Evolutionary Spectra based on the

Multitaper Method

For stationary processes, the bias and variance of the multi-

taper spectral estimate has been investigated [14], [15], [16].

In this section, we investigate its performance for semi-

stationary processes. Let g(u) be a time-limited function, i.e.,

|g(u)| = 0, for |u| > (N − 1)/2, where N is assumed to be

odd. Apply the multitaper method on {X(t), 0 ≤ t ≤ T − 1}
with gk(u) := vk

(

u+ (N − 1)/2
)

for 0 ≤ k ≤ K − 1, then

for t > (N − 1)/2 we have

U
(k)
t (w) =

T−1
∑

u=0

gk(u− t)X(u)e−iwu

=

t+(N−1)/2
∑

u=t−(N−1)/2

gk(u− t)X(u)e−iwu.

From Proposition 2,

E[|U
(k)
t (w)|2] =

∫ π

−π

|Gk(w − λ)|2ft(λ)dλ +O
(

Bgk/BX

)

.

The estimate of ft(w) is the average of |U
(k)
t (w)|2, f̂K

t (w) :=
1
K

∑K−1
k=0 |U (k)(w)|2 and the mean of the estimate is shown

below.

Theorem 2 For a semi-stationary process {X(t)}, the ex-

pectation of its evolutionary spectral density estimate using

the multitaper method is given by,

E[f̂K
t (w)]

=
1

K

∫ π

−π

ρK(w − λ)ft(λ)dλ +O
(

B(K)
g /BX

)

=
1

K

∫ π

−π

ρK(λ)ft(w − λ)dλ +O
(

B(K)
g /BX

)

,

where ρK(λ) :=
∑K−1

k=0 |Gk(λ)|2, B
(K)
g := maxk Bgk .

There is a bias/variance/resolution tradeoff for the esti-

mate f̂K
t (w). The bias can be bounded by invoking Theo-

rem 1 and assuming that ‖ft(w)‖∞ is bounded for all t.

Theorem 3 |Bias(f̂K
t (w))| = O(logN/K+W 2+B

(K)
g /BX).

When X(t) is a normal process, the variance of f̂K
t (w)

can be characterized as follows.

Theorem 4 Var(f̂K
t (w)) = O(1/K +B

(K)
g /BX).

From Theorem 3 and 4, the mean squared error (MSE) of

f̂K
t (w) is given by the following.

Corollary 1 MSE(f̂K
t (w)) = O((logN/K)2+W 4+1/K+

B
(K)
g /BX).

5. STATIONARITY TEST

The evolutionary spectral density estimate suggests a natu-

ral statistical test for the stationarity of a process, as first dis-

cussed in Priestley’s paper [2] and later investigated by Priest-

ley and Subba Rao (PSR test) in [7]. In a recent package

developed by Constantine and Percival [17], smoothing is re-

placed by the multitaper method. This modified PSR test has

been served as a baseline to when compared with other sta-

tionarity tests, e.g., in [18]. In this section, a non-parametric

version of the stationarity test is proposed, which is based on

the Friedman test [19, 20] and is robust to the underlying dis-

tribution. It serves as a complementary test to the existing

stationarity tests.

5.1. PSR Stationarity Test with the Multitaper method

It is a common practice to take the logarithm of the estimate,

which stabilizes its variance. Let ft(w) denote the evolution-

ary spectral density of a semi-stationary process {X(t) : 0 ≤

t ≤ T − 1}. Consider the estimate f̂K
t (w) based on the mul-

titaper method as in Section 4. Take the logarithm transfom

of the estimates, which stabilize the variances of the estimates

and let Yij := log f̂K
ti (wj). Moreover, to apply the two-way

analysis of variance (ANOVA) test, it has to be assumed that

the distribution of log f̂t(w) is approximately normal [7]. It

can be shown that Wij := Yij − ψ(K) + log(K) is approxi-

mately distributed according to normal distribution with mean

0 and variance σ2 = ψ′(K) for K ≥ 5 (see [21] and [22] for

details).
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The approximately independence in time is by choosing

non-overlapping short windows of length N and the approx-

imate independence in frequency is by choosing frequencies

that are 2π(K + 1)/(N + 1) apart. Now the problem re-

duces to a two-way ANOVA test for Wij for i ∈ [1 : I] and

j ∈ [1 : J ], where I = ⌊T/N⌋ and J is the number of fre-

quencies chosen 2π(K+1)/(N+1) apart. Details of the test

can be found in [7].

5.2. A Non-parametric Stationarity Test

There are two main assumptions of the two-way ANOVA test:

(1) the samples are uncorrelated and (2) the residuals are nor-

mally distributed. There has been extensive research on the

robustness of the assumptions of ANOVA test. In the PSR

test, the test results are more reliable when the degrees of free-

dom of time and frequency are large. On the other hand, non-

parametric test, e.g., the rank-based Friedman test [19], [20],

has an edge when the number of test samples is relatively

small.

We now describe the non-parametric test, which will

be referred to as rank-based stationarity test or RS test in

short. Take {Wij} introduced in the previous section. In

the time-frequency table filled by {Wij}, rank the elements

in each column in an increasing order (i.e., 1 corresponds

to the smallest element) to form a table of ranks: {Rij}.

Whenever there is a tie among k elements in the same col-

umn, assign the mean rank of the k elements. Similar to

the two-way ANOVA test, let R·· denote the mean rank of

all ranks, denote Ri· the mean rank of row i. The sum of

square of ranks SSR is SSR = J
∑

i(Ri· − R··)
2. The test

statistics tR = SSR/const, where const = I(I + 1)/12. It

is known that tR is (approximately) distributed according to

χ2
I−1 [19], [20].

5.3. Simulations

Due to the space limit, we only present synthetic data sim-

ulations in this paper. Read data simulations can be found

in [13]. The performance of a test is evaluated based on its

empirical size and power values. Generate M = 1000 sam-

ple paths/realizations each with length T = 512 and let the

nominal size of the test be 0.05. The null hypothesis H0 is

that the process is stationary and the alternative hypothesis

H1 is that the process is not stationarity. The implementation

details can be found in [13].

For the size comparison, we generate sample paths from

various stationary processes and count the number of rejec-

tions of the null hypothesis. Consider the following set of

stationary autoregressive and moving-average (ARMA) mod-

els used in [23] The noise term Z(t) is distributed according

to N (0, 1).

(a) i.i.d. standard normal

(b) AR(1): X(t) = 0.9X(t− 1) + Z(t).

(c) AR(1): X(t) = −0.9X(t− 1) + Z(t).

(d) MA(1): X(t) = Z(t) + 0.8Z(t− 1).

(e) MA(1): X(t) = Z(t)− 0.8Z(t− 1).

(f) ARMA(1,2): X(t) = −0.4X(t)+Z(t)− 0.8Z(t− 1).

(g) AR(2): X(t) = α1X(t− 1)+α2X(t− 2)+Z(t) with

α1 = 1.385929 and α2 = −0.9604 (from [24]).

Table 1. Empirical size comparison (%)
models PSR RS

(a) 11.1 1.9

(b) 17.7 2.9

(c) 11.2 2.7

(d) 12.7 2.5

(e) 14.8 2.9

(f) 15.3 2.6

(g) 78.7 6.1

For the power comparison, we generate sample paths

from semi-stationary processes and count the number of ac-

ceptances of the null hypothesis. We focus on the uniformly

modulated processes as in [2, 7]. The following model is

from [7],

X(t) = e(n−T/2)2/2a2

Y (t), (3)

where a = 200 and Yt = 0.8Yt−1 − 0.4Yt−2 + Zt with

Zt ∼ N (0, 1002). For all the models from Table 1, generate

uniformly modulated processes by multiplying each of them

with e(n−T/2)2/2a2

. To make the numbering consistent with

Table 1, these models are also numbered from (a) to (g) and

model (3) will be numbered as (h) in the table below.

Table 2. Empirical power comparison (%)
models PSR RS

(a) 96.7 88.4

(b) 96.8 82.5

(c) 97.3 88.9

(d) 96.4 88.1

(e) 97.3 87.1

(f) 97.1 86.2

(g) 98.3 76.7

(h) 96.4 88.4

Since the empirical size of RS is smaller than that of PSR

but the empirical power is larger, RS is a more conservative

test compared with PSR.
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