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ABSTRACT

The decoding problem of hidden Markov model (HMM) is
extended based on the LP-norm of a vector of the log tran-
sition probabilities along the sequence of hidden states. The
extended decoding problem coincides with the conventional
decoding problem for p = 1, and with the minimax decod-
ing problem for p = oo. To solve the extended decoding
problem, we introduce a family of Viterbi algorithm termed
the “LP-Viterbi algorithm” that continuously interpolates the
conventional Viterbi algorithm and the minimax Viterbi al-
gorithm. We also consider the corresponding evaluation and
estimation problems. Numerical simulations show that the
LP-Viterbi algorithm with an adequately large value of p has
an advantage over the minimax Viterbi algorithm.

Index Terms— Hidden Markov model (HMM), Decod-
ing problem, Viterbi algorithm, L”-norm

1. INTRODUCTION

Hidden Markov model (HMM) is one of the most widely im-
plemented methods in the field of acoustics, speech and sig-
nal processing. The decoding problem of HMM is solved
efficiently using the Viterbi algorithm[1] and many variants
of the algorithm have been proposed so far. In the origi-
nal Viterbi algorithm and most of such variants, the absolute
value of the logarithm of the transition probability is consid-
ered as something like the “distance” associated with the tran-
sition and the sum of such distances along the sequence is
minimized to find the optimal sequence of the hidden states,
which corresponds to the maximum likelihood estimation. In
some application fields, however, the absolute value of the
logarithm of the transition probability should be considered as
something like the height of the “hurdle” associated with the
transition where it is more important to minimize the height
of the tallest hurdle along the sequence than to minimize the
sum of the heights of all the hurdles along the sequence. To
provide a unified way of looking at both interpretations as the
distance and the hurdle, we introduce a generalized decod-
ing problem of HMM based on a cost function expressed in
the form of the LP-norm[2] of the log transition probabilities
where the cases with p = 1 and p = oo correspond to the
distance and the hurdle type applications, respectively. The
generalized decoding problem can be solved efficiently using
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the same scheme as the Viterbi algorithm with the probabil-
ity table and the back pointer table. The basic idea of the
LP-Viterbi algorithm was introduced in [3] to interpolate the
conventional Viterbi algorithm and the minimax Viterbi al-
gorithm [4] for an application of fingering decision of string
instruments [5][6]. The present work extends the idea for a
general case of p > 0, considers the corresponding evaluation
and estimation problems, and shows that the LP-Viterbi algo-
rithm has an advantage over the minimax Viterbi algorithm
through numerical simulations.

2. DECODING PROBLEM BASED ON L”-NORM

2.1. LP-norm

For a real number p > 0, the LP-norm of an n-dimensional
real vector
v = (vy,v9,...,v,) € R"

is defined as

1
oll, = {<|vlp+ foal? -+ loal)r (p=1)
Tl P e e ol (0<p <)

ey
The upper formula can not be used for 0 < p < 1 because it
is not subadditive (does not satisfy the triangular inequality).
The lower formula is subadditive for 0 < p < 1 although it is
not a norm in a strict sense (||kv||, # k||v||,) . The L'-norm

is the sum of the absolute values of the elements of v,

vl = lor] + |va| + -+ - + [on]. )

The L°°-norm and the L°-“norm”[8] (the limit of the LP-
norm for p—o0 and p — 0) are the maximum absolute value
of the elements of v and the number of the nonzero elements
of v, respectively.

||vHOO:maX{‘UlL|U2|""’|UTL|}a 3
lollo=Hi|1<i<n, v; #0} 4)
2.2. Hidden Markov model (HMM)

Suppose that we have two finite sets of hidden states ) and
output symbols 5,

Q:{Q1>Q27-~-7QN}7
S:{817527"'7SM}3
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and two sequences of random variables X of hidden states
and Y of output symbols,

X = (X1, Xs,..., X7),
Y frng (Y17Y2,...,YT)7

XteQa
Y; €8,

then a hidden Markov model H is defined by a triplet
H = (A, B,1I)
where A is an N x N matrix of the transition probabilities,
A = (aij), aij = a(gi,q5) = P(X¢ = ¢j| X¢e—1 = @),
B an N x M matrix of the output probabilities,
B = (bix), bir, = b(qi, sx) = P(Ye = 8| Xs = qi),

and II an N-dimensional vector of the initial distribution of
hidden states,

II= (7r,-)7 T = 7'('((]1) = P(X1 = qz)

2.3. Conventional Viterbi algorithm

When we observe a sequence of output symbols

Y= (ylay27"'ayT)

from a hidden Markov model H, we are interested in the se-
quence of hidden states
xr = (I‘l,JZQ,...,J}T)

that generated the observed sequence of output symbols y
with the maximum likelihood,

& = argmax P(y, z|H)
= argmax P(x|H)P(y|x, H)
= argmax(log P(x|H) + log P(y|x, H))
i T
= argmaxZ(log a(zi—1, ) +logb(ze,ye)),  (5)
T =1

where we write w(x1) = a(xg, z1) for convenience. Where
we define a vector of the transition probabilities a(x) and a
vector of the output probabilities b(x,y) along the hidden
sequence x and the output sequence vy,

a(x) = (n(x1), a(z1,x2),...,a(xzr—1,27)),

b(x,y) = (b(x1,y1),b(w2,92), .., b(z1,y7)),
we can rewrite (5) as,

&1 = argmin|| — loga(x) —logb(x, y)||1, 6)
€T

where log operates element-wise on a vector. The problem of
finding the maximum likelihood sequence & is called the
“decoding problem” and solved efficiently using two N x T’
tables A = (d;¢) of log probabilities and ¥ = (1)) of back
pointers and the following four steps.

Initialization initializes the first columns of the two tables A
and ¥ using the following formulae for7 =1,2,..., N,

di1 = —logm; —logb(gi, y1),

i1 = 0.
Recursion fills out the rest columns of A and ¥ using the
following recursive formulae for j = 1,2,...,N and t =

1,2,...,7-1,

Ojt+1 = ml_in( it + (—loga;; —logb(q;, yiv1)) ),
P11 = arg _min( dit + (—loga;; —logb(q;, yi+1)) )-
Termination finds the index of the last hidden state of the
maximum likelihood sequence &;: using the last column of

A,
i = arg min d;.
i

Backtracking tracks the indices of the hidden states of the
maximum likelihood sequence &1 from the last to the first
using the back pointers of ¥ fort =T7,7—1,...,2,

Ti—1 = Vs, t,
from which &1 is obtained as

xe=q;, t=1,2,...,T).

2.4. LP-Viterbi algorithm

Now we extend the decoding problem of HMM (6) for an
arbitrary positive value of p,

Zrr = argmin|| — loga(xz) — logb(z, y)||,-  (7)
4

According to (2) and (3), the special cases of (7) with p=1
and p = oo correspond to the distance and the hurdle type
applications, respectively. We call the decoding problem (7)
the “LP-decoding problem.” We can solve the L”-decoding
problem efficiently by modifying the first and the second step
of the conventional Viterbi algorithm as follows. We call this
variant the “LP-Viterbi algorithm.”

Initialization for LP-Viterbi algorithm initializes the first
columns of the two tables A and ¥ using the following for-
mulae fort =1,2,..., N,

log 7; — log b(qi,y1))?,

di1 =
i

(—
P 0.
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Recursion for LP-Viterbi algorithm fills out the two tables
A and ¥ using the following recursive formulae for j =
1,2,...,Nandt =1,2,...,7-1,

Sjt+1 = miin( dit + (—logai; —logb(q;, yi+1)) ),

Yje+1 = argmin( di¢ + (= log aij — log b(g;, ye41))" ).

2.5. Minimax Viterbi algorithm (Z°°-Viterbi algorithm)

According to (3), the LP-decoding problem (7) for p = oo
can be written as

T~ = argmin|| —loga(x) — logb(x, y)||o
x

= argmin max(—loga(x) —logb(x,y))

= arg min mtax(— log a(zi—1,2:) —logb(ze, y:)) (8)
x

where max (v) is the maximum element of a real vector v. We
call the decoding problem (8) the “minimax decoding prob-
lem.” This is a problem of minimizing the maximum absolute
value of the log probability associated with transition along
the hidden sequence and describes the hurdle type applica-
tions. To implement a variant of the conventional Viterbi al-
gorithm for the hurdle type applications, we modify the sec-
ond step of the conventional Viterbi algorithm as follows. We
call this variant the “minimax Viterbi algorithm” or the “oco-
Viterbi algorithm.”

Recursion for minimax Viterbi algorithm fills out the two
tables A and W using the following recursive formulae for
j=12...,Nandt=1,2,...,T—1,

Ojtr1 = miin(max(éit, —loga;j—logb(q;,yi+1))),

Y41 = arg min(max(én, —log a;; —1og b(qj, yt+1)))-

3. EVALUATION AND ESTIMATION

3.1. LP-evaluation

In terms of probability, the LP-decoding problem discussed
in the previous section corresponds to the extension of the
product of probabilities,

P(y7m|H) = a’(‘rt717xt)b(xtayt)7 (9)

=

t=1

to the exponential of the LP-norm of log probabilities,
2(x,y,p) = e~ llI-loga(z)—log b(z,y)|lp (10)

We denote the sum of z(x, y, p) for all the hidden sequences
x and output sequences y by Z(p),

Zp) =YY #xy,p),

zEX yey

where X and ) are the sets of hidden sequences and output
sequences, respectively (|X| = N7, |Y| = MT) . Obviously,
we have Z(1) = 1. Then the conventional evaluation of an
output sequence y,

P(y|H) =Y P(y,z|H),
xeX
is extended to the LP-evaluation of y,

- ) > z(@y.p). (1)

Z(p xreX

3.2. LP-estimation

We introduce two binary variables that represent whether a
hidden sequence @ stays at g; at time ¢ and transitions from g;
to gj attime ¢ + 1,

c(x,i,t) = { !

if z;=gq;
0 otherwise ’
c(x,i,j,t) = c(x,i,t) c(x, j,t + 1),
and a set of indices at which the output symbol of y is sy,
T(y,k) ={t |y =sr}

Then the summations of the binary variables weighted by the
exponential of the LP-norm of log probabilities (10),

Cly,i,t,p) = Y c(@,i,t)z(z,y,p),
xeX

Cly,ijit,p) = Y e, i, j,t)z(2,y,p),
xeX

correspond to the likeliness of the hidden sequence x staying
at ¢; at time ¢ and transitioning from ¢; to g; at time {+1 when
the output sequence is y. The ratios of those summations give
the update rules of the EM algorithm for the L”-estimation of
the model parameters as,

ZyGD C(y,i,1,p)
ZyeD Zzzil C(y, 1, 1»17)7
Yyen oy C(y,i,j,t.p)

Yyen i Cly,ist,p)
2 yep 2ter(yr) CY, 4t p)
Yyen Xzt C(y,i,t,p)

where D is the set of learning data y. Unfortunately, we can
not make efficient recursive procedures for calculating (11)
or (12) such as the forward probability or the Baum-Welch
algorithm[9], mainly because the distributive property, which
holds for the product of probabilities (9), does not hold for
the exponential of the L”-norm of log probabilities (10) so
that we can not sum the results for the subsequences and use
the sum in the rest of the calculation.

Uy
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4. NUMERICAL EXPERIMENTS

We perform two numerical experiments to show that i) the
LP-Viterbi algorithm and the minimax Viterbi algorithm ac-
tually reduce the height of the tallest hurdle and ii) we should
replace the minimax Viterbi algorithm with the L”-Viterbi al-
gorithm with an adequately large value of p for solving practi-
cal hurdle type applications. We generate toy HMM examples
with 10 hidden states, 10 output symbols and randomly gener-
ated initial, transition and output probabilities for solving the
decoding problem of a randomly generated output sequence
with a length of 10 using the LP-Viterbi algorithm varying
the value of p. We repeat the experiment 100 times for each
value of p, for each of which the initial, transition and output
probabilities and the output sequence are randomly generated.
Where we define a generic cost function

¢re(x,y) = || —loga(x) — log b(x, y)||,
(6), (7) and (8) can be written in a unified way as

Trp = argmin ¢rs(x,y).

Figure 1 shows the average values of the two cost func-
tions ¢r(&rr,y), the height of the tallest hurdle, and
¢r1(Zrr,y), the sum of the heights of all the hurdles, from
which we see that the LP-Viterbi algorithm actually decreases
the height of the tallest hurdle on the cost of increasing the
sum of the heights of all the hurdles. Figure 2 shows the
scatter plots of the two cost functions ¢pe(Zrr,y) and
¢r1(Zrr,y). In most of practical hurdle type applications, it
is preferable to choose a hidden sequence with the minimum
height of the tallest hurdle whose other hurdles are as low
as possible. From the two bottom panels of Figure 2, we
see that the LP-Viterbi algorithm with an adequately large
value of p almost always finds a hidden sequence with the
same value of the minimum height of the tallest hurdle as the
minimax Viterbi algorithm and significantly lowers the sum
of the heights of all the hurdles.

5. CONCLUSION

We have introduced a variant of the conventional Viterbi algo-
rithm termed the “LP-Viterbi algorithm” that finds a sequence
of hidden states that minimizes the LP-norm of a vector of
the log transition probabilities. It has been shown that the ex-
tended decoding problem defined with the LP-norm can be
solved efficiently using the LP-Viterbi algorithm whereas the
corresponding evaluation and estimation problems can not be
solved efficiently because the distributive property does not
hold for the exponential of the LP-norm of log probabilities.
Our numerical experiments have shown that the LP-Viterbi al-
gorithm with an adequately large value of p has an advantage
over the minimax Viterbi algorithm when applied to practical
hurdle type applications.

1.10
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Fig. 1. The average values of ¢ (Z1»,y) (dark gray) and
o (&, y) (light gray) of the LP (p = 1, 4, 16) and the min-
imax (p = 0o) Viterbi paths relative to the L' (conventional)
Viterbi path (p = 1). We see that, as p increases, the average
height of the tallest hurdles actually decreases while the sum
of the heights of all the hurdles increases.
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Fig. 2. The scatter plots of ¢ (Zr»,y) (left panels) and
o1 (&, y) (right panels) of the LP (p = 1,4, 16, vertical
axis) versus the minimax (p = oo, horizontal axis) Viterbi
paths. We see from the bottom panels that, for an adequately
large value of p = 16, the LP-Viterbi algorithm almost al-
ways attains the same minimum height of the tallest hurdle as
the minimax Viterbi algorithm (bottom left) and significantly
lowers the sum of the heights of all the hurdles comparing to
the minimax Viterbi algorithm (bottom right).
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