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ABSTRACT
Expressing multidimensional information as a value in hypercom-
plex number systems (e.g., quaternion, octonion, etc.) has great po-
tential, in signal processing applications, to enjoy their nontrivial
algebraic benefits which are not available in standard real or com-
plex vector systems. Strategic utilizations of such benefits would in-
clude, e.g., hypercomplex singular value decomposition (SVD) and
low rank approximation of matrices. In this paper, as powerful math-
ematical tools for wider signal processing applications, we first pro-
pose novel definitions of SVD and best low rank approximation of
matrices based on algebraic translations of Cayley-Dickson (C-D)
number systems. We then derive an algorithmic solution to hyper-
complex tensor completion problem based on a convex optimization
technique. Numerical experiments in a scenario of color tensor com-
pletion problem show that the proposed algorithm recovers much
more faithfully the original color information, masked randomly by
noise, than a part-wise real tensor completion algorithm.

Index Terms— Hypercomplex number, Cayley-Dickson con-
struction, singular value decomposition, tensor completion, convex
optimization

1. INTRODUCTION

Multidimensional information arises naturally in many areas of en-
gineering and science since almost all observations have many at-
tributes. Utilizing hypercomplex number system for representing
such multidimensional information is one of effective ways since
some physical operations such as rotation can be represented sim-
pler than ordinary real-valued multidimensional vectors. Therefore,
it has been used in many areas such as computer graphics [1] and
robotics [2, 3] wind forecasting [4, 5, 6] and noise reduction in
acoustic systems [7]. In the statistical signal processing field, effec-
tive utilization of the m-dimensional Cayley-Dickson number sys-
tem (C-D number system) [8, 9], which is a standard class of hy-
percomplex number systems [10], including, e.g., real R, complex
C, quaternion H, octonion O and sedenion S etc., have been investi-
gated.

Hypercomplex tensors, whose entries are represented by hy-
percomplex numbers, can play important roles in modeling real
world object. For example, in 3D object modeling, each point in
3-dimensional space can have multiple attribute such as color, mate-
rial, intensity, and so on, and each attribute may has correlation with
other attributes. It can be modeled as three dimensional hypercom-
plex tensor since the correlation of each attribute may be realized as
the nontrivial algebraic structure of hypercomplex number systems.
Moreover recovering hypercomplex tensor from incomplete obser-
vation will be more and more important by the popularization of 3D
printer [11], virtual reality, medical imaging etc.

In real or complex domain, one of the standard approximations
is the low rank approximation, which can be realized by the trun-
cated singular value decomposition (SVD). However, in general C-D
domain, the SVD has not yet been well-established since eigenvalue
problems are known to be hard problems [12, 13]. In C-D domain,
left and right scalar multiplications are distinct since commutativity
of product does not hold in general. Therefore, we have to treat two

kinds of eigenvalues, left and right eigenvalues separately. In several
previous works, special procedures have been used for calculating
eigenvalues in a certain C-D domain. For example, quaternion right
eigenvalues are computed by reducing them to the equivalent com-
plex eigenvalues with quaternion-complex matrix translations (com-
plex adjoints) [12, 14, 15]. However, this procedure cannot to be
applied to the left eigenvalue problems and hard to be generalized
for higher dimensional C-D domain. This situation could be a bur-
den not only to establish low rank approximation frameworks but
also to design further advanced algorithms, e.g., tensor completion
which utilize eigenvalues and SVD in C-D domain.

In this paper, to establish a low rank hypercomplex tensor com-
pletion framework, first, we propose a computation framework for
Cayley-Dickson singular value decomposition. To achieve it, we
introduce a new notion R-eigenvalue for clarifying the relation
between the eigenvalues of C-D matrices and real ones. The R-
eigenvalue is defined based on the algebraic real translation of C-D
linear systems proposed in [16] and can be calculated for general C-
D matrices. We also clarify the relation between the R-eigenvalues
and existing well-defined quaternion right eigenvalues. Then, we
propose a definition of hypercomplex singular value decomposition
(SVD) based on the calculation of R-eigenvalues. We also clarify
the relation between the proposed SVD, ranks and the known results
[17] in well-studied quaternion case. Moreover, we show that the
proposed SVD can be utilized for hypercomplex low rank approxi-
mation techniques. Utilizing proposed frameworks, we next propose
hypercomplex low N -rank tensor completion algorithm based on a
convex optimization technique known as Douglas-Rachford splitting
[18]. The proposed algorithm can be derived straightforwardly with
replacing SVD procedure in a tensor completion algorithm [19] and
can be applied to general C-D domains.

Numerical experiments including a scenario of color tensor
completion problem in quaternion domain show that the proposed
algorithm successfully utilizes the correlations of each color space
to recover much more faithfully the original color information,
masked randomly by noise, than a part-wise real tensor completion
algorithm.

2. PRELIMINARIES

2.1. Hypercomplex Number System

Let N and R be respectively the set of all non-negative integers and
the set of all real numbers. Define an m-dimensional hypercomplex
number Am (m ∈ N \ {0}) expanded on the real vector space [8]

a := a1i1 + a2i2 + · · ·+ amim ∈ Am, a1, . . . , am ∈ R (1)
based on imaginary units i1, . . . , im, where i1 = 1 represents the
vector identity element. Any hypercomplex number is expressed
uniquely in the form of (1). A multiplication table defines the prod-
ucts of any imaginary unit with each other or with itself (e.g., i21 =
1, i22 = −1 and i1i2 = i2i1 = i2 for A2(=: C)). We also define the
conjugate of hypercomplex number a as

a∗ := a1i1 − a2i2 − · · · − amim. (2)
In this paper, we consider the hypercomplex number systems which
are constructed recursively by the Cayley-Dickson construction (C-
D construction or C-D (doubling) procedure) [8]. The C-D con-
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struction is a standard method for extending a number system. This
method has been used in extending R to C, C to H and H to O. By
using the C-D construction, an m-dimensional hypercomplex num-
ber Am is extended to A2m [8, 9] as

z := x+ yim+1 ∈ A2m, x, y ∈ Am,
where im+1 ̸∈ Am is the additional imaginary unit for doubling
the dimension of Am satisfying i2m+1 = −1, i1im+1 = im+1i1 =
im+1 and ivim+1 = −im+1iv =: im+v for all v = 2, . . . ,m.
For example, the real number system (A1 :=) R is extended into
complex number system C (= A2) by the C-D construction. Note
that the value of m is restricted to the form of 2n (n ∈ N). The
hypercomplex number systems constructed inductively from the real
number by the C-D construction are called Cayley-Dickson number
system (C-D number system). The imaginary units appeared in the
C-D number systems have many characteristic properties [16] such
as i2α = −1 and iαiβ = −iβiα(α ̸= β) for all α, {2, . . . ,m}.
These properties ensures aa∗ =

∑m
ℓ=1 a

2
ℓ ≥ 0 for any a ∈ Am in

(1) and a∗ ∈ Am in (2) and enable us to define the absolute values
of C-D number a as |a| :=

√
aa∗.

A representative example of hypercomplex number is the
quaternion H. The quaternion number system is constructed from
the complex number system by using the C-D construction. A
quaternion number is a 4-dimensional hypercomplex which is de-
fined as

q = q1 + q2ı+ q3ȷ+ q4κ ∈ H, q1, q2, q3, q4 ∈ R
with the multiplication table:

ıȷ = −ȷı = κ, ȷκ = −κȷ = ı, κı = −ıκ = ȷ,
ı2 = ȷ2 = κ2 = −1 (3)

by letting M = 4, i1 = 1, i2 = ı, i3 = ȷ and i4 = κ. From
(3), quaternions are not commutative, i.e., pq ̸= qp for p, q ∈ H in
general.

The octonion O can be constructed from the quaternion H by
the C-D construction. Note that the multiplication in O is neither
commutative nor associative, i.e., pq ̸= qp and (pq)r ̸= p(qr) for
p, q, r ∈ O in general [10]. For the octonion multiplication table,
see, e.g., [10].

We also define AN
m := {[x1, . . . , xN ]⊤|xi ∈ Am (i =

1, . . . , N)} for ∀N ∈ N \ {0}, where (·)⊤ stands for the trans-
pose. Define ⟨x,y⟩AN

m
:= xHy ∈ Am, ∀x,y ∈ AN

m and

∥x∥AN
m

:= ⟨x,x⟩1/2AN
m

, ∀x ∈ AN
m, where (·)H denotes the Her-

mitian transpose of vectors or matrices (e.g., xH := [x∗
1, . . . , x

∗
N ]

for x := [x1, . . . , xN ]⊤ ∈ AN
m, where x1. . . . , xN ∈ Am). We

also define the addition of two hypercomplex vectors x + y :=
[x1+y1, · · · , xN+yN ]⊤ ∈ AN

m for x,y(:= [y1, . . . , yN ]⊤) ∈ AN
m.

Let S := R, S := C or S := Am (m ≥ 4), and call the el-
ement of S scalar. If we define the left scalar multiplication as
αx := [αx1, . . . , αxN ]⊤ ∈ AN

m for α ∈ S and x ∈ AN
m, we have

αx + βy ∈ AN
m, ∀α, β ∈ S, ∀x,y ∈ AN

m. We can also define the
right scalar multiplication xα ∈ AN

m in a similar way.

2.2. Hypercomplex Eigenvalue Problems

Similar to the real and complex case, we can formally consider the
eigenvalue problems in C-D domain. However, as seen in the quater-
nion case, the multiplication in C-D number systems is not commu-
tative in general, that is, the left and right scalar multiplications are
different, so we need to treat them separately.

In this paper, we respectively call a C-D valued scalar λℓ (λr) ∈
Am and a C-D valued vector xℓ (xr) ∈ AN

m a left (right) eigenvalue
and a left (right) eigenvector provided that Axℓ = λℓxℓ (Axr =
xrλr). Note that both left eigenvalue and eigenvector are distinct
from right ones for a common C-D matrix A ∈ AN×N

m in general.
Unfortunately, there has been known few cases where hyper-

complex eigenvalues can be computed systematically. In almost
all cases, even the existences of them are still unexplained to the

best of our knowledge. In the quaternion domain, it is known that
right eigenvalues always exist and indeed a well-defined method is
available for computing quaternion right eigenvalues by reducing the
quaternion right eigenvalue problem to the equivalent complex one
[12, 14, 15]. On the other hand, the method used in the right eigen-
value problem cannot be used in the left one because of the lack
of commutativity of multiplication. Wood proved that any N × N
quaternion matrix has at least one left eigenvalue [20] but even for
small size the left eigenvalues are still open problem in spite of many
previous studies [13, 21, 22]. For example, it was proved that a 2×2
quaternion matrix may have one, two, or an infinite number of left
eigenvalues [13] but the proof seems to be difficult to generalize for
N > 2. For octonion and higher dimensional C-D domain, the gen-
eral solution is available for very limited cases [23]. However, there
are no systematic solutions even for right eigenvalue problem since
the method for solving quaternion right eigenvalue problem cannot
be generalized for higher dimensional cases because of the lack of
associativity of multiplication.

3. C-D SINGULAR VALUE DECOMPOSITION

3.1. R-eigenvalues and Their Properties

In this section, we introduce a new notion R-eigenvalue which can
be defined for general C-D matrix.

Definition 1 (R-eigenvalues of C-D matrices). For C-D matrix
A ∈ AN×N

m , we respectively call a complex-valued scalar λ ∈ C
and a complex-valued vector x ∈ CmN an R-eigenvalue and R-
eigenvector provided that Ãx = λx, where Ã ∈ RmN×mN is the
non-trivial mapping of A defined in (5).

As discussed in Section 2.2, the difficulties for computing hy-
percomplex eigenvalues are mainly from the lack of commutativ-
ity and associativity of hypercomplex multiplications. On the other
hand, any C-D matrix can be translated to real matrix without loss
of any information by the algebraic translation introduced in Ap-
pendix. Once the translated real matrix is obtained from a C-D ma-
trix, we are completely freed from any complexity of C-D number
system. Moreover, translated real matrix is just real-valued matrix,
so any C-D square matrix A ∈ AN×N

m always has mN number of
R-eigenvalues in C.

The most well-studied hypercomplex eigenvalue problem is the
quaternion right eigenvalue problem. In general, the quaternion
square matrix A ∈ HN×N has an infinite number of right eigen-
values [12]. However, it is well-known that any N × N quaternion
matrix A has exactly N right eigenvalues which are complex num-
bers with non-negative imaginary parts [14, 15]. These eigenvalues
are said to be the standard eigenvalues of A. The standard eigen-
values can be systematically computed by calculating eigenvalues
of the complex adjoint matrix χA :=

[
Ar Ai
−A∗

i A∗
r

]
∈ C2N×2N of

A := Ar + Aiȷ (Ar,Ai ∈ CN×N ). Note that this calculation is
available only for quaternion since the complex adjoints can be de-
fined only for quaternion matrices. By calculating the R-eigenvalues
of the complex adjoint matrix, we have the relation between the
R-eigenvalues and the standard eigenvalues [14, 15] of quaternion
matrices as follows:

Theorem 1 (R-eigenvalue of quaternion matrices). Suppose that the
quaternion square matrix A ∈ HN×N has a standard eigenvalue
λ ∈ C. Then A also has R-eigenvalues λ and λ∗ with multiplic-
ity 2. If A is Hermitian, it has real-valued R-eigenvalues λ with
multiplicity 4.

3.2. Singular Value Decompositions and Ranks

In this section, we propose propose novel definitions of singular
value decomposition (SVD) best low rank approximation of C-D
matrices and clarify their properties.
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Definition 2 (C-D singular value decomposition and R-rank). For a
C-D matrix A ∈ AM×N

m , we call Ã = UΣV ⊤ C-D singular value
decomposition, where U ∈ RmM×mM and V ∈ RmN×mN are
orthogonal real matrices and Σ := diag(σ1, . . . , σr, 0, . . . , 0) ∈
RmM×mN is a rectangular diagonal matrix with positive singular
values σ1 ≥ · · · ≥ σr(> 0) of Ã on the diagonal. We denote
r = rankR(A) := rank(Ã) ≤ max(mM,mN) and call it R-
rank.

Note that the mapping: (̃·) : AM×N
m → RmM×nN is defined

in Appendix. Similar to the eigenvalue problem, the SVDs have not
been well-established for almost C-D number systems. However, in
the quaternion case, both the SVD and the rank of quaternion ma-
trix are well-established [12]. Obviously, the R-rank can be defined
for general C-D matrices similar to the R-eigenvalues. Moreover,
the R-rank has very strong relation to well-established ranks in C-D
domain.

Lemma 1 (Relation between the R-rank and original ranks in C-D
domain). For complex (m = 2) or quaternion (m = 4) cases, it
holds that rankR(A) = mrank(A) for all A ∈ AM×N

m .

Lemma 1 implies that the R-rank is equivalent to the product of
the dimension of C-D number and the original rank and thus min-
imizing R-rank is equivalent to the original rank at least in well-
established complex and quaternion case. In this section, by passing
through the Schmidt-Eckart-Young theorem [24], we propose a new
best low rank approximation technique of C-D matrices.

Lemma 2 (Low R-rank approximation of hypercomplex matrices).
For a C-D matrix A ∈ AM×N

m of R-rank r, a best p R-rank approx-
imation is achieved by

min
X∈RmM×mN

rankR(X)≤p

∥∥∥Ã−X
∥∥∥
F

=
∥∥∥Ã−Ap

∥∥∥
F

=

√√√√ r∑
i=p+1

σ2
i ,

where ∥·∥F is the Frobenius norm, Ã = UΣV ⊤, Ap = UΣpV
⊤

and Σ = diag(σ1, . . . , σp, 0, . . . , 0) ∈ RmM×mN .

By carefully selecting reduced R-rank, the low R-rank approx-
imation also achieves the low rank approximation in the original
sense for well-established complex and quaternion domain.

Theorem 2 (Relation to the known low rank approximations). Con-
sider complex (m = 2) or quaternion (m = 4) cases. If A⋆ ∈
RmM×mN achieves the best low mp R-rank approximation of A ∈
AM×N

m , then the reverted C-D matrix Ã⋆ ∈ AM×N
m (see Appendix)

also achieves the best low p rank approximation of A in [17].

This theorem implies that Lemma 2 is the generalization of the
known result in [17].

4. HYPERCOMPLEX TENSOR COMPLETION

4.1. Formulations
We basically adopt the nomenclature of [25]. A tensor is the gener-
alization of a matrix to higher dimension. In this paper we denote it
by a calligraphic letter e.g., X ∈ AN1×···×Nn

m =: T Am .The order
(also called ways or modes) n of tensor is the number of dimensions.
Fibers are the higher-order analogue of matrix row and columns. A
fiber is defined by fixing every index but one. The mode-k fibers
are all vectors xi1...ik−1:ik+1...in which are obtained by fixing the
value of {i1, . . . , in} \ ik. The mode-k unfolding (also called ma-
tricization or flattening) of a tensor X ∈ T Am denoted by X(k) ∈
ANk×Ik

m (Ik =
∏n

ℓ=1,ℓ ̸=k Nℓ) is a matrix obtained by concatenating
all mode-k fibers along columns. The inner product of two same-
sized tensors X , Y ∈ T Am is the sum of the products of their en-
tries, i.e., ⟨X ,Y⟩T Am :=

∑N1
i1=1 · · ·

∑Nn
in=1 xi1...inyi1...in .

Algorithm 1: Am-Douglas-Rachford splitting for hypercom-
plex tensor completion (Am-DRS)

Input : LΩ,Ω, b, tk, λ, cλ, γ

Output: Recovered tensor X ∈ T Am

Initialize k ← 0, τ ← γ(n+ 1),X (0)
i ← O (∀i = 0, . . . , n);

while not converged do
λ← cλλ;
X ← mean(X (k)

0 , . . . ,X (k)
n );

for i = 1, . . . , n do

X′ ← shrink

(
2X̃(i) − X̃

(k)

i,(i), γ(N + 1)

)
;

proxτfi
(2X − X (k)

i )← refold (X̃′);

X (k+1)
i ← X (k)

i + tk

[
proxτfi

(2X − X (k)
i )−X

]
;

end[
proxτf0 (2X − X

(k)
0 )

]
i

←
{[

τ
λτ+1

{λL∗Ω(b) +
1
τ
(2X − X (k)

0 )}
]
i

if i ∈ Ω,

[2X − X (k)
0 ]i otherwise

;

X (k+1)
0 ← X (k)

0 + tk

[
proxτf0 (2X − X

(k)
0 )−X

]
;

k ← k + 1;
end
X ← mean(X (k)

0 , . . . ,X (k)
n )

There are several notions of tensor rank but the N -rank is easy to
compute. Originally, the N -rank is defined as the tuple of the rank
of the mode-k unfoldings. However, the rank is not well-defined
for general C-D domain, so we newly define the N -R-rank of a n-
dimensional hypercomplex tensor X ∈ T Am as the tuple of the
R-ranks of the mode-k unfoldings, i.e.,

N -rankR(X ) :=
[
rankR(X(1)), . . . , rank

R(X(n))
]
∈ Nn.

In this paper, we will only focus on it as a rank of hypercomplex
tensor.

Based on the N -R-rank introduced above, we formulate the hy-
percomplex low rank tensor completion problem. Given a linear map
L : T Am → Ap

m with p ≤
∏N

i=1 ni and given b ∈ Ap
m. The goal

of the low N -R-rank tensor completion problem is to find the hyper-
complex tensor X that minimizes a function of N -R-rank fulfilling
the linear measurements L(X ) = b. This can be expressed as the
following optimization problem:

minimize
X∈T Am

f(N -rankR(X )) s.t. L(X ) = b,

where f : Nn → R. Following the convex relaxation in [19], we
obtain the following unconstrained formulation:

minimize
X∈T Am

n∑
i=1

∥∥∥X̃(i)

∥∥∥
∗
+

λ

2
∥L(X )− b∥2Am

, (4)

where ∥·∥∗ is the nuclear norm of matrices.

4.2. Hypercomplex Tensor Completion Algorithm via Convex
Optimization

The problem (4) can be efficiently solved by well-established con-
vex optimization algorithms such as the Douglas-Rachford splitting
(DRS) [18]. In this section we propose a new hypercomplex ten-
sor completion algorithm based on the DRS. In the case of tensor
completion, we use the sampling operator LΩ as L. It extracts the
entries of the tensor X into the vector b at positions given by the set
of revealed entries denoted by Ω. We can summarize the proposed
hypercomplex tensor completion algorithm in Algorithm 1, follow-
ing the derivation performed in [19]. Here, (tk)k≥0 ⊂ [0, 2] satisfies∑

k≥0 tk(2 − tk), γ ∈ (0,∞), cλ controls the increase of the La-
grange multiplier, O ∈ T Am is the tensor of all zero and a white
letter i is the tuple of the indices at each dimension of a tensor, i.e.,
i := (i1, . . . , in). Moreover, L∗

Ω : Ap
m → T Am denotes the ad-
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Table 1. Performance comparison of three algorithms
T H = H64×64×64, ρ = 0.6, r = 4

Algorithm # iter. error time [s]
Am-DRS 126 8.0e-6 391
DRS-QSVD 126 8.0e-6 5.0e+4
DRS-PW 210 1.0e-1 252

T H = H10×10×10×10, ρ = 0.6, r = 2

Algorithm # iter. error time [s]
Am-DRS 898 1.5e-4 170
DRS-QSVD 898 1.5e-4 8,407
DRS-PW 1,077 35.6 63

joint operator of LΩ satisfying ⟨LΩ(X ),v⟩Ap
m

= ⟨X ,L∗
Ω(v)⟩T Am

for all X ∈ T Am and v ∈ Ap
m, refold(·) denotes the refold-

ing of matrix into a tensor and shrink(Ã, τ) denotes the singu-
lar value shrinkage operator given by shrink(Ã, τ) = UΣτV

⊤

for the singular value decomposition Ã = UΣV ⊤ with the sin-
gular values σk (k = 1, . . . , r) and the shrunk diagonal matrix
Στ := diag(max{σ1−τ, 0}, . . . ,max{σr−τ, 0}, 0, . . . , 0). Note
that this shrinkage operator is calculated based on Definition 2 and
Theorem 2, and all calculation in Algorithm 1 can be done only with
real-valued calculation. Moreover, if we set Am = R, the the pro-
posed algorithm is reduced to the original DRS for low N -rank ten-
sor completion algorithm in [19]. Similar to the real case, we have
the following theorem:

Theorem 3 (Convergence of Am-DRS). Let parameters of Algo-
rithm 1 be chosen so that γ ∈ (0,∞), (tn)n≥0 ⊂ [0, 2] satistying∑

n≥0 tn(2 − tn) = ∞ and let cλ = 1. Then, the output of Algo-
rithm 1 is a minimizer of (4).

5. NUMERICAL EXAMPLES

We examine the efficiency of the proposed algorithm in the context
of hypercomplex tensor completion problem. We perform experi-
ments in the quaternion domain and compare three algorithms, the
proposed Am-DRS for quaternion case, the DRS extended to quater-
nion domain using quaternion SVD, which is available in the MAT-
LAB quaternion toolbox [26] (DRS-QSVD), and the part-wise DRS
(DRS-PW). The DRS-PW optimizes real and each imaginary part
separately with the original real-valued DRS. Note that the proposed
Am-DRS can be applied to general C-D case, and DRS-QSVD is
available only for quaternion case but also a new algorithm since
the quaternion tensor completion itself is a new problem to the best
of our knowledge. These three algorithms are implemented with
MATLAB and the SVD in Am-DRS and DRS-PW are based on the
QR-decomposition.

In each experiment we generate low N -rank quaternion tensor
X0 which we used as ground truth. We fix the dimension r of a ‘core
tensor’ C ∈ Hr×···×r . Then we generate matrices Ψ(1), . . . ,Ψ(n)

with Ψ(k) ∈ HNk×r and set X0 = C ×1 Ψ(1) ×2 · · · ×n Ψ(n) ∈
T H, where ×k (k = 1, . . . , n) is the k-mode product satisfying
Y = X ×k Ψ(k) ⇔ Y (k) = Ψ(k)X(k). All entries of C and
Ψ(k) are i.i.d. from N (0, 1). With this construction, the n-rank
of X0 equals to [r, . . . , r] almost surely. We fix the percentage ρ
of the entries to be known and randomly chose the support of the
known entries. The value and the locations of the known entries of
X0 are used as inputs for the algorithms. For the parameters, we set
cλ = 1, λ = n and tk = 1. Table 1 shows that the performance
of the Am-DRS and the DRS-QSVD are the same since these two
methods are mathematically equivalent but the Am-DRS is much
faster than DRS-QSVD. This is because DRS-QSVD uses slow ex-
ternal library for computing quaternion SVD and have to use it many
times in large-scale tensor completion problems. The DRS-PW does
not converge to the optimal solution since it cannot approximate the
ground truth. Fig.1 depicts some slices of (a) original, (b) observed
tensors and the completion results of the left case in Table 1 by (c)
Am-DRS and (d) DRS-PW. Each pixel in tensors is represented by
the three imaginary parts of a quaternion as the RGB color space.
It shows that the proposed method indeed recovers well both color
information and low rank structure of the original tensor while DRS-
PW cannot recover the color information of the original tensor since
it cannot utilize the correlation of each color space.
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Fig. 1. Completion results of a 3-dimensional quaternion tensor

6. CONCLUSIONS

In this paper, we have proposed an algorithmic solution to hyper-
complex tensor completion problem based on a convex optimization
technique. This solution utilizes a new definition of SVD and best
low rank approximation of matrices based on algebraic translations
of C-D number systems. Numerical experiments show that the pro-
posed algorithm recovers much more faithfully the original color in-
formation than existing algorithm.

APPENDIX

Algebraic Real Translations of C-D Linear Systems

We briefly review the algebraic translation of C-D valued vectors
and matrices proposed in [16]. A trivial correspondence (mapping)
of hypercomplex vectors or matrices to real ones is

(̂·) : AM×N
m → RmM×N : A 7→ Â :=

[
A⊤

1 , . . . ,A
⊤
m

]⊤
.

This correspondence is just concatenating a real and all imaginary
parts in the hypercomplex vectors or matrices. Obviously, this map-
ping is invertible and thus we can also define |(·) : RmM×N →
AM×N

m : Â 7→ A. Only in terms of the mappings (̂·) and |(·), it is
hard to obtain the correspondence of matrix-vector product Ax, so
we also introduce the following non-trivial mapping:

(̃·) : AM×N
m → RmM×mN :

A 7→ Ã :=
[
L

(1)⊤
M Â,L

(2)⊤
M Â, . . . ,L

(m)⊤
M Â

]
, (5)

where the matrix L
(ℓ)
M ∈ RmM×mM (ℓ = 1, . . . ,m) is defined for

the m-dimensional hypercomplex number Am as

L
(ℓ)
M :=


δ
(ℓ)
1,1IM · · · δ

(ℓ)
1,mIM

−δ
(ℓ)
2,1IM · · · −δ

(ℓ)
2,mIM

...
. . .

...
−δ

(ℓ)
m,1IM · · · −δ

(ℓ)
m,mIM

, δ(γ)α,β :=

{
1 (if iαiβ = iγ),

−1 (if iαiβ = −iγ),
0 (otherwise),

and IM is the M -dimensional identity matrix. Similar to the trivial
mapping, (̃·) is also invertible and thus we define (̃·) : RmM×mN →
AM×N

m : Ã 7→ A. These translations have many useful algebraic
properties. For detail, see [16].
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