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ABSTRACT

In multi-object tracking, some target groups can share a coordinated

motion. They can for instance form a convoy or follow a road net-

work. In any case, the target trajectories can be modeled by using

the group motion characteristics and the self-properties of the tar-

gets. For this purpose, we introduce a new model: a hierarchical

random finite set (RFS). A first RFS is considered to represent the

target groups. Their numbers, their compositions and their common

motion characteristics are assumed to be random. Each group is it-

self represented as an RFS for which the target number and the target

states such as the position and velocity are random. We also propose

a metric to compare two hierarchical RFSs taking into account all

the sources of uncertainties (the cardinality of both the groups and

the targets within the groups and the unknown motion parameters).

Index Terms— Multiple targets, target groups, coordinated mo-

tions, random finite sets, metric.

1. INTRODUCTION

Multi-object systems are of great interest in a wide range of appli-

cations such as radar surveillance and computer vision. For the last

two decades, they have been represented by using the random finite

set (RFS) framework [1–3]. An RFS consists of a set of unordered

state vectors representing the objects of interest whose number is

also random. By this way, an RFS inherently integrates the un-

certainty on the target cardinal. It is also convenient to gather all

the measurements available in an observation RFS, taking into ac-

count false detections. Approximate multi-object Bayes filters, such

as the probability hypothesis density (PHD) filter [2], the labeled

multi-Bernoulli (LMB) filter [4] or the δ-generalized labeled multi-

Bernoulli (δ-GLMB) filter [5], have then been proposed to estimate

the posterior distribution of the multi-object RFS from the multi-

observation RFS.

To evaluate the difference between two RFSs for instance when com-

paring the performance of different estimation algorithms, metrics

have been proposed including the Hausdorff metric [6], the optimal

mass transfer (OMAT) metric [7] and the optimal sub-pattern assign-

ment (OSPA) metric [8]. The latter has the advantage of taking into

account both the errors on the state estimates of the different ob-

jects and the error on the estimated number of objects in the scene.

It should be noted that several variants and complementary metrics

of the OSPA exist: the Hellinger-OSPA (H-OSPA) [9], the quality-

based OSPA (Q-OSPA) [10], the generalized OSPA (GOSPA) [11],

the C-OSPA [12], the OSPA for tracks (OSPAT) [13] [14] or the

cardinalized optimal linear assignment (COLA) metric [15]. These
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metrics address more specific cases than the initial OSPA. For in-

stance, the OSPAT is designed for labeled RFSs and allows the prac-

titioner to penalize the labeling errors.

In this paper, we are interested in multi-object scenarios where some

objects tend to exhibit similarities in their behaviors or can have co-

ordinated motions so that they can be considered as a group. In

[16–19], group tracking is addressed by considering the spatial prox-

imity of multiple measurements. They can arise from an extended

target which leads to more than one point measurement. Otherwise,

they can be due to two or more targets evolving with a coordination

in their moves. However, due to the spatial proximity hypothesis,

the considered scenarios are limited. For this reason, we introduce a

more generic approach in this communication.

Our purpose is to address groups of mobile targets with coordinated

motions, independently from their spatial proximity. This situation

often occurs in a constrained environment. This can be a road net-

work where the vehicles follow a restricted path and avoid collisions

by keeping a safe distance between them. This is also the case of

targets traveling in a convoy. In these cases, taking into account the

shared motion characteristics is bound to improve the overall esti-

mation of the target kinematics. This work is dedicated to complex

scenarios wherein several groups of targets evolve simultaneously in

the same scene. As a first step, our contribution is to propose a model

which accounts for the different sources of uncertainties including

the number of groups, the number of targets within each group and

their kinematics. It consists of a hierarchical RFS. The first layer

of RFS focuses on the groups and determines how many of them

are present in the scene and what the shared motion characteristics

are between the targets belonging to a same group. Then, a bank of

RFSs, one associated to each group, represents the uncertainty on

the number of targets per group and also their individual behavior.

Indeed, it is quite realistic to assume that a target trajectory results

both from the group influence and its own maneuver capability. This

new model is intended to be used as a prior in estimation algorithms.

These latter are not presented here for the lack of space and will be

developed in a further paper. As a second contribution, we propose

a metric to compare two hierarchical RFSs which will used for in-

stance to evaluate estimation algorithms. It takes into account the

group cardinality, the cardinality of the elements inside a group and

the closeness of both the common and individual motion parameters.

The paper is organized as follows: in section 2, we recall the multi-

object modeling using the RFS framework and the OSPA metric.

In section 3, we present our generic generative model for groups

of coordinated-motion targets. We detail two specific applications.

Then, the metric associated to this hierarchical RFS model is pre-

sented. Conclusions and perspectives are finally presented in sec-

tion 4.
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2. MULTI-OBJECT SYSTEMS

In multi-object systems, the number of targets is unknown and can

change because of the appearance or the disappearance of a target

in the region of interest. By considering this cardinality as a ran-

dom variable, the RFS framework naturally captures its evolution

additionally to the state of the present targets. Furthermore, RFSs

avoid measure/target association issues by considering the targets as

a whole.

2.1. Classical model: random finite sets

A multi-object system can be conveniently represented by an RFS

denoted as follows:

X = {x1,x2, ...,xm}, with m ∈ N, (1)

where xi denotes the state of the ith target. An RFS X is then de-

fined by the distribution ρ(m) on its random cardinality m and the

distributions of the m-uplet x1, ...,xm providing the cardinal is m,

denoted pm(x1, ...,xm). It should be noted that exchangeability

is guaranteed if pm(x1, ...,xm) is a symmetric joint distribution.

To represent in an unified manner all these variabilities, Mahler [2]

introduces a probabilistic descriptor, namely a finite set statistics

(FISST) probability density function (PDF) denoted f(X) on the

random set X. It is defined as follows:

f ({x1, ...,xm}) = m!ρ(m)pm (x1, ...,xm) , (2)

which is integrated to one according to:
∫

f(X)δX = f(∅) +
+∞
∑

m=1

1

m!

∫

f ({x1, ...,xm}) dx1...dxm. (3)

Filters performing multi-target tracking enforce an approximated

Bayes recursion to calculate the posterior. To study the relevance of

a filter, the OSPA metric is usually used to compare the estimated

set X to the real set.

2.2. Metric: OSPA of order p and cut-off parameter c

Initially introduced by [20] to address problems in point process

theory and spatial statistics, the OSPA metric has been mainly used

to evaluate the performance of multi-object tracking algorithms [21]

but also to design estimation algorithms based on the minimiza-

tion of this criterion such as the so-called Minimum Mean OSPA

algorithm [22]. It has been also used for clustering set-valued obser-

vations [23].

The OSPA metric between two sets X = {x1,x2, ...,xm} and

Y = {y1,y2, ...,yn} is defined as follows for m ≤ n1:

d(c)p (X,Y)=

(

1

n

(

min
π∈Πn

m
∑

i=1

[

dc
(

x
(i),y(π(i))

)]p

+ cp (n−m)

))1

p

,

(4)

with c > 0 the cut-off parameter or clamping factor, 0 < p < +∞
the order, Πn the set of permutations on {1, 2, ..., n} and dc(x,y)
the metric between two state vectors x and y defined by:

dc(x,y) = min (c, d(x,y)) , (5)

where d(x,y) is typically the Euclidean metric between the vectors

x and y.

Given (4) and (5), the OSPA metric [8] which is a variant of the

Wasserstein metric of order p [7] takes into account both the errors

on the states and the cardinality.

Selecting a large value for p penalizes large metrics between ele-

ments of X and elements of Y as well as outliers. In addition, c is

1If m > n, X and Y have to be switched.

usually in meters. Given (5), a metric between a state y and a state

x is bounded to c, i.e. is in [0, c]. Then, when looking at (4), the

cut-off parameter c is a way to weight the cardinality error against

the localization error.

RFSs are well suited to represent any multi-target systems. However,

they can be refined to better capture complex scenarios. In the next

section, we derive a model for multi-group multi-target systems.

3. MULTI-GROUP MULTI-OBJECT SYSTEMS

In this section, we first propose a hierarchical RFS model to rep-

resent a generic multi-group multi-target situation with coordinated-

motion target groups. We then illustrate the applicability of this hier-

archical model to different scenarios through two detailed examples.

In a second sub-section, we propose a metric in order to quantify the

difference between two hierarchical RFSs.

3.1. Proposed model: hierarchical RFS

A hierarchical RFS, illustrated by Fig. 1, is defined to represent the

group and the target states. Let us first present the RFS at the group

layer as follows:

X̃ =

{[

X1

ξ1

]

,

[

X2

ξ2

]

, ...,

[

Xm̃

ξm̃

]}

, with m̃ ∈ N, (6)

with m̃ the number of distinct groups, {ξi}i=1,...,m̃ the vector con-

taining the group common parameters and {Xi}i=1,...,m̃ the RFS

associated to the multi-target state conditionally defined to a specific

group. Since ξi and Xi are random, the FISST PDF is similarly de-

fined as in (2) and (3) by introducing the distribution on the group

cardinality ρ̃(m̃) and the ”spatial” symmetric distributions rm̃(.) in

a FISST sense. It is defined as follows:

rm̃

([

X1

ξ1

]

, ...,

[

Xm̃

ξm̃

])

=

m̃
∏

i=1

f (Xi|ξi) p (ξi) , (7)

with f(.) a FISST PDF on the set Xi whereas p(.) is a classical

PDF. The state space is thus the cartesian product of the space of all

multi-target RFSs and the space of the group common parameters.

It should be noted that both Xi and ξi can be time varying. A time

index k is added to account for it in the remainder of the paper when

necessary.

Fig. 1. Hierarchical RFS model.

At the target layer, a multi-target RFS Xi is conditionally defined to

a group i and its vector of common parameters ξi as follows:

Xi = {xi,1,xi,2, ...,xi,mi
}, with mi ∈ N, (8)

with {xi,j}j=1,...,mi
the target states gathering the kinematic pa-

rameters of a target such as its position, velocity and acceleration.

The associated FISST PDF f(.) on Xi is defined as in Eq. (2).

In the next subsection, we illustrate the flexibility of our model by

showing its applicability to different scenarios.
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3.1.1. First scenario: coordinated velocities

In this scenario, all the targets in a given group have coordi-

nated velocities. This means that the target velocities are mainly

driven by the group motion but can differ slightly with one an-

other due to the target own maneuvering capabilities. In the

following 2D-plane example, the group i velocity is denoted

ṽi,k = [v
(x)
i,k , v

(y)
i,k ]

T . Thus, the common parameter ξi,k of the

hierarchical RFS only includes ṽi,k. The deviation from the group

velocity for the target j belonging to the group i is then denoted

βi,j,k = [β
(x)
i,j,k, β

(y)
i,j,k]

T . Then, the time evolution of its state vector

xi,j,k = [xi,j,k, ẋi,j,k, yi,j,k, ẏi,j,k]
T for the x-coordinate is given

by:

xi,j,k = xi,j,k−1 + (v
(x)
i,k−1 + β

(x)
i,j,k−1)Ts + ui,j,k, (9)

ẋi,j,k = v
(x)
i,k + β

(x)
i,j,k,

with Ts the sampling period whereas ui,j,k is a zero-mean Gaussian

white sequence with variance σ2
ui,j

. The velocity components have

their own time evolutions generically defined as follows:

β
(x)
i,j,k = g(β

(x)
i,j,k, wi,j,k), (10)

v
(x)
i,k = h(v

(x)
i,k−1, qi,k),

with g(.) and h(.) the functions modeling the way the components of

velocity are updated using respectively wi,j,k and qi,k, two uncorre-

lated zero-mean Gaussian white sequences with variances σ2
wi,j

and

σ2
qi

. As usual in the RFS framework, a probability of birth and a

probability to survive are defined to represent the possibility of a

target to appear or disappear. In our approach, the same kind of

probabilities are additionally defined at the group level. A realiza-

tion of the scenario using the generative hierarchical RFS model is

presented on Fig. 2.
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Fig. 2. One realization of the generative hierarchical model where a

different color is used for each group and the target position is rep-

resented by a cross whose instant is indicated by the closest number.

3.1.2. Second scenario: road constraints

In [24], targets of a same group evolve along a section of a same

road, in the same direction. It integrates road constraints by using

curvilinear coordinates to define a target state xk evolving on a par-

ticular road segment as follows:

xk , [lk, l̇k]
T , (11)

with lk the arc length and l̇k the associated speed. The road modeling

is detailed in [25] and illustrated in Fig. 3.

Fig. 3. Road segment model, with nodes modeling road intersections

and shape points to follow road curvature.

In [24], to deal with motion dependencies of the vehicles, the authors

propose to use a car-following model (CFM) based on a leading ve-

hicle characterized by its state vector x
(l)
k . The principle is to model

the time evolution of the state vector xk of a vehicle as follows:

xk = Fkxk−1 + Γk (ak−1 + uk−1) , (12)

with Fk =

[

1 Ts

0 1

]

, Γk = [T 2
s /2, Ts]

T , Ts is the sampling period

and uk−1 is a zero-mean Gaussian white noise sequence with vari-

ance σ2
uj

. Moreover, ak−1 represents an acceleration induced by the

traffic and its value depends on the state of the leading vehicle x
(l)
k−1

as follows:
ak−1 = Flx

(l)
k−1 + Ffxk−1 + ρ, (13)

where Fl, Ff and ρ are fixed parameters. See [26–29]. Note that Eq.

(12) also holds for the leading vehicle by setting ak−1 to 0.

To address several target groups evolving simultaneously, the au-

thors in [24] conduct clustering without using the RFS framework.

Here, we show that this scenario can be fairly and easily represented

by our hierarchical RFS model. For this purpose, the notations must

be adjusted by introducing the additional subscripts. More particu-

larly, i and j refer to the group and the target number respectively.

In this case, the common parameter ξi,k of the group i includes the

state of the leading vehicle x
(l)
i,k−1 and the road segment identifier.

The motion of the target associated to the state vector xi,j,k is then

described by (12) and (13).

In the next section, we propose a metric to compare two multi-target

multi-group sets.

3.2. Proposed metric: multi-group OSPA (MG-OSPA)

3.2.1. Definition of the metric

Let us consider two multi-target multi-group sets defined as follows:

X̃ =

{[

X1

ξ1

]

, ...,

[

Xm̃

ξm̃

]}

and Ỹ =

{[

Y1

κ1

]

, ...,

[

Yñ

κñ

]}

, (14)

with (m̃, ñ) ∈ N
2. The two hierarchical RFSs X̃ and Ỹ may dif-

fer in the number of groups, in the assignment of the targets to the

groups but also at the group level, in the group parameter vectors and

in the group conditional multi-target RFSs. Therefore, we propose

the following metric between these two sets when2 m̃ ≤ ñ:

d̃(c̃)r

(

X̃,Ỹ
)

=

(

1

ñ

(

min
π̃∈Πñ

m̃
∑

ĩ=1

[

d̃qc̃

([

Xĩ

ξĩ

]

,

[

Yπ̃(̃i)

κπ̃(̃i)

])]r

+ c̃r(ñ− m̃)

)

)1

r

,

(15)

with c̃ the cut-off parameter of the multi-target multi-group metric,

r the order, Πñ the set of permutations on {1, 2, ..., ñ} and d̃qc̃(.) the

metric between two extended multi-target sets defined as follows:

d̃qc̃

([

X

ξ

]

,

[

Y

κ

])

=min

(

c̃,
[(

d(c)p (X,Y)
)q

+(γdg (ξ,κ))
q
]1

q

)

, (16)

2If m̃ > ñ, X̃ and Ỹ have to be switched.
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Fig. 4. Four examples of multi-target multi-group realizations. Targets of a same group share the same color. Arrows represent the group

velocities associated to each target. The first hierarchical RFS contains red and blue targets while the second one contains the magenta and

the cyan targets (and also the green in (d)).

where d
(c)
p (.) is the OSPA metric as defined in (4), q is the order

whereas dg(.) is the Euclidean metric between the parameter vectors

ξ and κ of the two compared groups. In addition, γ is a scaling pa-

rameter so that γdg(.) is in the interval [0, c]. The metric proposed

in (15) is built similarly to the OSPA. d̃
(c̃)
r (X̃, Ỹ) aims at taking

into account different features: the errors made on the group num-

ber through the quantity c̃r (ñ− m̃), the error made on the group

parameters through γdg (ξ,κ) in (16), the errors made on the states

and the group compositions through d
(c)
p (X,Y) in (16). The higher

the orders p, q and r are, the more penalized high values of their

corresponding metrics are. Similarly to the setting of the value of c,

c̃ represents the maximum value of the metric. Note that the cardi-

nality and assignment errors are dimensionless while the group and

individual state parameters are not necessarily expressed in the same

units. The scaling parameter γ ensures that the formula remains ho-

mogeneous and makes the balance between the different sources of

errors.

Finally, since the structure of the proposed distance is inherited from

the OSPA one, the Hungarian method [30] can be used to make the

computation efficient. Also, variants similar to that of the OSPA can

be considered.

3.2.2. Proof: MG-OSPA is a metric

In (15), d̃
(c̃)
r (., .) takes the form of the classical OSPA metric [8].

According to [8], it is a metric if d̃qc̃(., .) defined in (16) is a metric

with values in [0, c̃]. Elements of proof are given below:

1) the range of d̃qc̃(., .) is [0, c̃] by definition (15).

2) d̃qc̃(., .) is a metric if [(d
(c)
p (., .))q + (γdg(., .))

q]
1

q is a metric.

As d
(c)
p (., .) and dg(., .) are two metrics defined on their respective

spaces, q ∈ [1,+∞] and γ > 0, the non-negativity, the identity of

indiscernibles and the symmetry are inherited properties. Let us con-

sider three extended sets

[

X

ξ

]

,

[

Y

κ

]

and

[

Z

ζ

]

, by taking advantage

of the triangle inequality on d
(c)
p (X,Y) and dg(ξ,κ), one has:

[(d(c)p (X,Z))q + (γdg(ξ, ζ))
q]

1

q (17)

≤ [(d(c)p (X,Y)+d(c)p (Y,Z))q+(γdg(ξ,κ)+γdg(κ, ζ))
q]

1

q .

Given the above equation, the Minkowski inequality makes it possi-

ble to conclude that:

[(d(c)p (X,Y)+d(c)p (Y,Z))q+(γdg(ξ,κ)+γdg(κ, ζ))
q]

1

q

≤ [(d(c)p (X,Y))q + (γdg(ξ,κ))
q]

1

q (18)

+ [(d(c)p (Y,Z))q + (γdg(κ, ζ))
q]

1

q .

Thus, [(d
(c)
p (., .))q + (γdg(., .))

q]
1

q is a metric and consequently

d̃qc̃(., .) too. Given 1) and 2), d̃
(c̃)
r (., .) is a metric.

3.2.3. Examples

In this section, we present a set of examples to compare the behav-

iors of the OSPA and the MG-OSPA for hierarchical RFSs built with

coordinated velocities. Situations are represented on the Fig. 4 (a),

(b), (c) and (d) where there are five targets. Three of them belong to

a group whereas the two others belong to another group. The values

of OSPA and MG-OSPA are given in table 1, with γ = 1, c = 100,

c̃ = 200, p = 1, q = 1 and r = 1.

In Fig. 4 (a), we consider the situation where the positions differ be-

tween the two compared RFSs whereas the clustering and the veloc-

ities are identical. The MG-OSPA is greater than the OSPA because

it computes an OSPA for each group. In Fig. 4 (b), not only the

positions differ, but also the group velocities. It illustrates how the

MG-OSPA evolves when the errors on the group parameters grow.

In Fig. 4 (c) and 4 (d), errors at the group level are considered. In

the first case, the number of groups is the same but the targets are

allocated differently whereas in the second case, one of the target

forms an additional group. In both cases, the OSPA does not account

for such errors while the MG-OSPA is increased. The behavior of

the proposed metric is confirmed by the results presented in table 1.

They show that it is able to quantify the errors on positions, veloci-

ties and group assignments in a multi-target scenarios. Note also that

analyzing separately the different terms of the MG-OSPA makes it

possible to identify the source of error, e.g. different positions and

velocities or clustering issues.

Scenarios Fig. 4 (a) Fig. 4 (b) Fig. 4 (c) Fig. 4 (d)

OSPA 42.14 42.14 42.14 42.14

MG-OSPA 43.50 50.01 61.47 268.41

Table 1. Values of OSPA and MG-OSPA depending on situations

represented on Fig. 4.

4. CONCLUSION AND PERSPECTIVES

In this paper, a new model based on a hierarchical RFS is presented

for multi-target multi-group scenarios. A first RFS is intuitively used

for the groups whose number, common characteristics and compo-

sitions are evolving parameters. The composition of a group is then

itself represented by an RFS to model the variable number of targets

inside the group and their states. Two types of scenarios are detailed

in the paper to illustrate the relevance of the proposed model. By

taking advantage of the OSPA formulation, we also derive a metric

for this hierarchical RFS and show how it can be used complemen-

tary to the classical OSPA. Based on this hierarchical model, we are

currently developing an estimator for multi-target multi-group situ-

ations. We are considering the combination of a LMB filter to esti-

mate the group RFS whereas a PHD is launched at the target layer.
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