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Abstract—Phase retrieval is a kind of ill-posed inverse prob-
lem, which is present in various applications, such as optics,
astronomical imaging, and X-ray crystallography. Mathemati-
cally this inverse problem consists on recovering an unknown
signal x ∈ Rn/Cn from a set of absolute square projections
yk = |〈ak,x〉|2, k = 1, · · · ,m, where ak are the sampling
vectors. However, the square absolute function is in general non-
convex and non-differentiable, which are desired properties in
order to solve the problem, when traditional convex optimization
algorithms are used. Therefore, this paper introduces a special
differentiable function, known as smoothing function, in order
to solve the phase retrieval problem by using the smoothing
projected gradient (SPG) method. Moreover, to accelerate the
convergence of this algorithm, this paper uses a nonlinear
conjugate gradient method applied to the smoothing function as
the search direction. Simulation results are provided to validate
its efficiency on existing algorithms for phase retrieval. It is shown
that compared with recently developed algorithms, the proposed
method is able to accelerate the convergence.

I. INTRODUCTION

Phase retrieval (PR) consists on recovering a signal from
phaseless measurements, which is useful in many fields in
science and engineering, such as optics [1], astronomical
imaging [2], microscopy [3] and x-ray crystallography [4].
For example, in x-ray crystallography [5], the PR technique
is used to determine the atomic position of a crystal in a
three-dimensional (3D) space [6]. Moreover, a recent approach
which modifies the traditional x-ray crystallography system has
drawn attention, since it combines some actives fields such as
x-ray imaging, coded diffractive imaging and phase retrieval
techniques [7], [8], [9], [10].

The most traditional algorithms to solve the phase retrieval
problem are based on the Error-Reduction method [11] which
was proposed in 1970, however, the rate of convergence of
these algorithms is considerably slow and does not have
theoretical guarantees [8], [11]. Recently, a convex formulation
was proposed in [12] via Phaselift, which consists on lifting
up the original vector recovering problem from a quadratic
system into recovery a rank-1 matrix. Further, theoretical
guarantees of convergence and recovery have been developed
for this convex approach, but its computational complexity
becomes too high when the dimension of the signal is large.
On the other hand, more recent methods described in [7], [13],
[14] recover the phase by applying techniques such as non-
convex formulations, and matrix completion. Specifically, one
of the non-convex formulations, called Truncated Wirtinger
Flow (TWF) algorithm proposed in [7], which optimizes the
Poisson likelihood and keeps the convergence by designing
truncation thresholds for calculating the step gradient. Ad-
ditionally, in [15] and [16] the Truncated Amplitude Flow
(TAF) and the Reshaped Wirtinger Flow (RWF) algorithms
were developed, respectively, which are also gradient descend
non-convex methods based on the Wirtinger derivate. Further,
in terms of the sample complexity and speed of convergence,

the TAF and RWF methods exhibit a superior performance
over the actual state-of-the-art algorithms. It is important to
highlight that the functions which optimize the TAF and RWF
methods are also non-convex and non-differentiable.

In summary, the TWF, TAF and RWF algorithms optimize
cost functions which are non-convex and non-differentiable.
Moreover, the TWF and TAF algorithms require the extra
truncation procedure in the step gradient, which in practice
means to calculate more parameters to obtain a desired perfor-
mance in recovering the phase. On the other hand, in [17] the
Smoothing Projected Gradient (SPG) method was developed,
for non-differentiable and non-convex optimization problems
on a closed convex set. Moreover, the SPG algorithm solves the
non-differentiability of the optimization problem by introduc-
ing a special differentiable function, called smoothing function,
which approximates the original optimization function.

Given that the phase retrieval can be formulated as a
non-convex and non-differentiable optimization problem, this
paper proposes an algorithm based on the (SPG) method, by
introducing a smoothing function, in order to solve the phase
retrieval problem. Moreover, to accelerate the convergence of
this algorithm, this paper uses a nonlinear conjugate gradient
method applied to the smoothing function as the search di-
rection. Numerical results validate its efficiency, showing that
when compared with recently developed algorithms, such as
TWF, TAF and RWF, the proposed method is able to accelerate
the convergence. Specifically, the proposed method requires
up to 66.7%, 58.3% and 41.1% less number of iterations with
respect to the TWF, TAF and RWF algorithms, respectively.
Further, the sample complexity of the proposed method is
lower in comparison with the named state-of-the-art methods,
in terms of the number of measurements. Also, it is important
to highlight that the proposed method does not require the
truncation procedure used in the TWF, and TAF.

II. PHASE RETRIEVAL PROBLEM

Phase retrieval can be formulated by solving the system of
m quadratic equations of the form

yk = |〈ak,x〉|2, k = 1, · · · ,m, (1)

where the data vector y := [y1, · · · , ym]T ∈ Rm represents
the measurements, ak ∈ Rn/Cn are the known sampling
vectors and x ∈ Rn/Cn is the desired unknown signal.
This work considers the sampling vectors are assumed to
be independently and identically distributed (i.i.d.), that is,
ak ∼ N (0, In) and ak ∼ N (0, 12In) + jN (0, 12In) for the
real and complex cases respectively, where j =

√
−1. Then,

adopting the least-squares criterion, the task of recovering a
solution from the phaseless measurements in (1) reduces to
minimize the amplitude-based loss function
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min
x∈Rn/Cn

f(x) =
1

m

m∑
k=1

(fk(x)− qk)2 , (2)

where fk(x) = |〈ak,x〉| and qk =
√
yk. However, notice

that the optimization problem in (2) is non-differentiable and
non-convex [12]. This work proposes an algorithm based on
the Smoothing Projected Gradient (SPG) method, which was
proposed in [17] to solve non-differentiable and non-convex
optimization problems. The SPG algorithm assumes that the
objective function is locally Lipschitz continuous but not
necessary differentiable. Also, the SPG method introduces an
auxiliary differentiable function g to approximate the original
objective function, in order to solve the non-differentiable and
non-convex optimization problem. Moreover, the SPG requires
some conditions over the auxiliary function g, but this will be
discussed in Section III. According to the SPG assumptions,
it is necessary to prove that the objective function f(x) in (2)
is Locally Lipschitz continuous.

Throughout the paper the following notations are con-
sidered. The set R+ = {x ∈ R : x ≥ 0} and the set
R++ = {x ∈ R : x > 0}. The distance of any two complex
vectors x1,x2 ∈ Cn is defined as

dr(x1,x2) = min
θ∈[0,2π)

‖x1e
−jθ − x2‖2, (3)

where j =
√
−1, and ‖·‖2 denotes the Euclidean norm. Notice

that the distance dr(·, ·) defined in (3) reduces to calculate
dr(x1,x2) := min‖x1 ± x2‖2 for ∀x1,x2 ∈ Rn. For the
analysis we focus on the real-valued case, and the effectiveness
of the method via numerical results is showed in Section IV.

Definition II.1. Locally Lipschitz continuous under the dis-
tance dr(·, ·): Let f : (Rn, dr(·, ·)) → R be a function. The
function f is called Lipschitz continuous if there exists a
constant L > 0 such that, for x1,x2 ∈ Rn

|f(x1)− f(x2)| ≤ L dr(x1,x2). (4)

The following lemma shows that f(x) in (2) is locally
Lipschitz according to Definition II.1.

Lemma II.1. The function f(x) in (2) is locally Lipschitz
continuous.

Proof: The proof of Lemma II.1 is deferred to Appendix
A.

The next section introduces the concept of a smoothing
function. Also, the smoothing function g which approximates
the function f(x) in (2) will be presented. Moreover, the
conditions over the function g in order to guarantee the
convergence of the proposed method are established.

III. PHASE RETRIEVAL ALGORITHM

The concept of the smoothing function was presented in
[17] as the following definition, which is an important notion
in the SPG algorithm.

Definition III.1. Smoothing function: Let f : Rn → R be a
locally Lipschitz continuous function. Then g : Rn×R++ → R
is called a smoothing function of f , if g(·, µ) is continuous
differentiable in Rn for any fixed µ ∈ R++ and

lim
µ↓0

g(x, µ) = f(x), (5)

for any fixed x ∈ Rn.

According to the above definition, consider the function
ϕµ : R→ R++ defined as

ϕµ(x) =
√
x2 + µ2, (6)

where µ ∈ R++. The following lemma shows that ϕµ has
important smooth properties to approximate the functions fk,
given that ϕ0(a

T
k x) = fk(x).

Lemma III.1. The function ϕµ(x), defined in (6), has the
following properties.

1) ϕµ(x) and ϕµ(x)ϕ
′
µ(x) are Lipschitz continuous

functions.
2) ϕµ(x) converges uniformly to ϕ0(x) on R, that is,

|ϕµ(x)− ϕ0(x)| ≤ µ.

Proof: The proof of Lemma III.1 is deferred to the
Appendix B.

The first result in Lemma III.1 is used to guarantee the
convergence of the proposed algorithm in Subsection III-B.
Also, note that item 2) in Lemma III.1 establishes that the
function ϕµ(a

T
k x) approximates uniformly fk(x), which is a

desirable approximation, since it only depends on the value of
µ. Thus, a differentiable optimization problem to recover the
unknown desired signal x ∈ Rn from the measurements qk in
(2) can be formulated as

min
x∈Rn/Cn

g(x, µ) =
1

m

m∑
k=1

(
ϕµ(a

T
k x)− qk

)2
, (7)

where g(x, µ) is the smoothing function of f(x) in (2). Then,
in order to solve (7), this work presents the Phase Retrieval
Smoothing Conjugate Gradient method (PR-SCG) which is
summarized in Algorithm 1.

Algorithm 1 is a descend gradient method based on the
SPG algorithm. Further, this paper uses a nonlinear conjugate
gradient method developed in [18], in order to accelerate its
convergence. Algorithm 1 calculates the conjugate direction
in Line 16. Moreover, the smoothing parameter is updated as
in the smoothing projected gradient method (SPG) in [17], to
obtain a new point. That is, if ‖ ∇g (xi+1, µi) ‖≥ γµi in Line
10 is satisfied, then the smoothing parameter is updated using
the new point in Line 13. Also, a backtracking line search
strategy is used to choose a correct step size of the conjugate
gradient update direction, which is calculated in Line 9. On
the other hand, each vector g̃i in Algorithm 1 is calculated as
the partial derivative of the function g(x, µ) respect to x, i.e,
g̃i = ∇xg(xi, µi), which is given by

∇g(zt, µt) =
2

m

m∑
i=1

(ϕµt(a
T
i z

t)− qi)∇ϕµt(aTi zt), (8)

where ∇ϕµt(aTi zt) =
aTi x

ϕµt (a
T
i z

t)
ai.
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Algorithm 1 PR-SCG: Phase Retrieval Smoothing Conjugate
Gradient Method

1: Input: Data {(ak; qk)}mk=1 and choose constants ε0 > 0,
r ≥ 0. Choose δ, γ1 ∈ (0, 1), µ0 > 0, γ > 0 and T
maximum number of iterations.

2: Initial point x0 =

√∑m
k=1 q

2
k

m z̃0. where z̃0 is the leading

eigenvector of Y0 := 1
|I0|
∑
k∈I0

aka
T
k

‖ak‖2 .
3: Set d0 = −g̃0.
4: for i = 0 : T − 1 do
5: Set ρ = 1.
6: while g (xi + ρdi, µi) > (g (xi, µi) + δρg̃Ti di) do
7: ρ = 0.4ρ
8: end while
9: Set αi = ρ and xi+1 = xi + αidi

10: if ‖ ∇g (xi+1, µi) ‖≥ γµi then
11: µi+1 = µi
12: else
13: µi+1 = γµi
14: end if
15: di+1 = −g̃i+1 +

(
g̃Ti+1z̃i

dTi z̃i
− 2‖z̃i‖2g̃Ti+1di

(dTi z̃i)2

)
di +

g̃Ti+1di

dTi z̃i
z̃i.

16: where z̃i = p̃i +

(
ε0 ‖ g̃i+1 ‖r +max{0,− sTi p̃i

‖si‖22
}
)
si.

17: p̃i = g̃i+1 − g̃i , si = xi+1 − xi.
18: end for
19: return: xT

A. Initialization stage

This work uses the Orthogonality-promoting Initialization
proposed in [15]. This initialization consists on calculating
the vector x0, which is the leading eigenvector z̃0 of the
matrix Y0 := 1

|I0|
∑
k∈I0

aka
T
k

‖ak‖2 scaled by the quantity λ0 :=√∑m
k=1 q

2
k

m , i.e, x0 = λ0z̃0. The set I0 is the collection of
indexes corresponding to the largest values of {qk/‖ak‖}.
Moreover, the notation |I0| is the cardinality of the set I0. This
procedure is calculated in Line 2 of Algorithm 1. Moreover,
in [15] it was established that the distance between the initial
guess x0 and the true signal x is given by

dr(x0,x) ≤
1

10
‖x‖2, (9)

with probability exceeding 1− (m+5)e−n/2−e−c0m−3/n2,
providing that m ≥ c1|I0| ≥ c2n for some constants
c2, c1, c0 > 0 and sufficiently large n.

B. Convergence conditions

The following assumption is used in the analysis of con-
vergence for nonlinear conjugate gradient methods, in order to
guarantee the convergence of Algorithm 1.

Assumption 1.
1) For any (x̃, µ) ∈ Rn × R++, the level set

Sµ(x̃) = {x ∈ Rn|g (x, µ) ≤ g (x̃, µ)}, (10)

is bounded.

2) The partial derivative ∇xg(x, µ) in (8) is continuously
differentiable and there exists a constant Lg > 0 such that for
any x̃ ∈ Rn and fixed µ ∈ R++ is satisfied ∀x,y ∈ Sµ(x̃),
that

dr(∇xg(x, µ),∇xg(y, µ)) ≤ Lgdr(x,y). (11)

Theorem III.3 shows that the objective function g defined
in (7) satisfies the Assumption 1 by using the first result in
Lemma III.1. However, before starting the proof of Theorem
III.3, we need to introduce Lemma III.2, which is useful to
prove item 2) in Theorem III.3.

Lemma III.2. Assume that f1 and f2 are Lipschitz continuous
functions on a bounded set I with constants L1 and L2,
respectively, and moreover assume there is a constant v > 0
such that f2(x) ≥ v for all x ∈ I . Then f1/f2 is Lipschitz
continuous on I . (The proof of Lemma III.2 can be found in
[19]).

Theorem III.3. Functions ϕµ(x) and g(x, µ), defined in Eqs.
(6) and (7) respectively, satisfy the following properties:

1) Assumption 1 is satisfied.
2) The function ϕ′µ(x) is Lipschitz continuous on any

level set Sµ(x̃), for a fixed µ ∈ R++.

Proof: The proof of Theorem III.3 can be found in
Appendix C.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed method
relative to Truncated Wirtinger Flow (TWF) [7] , Reshaped
Wirtinger Flow (RWF) [16] and Truncated Amplitude Flow
(TAF) [15] is presented. All the parameters pertinent to the
implementation of each algorithm were their suggested values.
The performance metric was Relative error := dr(z,x)/‖x‖.
For each trial, 1, 000 iterations for all algorithms were per-
formed. A trial is declared to be successful when the returned
estimate incurs a relative error less than 10−5. All experi-
ments were implemented in Matlab 2017a on an Intel Core
i7 3.41Ghz CPU and 32 GB RAM. For reproducibility, the
Matlab code of our PR-SCG algorithm is publicly available at
http://diffraction.uis.edu.co/codes.html.

For all experiments, the signal is generated as x ∼
N (0, I1,000) and the measurement ak ∼ N (0, I1,000) for k =
1, ...,m. The default values for the parameters in Algorithm
1 were established as ε0 = 10−10, r = 2, δ = 0.1, γ1 =
0.5, µ0 = 20, γ = 0.08 and T = 1000.

Fig. 1. Numerical results assuming x ∼ N (0, In) and ak ∼ N (0, In) for
a real Gaussian noiseless model. (a) Relative error versus iteration for n =
1, 000 , m/n = 8. (b) Empirical success rate versus number of measurements
with n = 1, 000, m/n varying 0.1 from 0 to 7 under the same Truncated
spectral initialization.

The first experiment, shown in Fig. 1(a), compares the
convergence speed of different schemes equipped with their
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own initialization in the original codes for real cases. Note
that the proposed method overcomes its competing alternatives
converging faster in terms of iterations. Also comparing the
convergence rate in Fig. 1(b), the PR-SCG algorithm achieves
a success rate of over 90% when m/n = 2 and guarantees
perfect recovery from about 2.5n measurements for real-
valued, which shows the effectiveness of the proposed method.
It can be observed that the proposed algorithm needs less
number of measurements to solve the phase retrieval problem
in comparison with the TWF, TAF and RWF methods.

V. CONCLUSION

This paper presented the PR-CSG algorithm to solve the
phase retrieval problem. Some numerical experiments were
done to evaluate the performance of the proposed method in
comparison with state-of-art methods. Specifically, simulations
show an improvement of the PR-SCG method in the sample
complexity, since it requires less number of measurements in
contrast to the TWF, TAF and RWF algorithms. Moreover, the
results also established that the convergence speed overcomes
the recent methods in the literature, since it requires up to
66.7%, 58.3% and 41.1% less number of iterations with respect
to the TWF, TAF and RWF algorithms.

APPENDIX A
PROOF OF LEMMA II.1

Proof: To prove the lemma, we proceed showing that for
all k ∈ {1, · · · ,m} the functions fk(x) in (2) are locally
Lipschitz continuous. Then, let x1,x2 ∈ Rn be two any
vectors, such that |fk(x1)−fk(x2)| = ||〈ak,x1〉|−|〈ak,x2〉||.
Now, by using the triangle inequality on the right term, one
can write

||〈ak,x1〉| − |〈ak,x2〉|| ≤ |〈ak,x1〉±〈ak,x2〉|. (12)

Using the fact that 〈ak,x2〉 = aTk x, from (12) it can be
obtained that |fk(x1)−fk(x2)| ≤ |aTk (x1±x2)|. Since aTk x =∑n
i=1 (ak)i (x)i, then by using the triangle inequality, one can

write
|fk(x1)− fk(x2)| ≤

∑n
i=1|(ak)i ||(x1±x2)i|

≤ akmax‖x1±x2‖1,
(13)

where akmax = max{|(ak)i| : i = 1, · · · , n} of the fixed
known vector ak and ‖·‖1 is the `1 norm. Finally, since `1
and `2 are equivalent norms, there exists a constant ρ > 0
such that ‖x‖1 ≤ ρ‖x‖2 for all x ∈ Rn [20]. Thus, from (13)
it can obtained that

|fk(x1)− fk(x2)| ≤
(
akmaxρ

)
dr(x1, x2). (14)

Thus, from (14) it can be concluded that fk is a Lipschitz
continuous function with constant Lk = akmaxρ. Remark
that every Lipschitz continuous function is locally Lipschitz
continuous [21]. Thus, since f(x) is a sum of locally Lipschitz
continuous functions, the result holds [19].

APPENDIX B
PROOF OF LEMMA III.1

Proof: 1) Since µ > 0 then ϕµ(x) is differentiable on
R, where ϕ′µ(x) is given by ϕ′µ(x) = x√

x2+µ2
. Notice that√

x2 + µ2 ≥ x for all x ∈ R, then |ϕ′µ(x)| ≤ 1. Then, ϕµ(x)
is a Lipschitz continuous function because its first derivative
is bounded [19].

On the other hand, note that the function ϕµ(x)ϕ
′
µ(x) is

given by ϕµ(x)ϕ
′
µ(x) =

√
x2 + µ2

(
x√
x2+µ2

)
= x. Now,

taking into account Definition II.1, let x1, x2 ∈ R be two
different real numbers such that

|ϕµ(x1)ϕ′µ(x1)− ϕµ(x2)ϕ′µ(x2)| = |x1 − x2| ≤ |x1 − x2|.
(15)

Thus, from (15) it can be concluded that ϕµ(x)ϕ′µ(x) is a
Lipschitz continuous function.

2) According to the definition of the function ϕµ in (6), it
can be obtained that |ϕµ(x) − ϕ0(x)| = |

√
x2 + µ2 −

√
x2|.

Note that by the Minkowski inequality [22], it can be con-
cluded that

√
x2 + µ2 ≤

√
x2+µ, therefore |ϕµ(x)−ϕ0(x)| ≤

|
√
x2 + µ−

√
x2| ≤ µ.

APPENDIX C
PROOF OF THEOREM III.3

Proof: 1) Suppose that Sµ(x̃) is unbounded, then there
exists a sequence {x`} ⊆ Sµ(x̃) such that ‖x`‖2 →∞. From
the definition of the level set Sµ(x̃) in 10, it can be obtained
that g(x`, µ) ≤ g(x̃, µ) < ∞,∀` ∈ N. However, ‖x`‖2 → ∞
implies that g(x`, µ) → ∞ according to the definition of
function g in (7). Then g(x`, µ) → ∞ is a contradiction,
because g(x`, µ) < ∞, ∀` ∈ N. Thus, Sµ(x̃) is a bounded
set.

To prove the second part of Assumption 1, we proceed to
show that for each function hi,µ(x) =

(
ϕµ
(
aTi x

)
− yi

)2
the

condition in (11) is satisfied. Thus, since g(x, µ) is the sum
of the functions hi,µ(x), then g(x, µ) also satisfies (11) as it
is proven in [21].

Consider, the gradient of the function hi,µ which is given
by ∇hi,µ(x) = 2

(
ϕµ
(
aTi x

)
− yi

)
ϕ′µ
(
aTi x

)
ai. Now, since

dr(·, ·) is a metric, it can be obtained that

dr(∇hi(x1),∇hi(x2)) ≤ 2‖ai‖2(yip1 + p2), (16)

where p1 = dr(ϕ
′
µ(a

T
i x1), ϕ

′
µ(a

T
i x2)) and

p2 = dr(ϕµ(a
T
i x1)ϕ

′
µ(a

T
i x1), ϕµ(a

T
i x2)ϕ

′
µ(a

T
i x2)).

Considering that the following item 2) shows that ϕ′µ(x) is
Lipschitz continuous on the bounded set Sµ(x̃) and from
Lemma III.1 we have that ϕµ(x)ϕ

′
µ(x) is also Lipschitz

continuous, then from Definition II.1 there exists constants
Lϕ′

µ
and Lϕµϕ′

µ
such that from (16) it can be obtained that

dr(∇hi(x1),∇hi(x2)) ≤ Lhi,µdr(x1,x2), (17)

where Lhi,µ = 2‖ai‖2(yiLϕ′
µ
+Lϕµϕ′

µ
). Thus, the result holds.

2) Note that, from Lemma III.1 the function ϕ′µ(x) can be
expressed as ϕ′µ(x) = f1(x)

f2(x)
, where f1(x) = x and f2(x) =√

x2 + µ2. Also, in Lemma III.1 was established that f1(x)
and f2(x) are Lipschitz continuous functions, for all x ∈ R.
Notice that, f2(x) =

√
x2 + µ2 ≥ µ > 0, for any fixed µ.

Now, considering the fact that Sµ(x̃) is a bounded set from
item 1) and the previous conditions over functions f1(x) and
f2(x), it can be obtained that ϕ′µ(x) is a Lipschitz continuous
function on Sµ(x̃), because the hypothesis in Lemma III.2 are
satisfied.
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