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ABSTRACT

Motivated by applications such as ordinal embedding
and collaborative ranking, we formulate homogeneous
quadratic feasibility as an unconstrained, non-convex
minimization problem. Our work aims to understand
the landscape (local minimizers and global minimizers)
of the non-convex objective, which corresponds to hinge
losses arising from quadratic constraints. Under certain
assumptions, we give necessary conditions for non-
global, local minimizers of our objective and addition-
ally show that in two dimensions, every local minimizer
is a global minimizer. Empirically, we demonstrate
that finding feasible points by solving the unconstrained
optimization problem with stochastic gradient descent
works reliably by utilizing large initializations.

Index Terms: Non-Convex Optimization, Prefer-
ence Learning

1. INTRODUCTION

In this paper, we consider quadratic feasibility problems
and present theory and experimental results utilizing
first order methods for recovering a feasible point. To
motivate this approach, we consider a natural set of
quadratic feasibility problems that arise when using or-
dinal comparisons to find a Euclidean embedding for
a set of items. Such embeddings are useful for down-
stream machine learning applications such as rank ag-
gregation, visualization, or recommender systems. We
give two concrete examples of this now. The first type
of embedding method we consider is ordinal embedding
(also known as non-metric multidimensional scaling
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[1, 2]) and is based on Euclidean distance compar-
isons. Given ordinal constraints on distances of the form
T = {(i, j, k) : item i is closer to item j than item k},
the goal is to find n points,X = {x1, x2, . . . , xn} ⊆ Rd,
that satisfy these Euclidean distance constraints. Let
Li,j,k be the matrix that captures the quadratic constraint
(i, j, k), i.e., XTLi,j,kX = ‖xi − xk‖2 − ‖xi − xj‖2 >
0. We can formulate the ordinal embedding feasi-
bility problem as follows: Find X ∈ Rnd such that
XTLi,j,kX > 0 for all (i, j, k) ∈ T . The second type
of embedding method is collaborative ranking. We as-
sume there are m users, corresponding to columns of a
matrix W ∈ Rd×m, and n items, corresponding to rows
of a matrix U ∈ Rn×d, and each user gives a ranking σi
on the set of items. Then the i-th column of X = UW
contains the scores used by user i to rank all the items.
Finding U,W given the rankings σi corresponds to the
feasibility problem: 〈Wi, U

T
σi(j)
〉 − 〈Wi, U

T
σi(k)
〉 > 0.

Crucially, both ordinal embedding and collaborative
ranking can be cast as homogeneous quadratic feasibil-
ity problems. Both problems have the form:

find x (1)

subject to xTPix > 0, i = 1, . . . ,m ,
where Pi is a symmetric matrix corresponding to the
i-th constraint. Quadratic feasibility is a special case
of quadratically constrained quadratic programming,
which has been extensively studied (see the excellent
survey [3]). In general, quadratic feasibility with indefi-
nite Pi matrices is NP-hard.

We propose to solve (1) by solving the following
optimization problem that penalizes a candidate point
when it does not satisfy a quadratic constraint:

minimize
x ∈ Rn

∑
i∈[m]

max{0, 1− xTPix}. (2)

Similar to support vector machines, the hinge loss
in (2) captures a margin, which quantifies the amount a
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constraint is violated. Furthermore, the 1 in the objective
of (2) avoids convergence to the infeasible point x̂ = 0
and can be replaced with any positive constant. In both
examples above, the constraint matrices can be shown to
be indefinite and thus (2) is non-convex. We focus our
attention on this case.

Assuming (1) is feasible, there is a tight connection
between feasible points and global minimizers of (2).
Indeed, a feasible point can be scaled to have an objec-
tive value of 0, a global minimum. Furthermore, any
global minimizer corresponds to a feasible point. Thus
our goal is to find a global minimum of the objective in
(2).

We propose to solve (2) with a first order method
(FOM), like stochastic gradient descent (SGD). FOMs
are essentially the only option in big data scenarios
due to low memory and computation requirements. Al-
though FOMs are computationally advantageous, they
can converge to non-global, local minimizers for non-
convex problems. In general the landscape of local
and global minimizers of non-convex functions can be
very complex, but a heightened interest in machine
learning has lead to a flurry of activity showing several
non-convex problems for which all local minima are
global. Examples include matrix completion [4] and
Burer-Monteiro factorization for semidefinite program-
ming [5]. In these cases, a FOM can successfully avoid
saddle points and so converges to global minima [6].

To the best of our knowledge, the local minimizers
of the objective in (2) have not been studied extensively
making it unclear whether a FOM applied to (2) finds a
solution to (1). We hope to close that gap theoretically
and experimentally. We point out that [7] recently also
proposed a similar method applying SGD to a smoothed
version of (2) that shows promising empirical results.
However, they do not prove any results about the exis-
tence of non-global, local minima nor provide any as-
sumptions regarding the success of recovering a feasible
point of (1) by applying a FOM to (2).
Our Contributions:
• Assuming all Pi are trace 0 and share a feasible point,

we give necessary conditions for a point to be a local
minimum of the objective of (2); see Theorem 1.
• In R2 under suitable assumptions, we show the objec-

tive of (2) has no local minima; see Theorem 4.
• Finally we provide experiments showing the success

of a FOM applied to (2) for solving (1).
Remark: We point out that the formulation of (2)

has been used in the specific case of ordinal embed-
ding and collaborative ranking. For example, see [8, 9,
10, 11]. In both of these applications, extensive work
has been done on bounding the sample complexity and
determining the uniqueness of an embedding [12, 13,
11, 14, 15], but little work has been done on theoreti-
cally understanding the proposed non-convex optimiza-
tion problems and methods used to solve them.

2. THEORY

2.1. Necessary Conditions for Minimizers

The following theorem gives necessary conditions for a
point to be a non-global, local minimizer of optimization
problem (2). The matrices arising in collaborative rank-
ing are trace 0 because each constraint depends only on
inner products between columns ofW and rows of U , so
each entry of the diagonal of the matrix that corresponds
to each constraint is 0. Similarly, the ordinal embedding
constraints result in trace 0 matrices [12]. Hence we re-
strict to trace 0 matrices. We say a set of matrices {Pi}
have a feasible point or share a feasible point if there is
an x so that xTPix > 0 for all i.

Theorem 1. Let {Pi ∈ Rn×n} be a set of real, sym-
metric trace 0 matrices that share a feasible point. As-
sume x is not a global minimizer of (2). If x ∈ Rn is
a non-global, local minimizer of (2), x must satisfy the
following two equations:

P1)
∑
{i:xTPix<1} x

TPix < 0

P2)
∑
{i:xTPix<1} x

TPix+
∑
{i:xTPix=1} x

TPix ≥ 0.

In particular, {i : xTPix = 1} 6= ∅.
Proof (Sketch of Proof). First we set some notation.
Let L(x) be the objective of optimization problem (2).
Consider the partition of the constraints at x given by
I=1
x := {i : xTPix = 1} with I>1

x and I<1
x defined

similarly. Therefore, L(x) = |I<1
x | − xTP<1

x x where
P<1
x :=

∑
i∈I<1

x
Pi and P=1

x :=
∑

i∈I=1
x
Pi.

If P1 or P2 is not true at some x′ that is not a global
minimizer, we claim x′ cannot be a local minimizer by
finding x arbitrarily close to x′ with L(x) < L(x′).

First, assume P1 is not true. Take u to be a unit
eigenvector of P<1

x′ with positive eigenvalue λ, guaran-
teed since x′ is not a global minimizer, the trace 0 con-
dition, and feasibility. We can also assume x′Tu ≥ 0.
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Let vδ,ε = εx′ + δu and x = x′ + vδ,ε. If j ∈ I=1
x′ , by

choosing ε, δ sufficiently small, xTPjx = (1 + ε)2 +
(1 + ε)δuTPjx

′ + δ2uTPju > 1, and x is sufficiently
close to x′. This implies I>1

x′ ∪ I
=1
x′ = I>1

x′+vδ,ε
and as a

result I<1
x = I<1

x′ . Thus since P1 is not true and since
x′Tu ≥ 0,
L(x)

= |I<1
x | − xTP<1

x x

= |I<1
x′ | − x

TP<1
x′ x

= |I<1
x′ | − (1 + ε)2x′TP<1

x′ x
′ − δλ(2(1 + ε)x′Tu+ δ)

< L(x′).
In the second case, we assume P2 is not true. Consider
x = (1− ε)x′ for ε > 0. For ε sufficiently small I<1

x′ ⊆
I<1
x and I>1

x′ ⊆ I>1
x . If j ∈ I=1

x′ , then xTPjx = (1 −
ε)2x′TPjx

′ < 1, so I=1
x′ ⊆ I<1

x and as a result I<1
x =

I<1
x′ ∪ I

=1
x′ . Then

L(x) = |I<1
x | − xTP<1

x x

= |I<1
x′ |+ |I

=1
x′ | − (1− ε)2x′T

(
P<1
x′ + P=1

x′
)
x′

< |I<1
x′ |+ |I

=1
x′ | −

(
x′TP<1

x′ x
′ + x′TP=1

x′ x
′)

= L(x′),
where P2 not being true implies the second to last line.

2.2. Two Dimensions

In this section, for trace 0 constraint matrices in R2 shar-
ing a feasible point, we show the objective of (2) has
no local minima. In the case of homogeneous quadratic
equations in R2, there is a simple algorithm for finding
a feasible point. Since each quadratic equation xTPix is
homogeneous, there is an interval Ii ⊂ R so that the line
y = αx, α ∈ Ii, is contained in the cone xTPix > 0.
Thus the quadratic equations share a feasible point if
∩iIi 6= ∅. However, this algorithm does not general-
ize to higher dimensions unlike solving (2). We hope
that our results in R2 generalize to higher dimensions.

Lemma 2. Assume A,B ∈ R2×2 are linearly indepen-
dent, trace 0 matrices. At any point x′ on the curve
xTBx = 1, there is a tangent direction of xTBx = 1 at
x′ which is a descent direction for a−xTAx at x′ where
a ∈ R is a constant.
Proof. By the method of Lagrange multipliers, if x′ ∈
R2 is a local minimizer of a−xTAx subject to xTBx =
1, there exists λ ∈ R such that Ax′ = λBx′. However,
since tr(A−λB) = 0 and they are independent,A−λB
is invertible so no such x′ or λ can exist.

Lemma 3. Assume P1, P2, P3 ∈ R2×2 are trace 0,
pairwise independent matrices sharing a feasible point.
Assume for some x′, x′TP1x

′ = x′TP2x
′ = 1 and

x′TP3x
′ < 0. Then at x′, there is a tangent direction of

xTP1x (respectively xTP2x) which is an ascent direc-
tion of xTP2x = 1 (respectively xTP1x) and a descent
direction for A− xTP3x, where A ∈ R is a constant.
Proof (Sketch of Proof.). By an orthogonal rotation
and assuming the trace 0 condition, P3 =

(
1 0
0 −1

)
. Simi-

larly let P1 =
(
a c
c −a

)
and P2 =

(
b d
d −b

)
. For i ∈ [1, 2], let

fi(x) = xTPix and f3(x) = A− xTP3x. Since P1, P2

are independent of P3, c, d 6= 0. In addition a compu-
tation shows if cd < 0, there cannot be a feasible point.
Thus, cd > 0.

Let U =
(

0 1
−1 0

)
. Then a tangent vector to the curve

xTPix = 1 at x′ is UPix′. A computation shows
〈∇f2(x′), UP1x

′〉 = −2(ad− bc)‖x′‖22, (3)

〈∇f1(x′), UP2x
′〉 = 2(ad− bc)‖x′‖22. (4)

Likewise
〈∇f3(x′), UP1x

′〉 = −2c‖x′‖22, (5)

〈∇f3(x′), UP2x
′〉 = −2d‖x′‖22. (6)

WLOG, assume c, d > 0. Since 〈∇f2(x′), UP1x
′〉

and 〈∇f1(x′), UP2x
′〉 have opposite signs, one is non-

negative. WLOG say 〈∇f1(x′), UP2x
′〉 ≥ 0, so UP2x

′

is an ascent direction of f1 restricted to xTP2x = 1.
Because c, d > 0, (6) is negative, so UP2x

′ is also
a descent direction for f3. Therefore, at x′, as we move
along the curve xTP2x = 1, in the tangent direction
UP2x

′, xTP1x increases by (4) and A − xTP3x de-
creases by (6). If c, d < 0, then the same argument
applies but with the tangent vector −UPix′.

Theorem 4 (Arbitrary Number of Constraints). Let
{Pi ∈ R2×2} be real, symmetric, trace zero matrices
satisfying the conditions of Theorem 1. Additionally
assume no three of the curves xTPix = 1 intersect at a
point. Then every local minimizer of the objective of (2)
is a global minimizer.
Proof. For x ∈ R2, let I=1

x , I<1
x , I>1

x , and P<1
x be

as defined in the proof of Theorem 1. By contradic-
tion, suppose ẑ ∈ R2 is a non-global, local minimizer
of objective (2). By Theorem 1, ẑTP<1

ẑ ẑ < 0 and
1 ≤ |I=1

ẑ | ≤ 2, where the upper bound follows since
at most two of the xTPix = 1 intersect. We will now
break into cases depending on the size of I=1

ẑ . Recall
that L(x) = |I<1

x | − xTP<1
x x.

First, assume |I=1
ẑ | = 1, so WLOG, I=1

ẑ = {1}. As-
sume P1 and P<1

ẑ are linearly independent. In this case,
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Lemma 2 shows that there is a direction to move along
the curve xTP1x = 1 from ẑ such that L(x) decreases.
If P1 and P<1

ẑ are linearly dependent, then λP1 = P<1
ẑ

for some λ; a feasible point for all the Pi imply λ > 0.
However, λ = λẑTP1ẑ = ẑTP<1

ẑ ẑ < 0, a contradic-
tion. Thus, P1 and P<1

ẑ must be linearly independent.
Second, assume |I=1

ẑ | = 2 and WLOG, I=1
ẑ =

{1, 2}. If P1, P2 and P<1
ẑ are pairwise linearly indepen-

dent, an identical argument as above now follows from
Lemma 3. Now assume P1, P2 and P<1

ẑ are not pair-
wise independent. Since |I=1

ẑ | = 2, P1 6= λP2 for any
λ ∈ R. Now, if P1 = λP<1

ẑ or P2 = λP<1
ẑ , we repeat

the argument from the case when |I=1
ẑ | = 1. Therefore,

P1, P2, and P<1 are pairwise independent.

2.3. Importance of Assumptions

0

0.5

1

1.5

2

2.5

3

0
1

x-axis
10.50

y-axis
-0.5-12-1.5

Fig. 1. Existence of non-global, local minimum of ob-
jective of (2) when trace 0 assumptions are not satisfied.

The trace 0 assumption of Theorem 4 is necessary.
Otherwise, consider P1 =

(
1 0
0 −.5

)
, P2 =

(
.5 1
1 1

)
, P3 =(

0 1
1 5

)
, which share a feasible point: [1, 1]T . Figure 1

shows that x ≈ [1.1,−.7] is a non-global, local mini-
mizer of the objective of (2) since the global minimum
is 0. Therefore, proper initialization of FOMs and ap-
propriate assumptions on the constraint matrices need to
be more thoroughly studied to guarantee the success of
solving (2) with FOMs.

3. EXPERIMENTS

In our experiments, we focus on validating SGD on (2)
for finding feasible points. Due to the non-convexity of
the problem, it seems to be challenging to determine
how step size and initialization affect the success of a
FOM like SGD. Therefore, we experiment with differ-
ent step sizes and initializations at different scales. We
remark that [7] contains an extensive set of experiments
that validate using FOMs on a smoothed version of (2)

to find feasible points. However, they did not consider
different initializations.

The first experiment is in the case of ordinal em-
bedding. To construct our constraints, we sampled a set
of 50 points from N (0, I) in R2 and used all ordinal
constraints arising from these points. To find a feasible
embedding, we used SGD on objective (2). We varied
the initial step size (.001, .01, .1, .5) and the scale of the
initialization, i.e., the initialization was sampled from
N (0, αI) for α = 1, 10, 100, . . . , 106. The step sizes
decayed exponentially as .1

2t where t is the number of
epochs. Figure 2 shows the proportion of success over
20 experiments per choice of step size and initial scale,
where a new set of points was sampled each time. SGD
was given a budget of 8000 epochs.

Fig. 2. Success of recovering a feasible embedding.
For the next experiment, we sampled 2000 symmet-

ric matrices {Pi}i∈[2000] ⊂ R20×20 from N (0, I) and
then projected them onto the subspace of trace 0 matri-
ces. We picked a vector x and negated the Pi as needed
so that xTPix > 0 for all i ensuring feasibility. Initial
step sizes and scalings were varied as in the previous ex-
periment and exponentially decaying weights were used.
SGD was given a budget of 4000 epochs. See Figure 3.

1 10 102 103 104 105 106

initial scale

.0001

.001

.01

.1

st
ep

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Success of general quadratic feasibility in R20.
In both experiments, for a large enough initial step

size and initialization, SGD reliably recovers a feasible
point. Although not illustrated, SGD with small, con-
stant step sizes produced similar results. Interestingly,
initialization seems to play a large role in success of
SGD in both of the above experiments.
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