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ABSTRACT

Given a data matrix with partially observed entries, the low-
rank matrix completion problem is one of finding a matrix
with the lowest rank that perfectly fits the given observations.
While there exist convex relaxations for the low-rank com-
pletion problem, the underlying problem is inherently non-
convex, and most algorithms (alternating projection, Rieman-
nian optimization, etc.) heavily depend on the initialization.
This paper proposes an improved initialization that relies on
successive rank-1 updates. Further, the paper proposes the-
oretical guarantees under which the proposed initialization
is closer to the unknown optimal solution than the all zeros
initialization in the Frobenius norm. To cope with the prob-
lem of local minima, the paper introduces and uses random
norms to change the position of the local minima while pre-
serving the global one. Using a Riemannian optimization
routine, simulation results reveal that the proposed solution
succeeds in completing Gaussian partially observed matrices
with a random set of revealed entries close to the information-
theoretical limits, thereby significantly improving on prior
methods.

Index Terms— Matrix completion, rank minimization,
Riemannian optimization, rank-1 update, random matrices.

1. INTRODUCTION

Real-world data sets come, often times, naturally in a ma-
trix form with missing entries. From such partially revealed
model, one wishes to infer the remaining entries. For exam-
ple, in the collaborative filtering problem [1], companies are
interested in predicting their consumers’ preferences in order
to provide them with recommendations.

Recovering the missing data is generally an ill-posed
problem due to the existence of an infinite number of so-
lutions. Indeed, filling the missing entries with any values
completes the matrix. However, the data is highly redundant
which, often, means that the matrix is low-rank. Indeed, due
to the fact that few features contribute to a person’s rating,
the NETFLIX problem [2], a famous instance of collaborative
filtering problems, has a low-rank solution.

Rank minimization of a partially observed matrix is NP-
hard [3], even for a matrix of rank 4 [4]. The influential paper

[5] demonstrates that the problem can be well-approximated
and efficiently solved by semi-definite programming (SDP)
[6, 7] using the nuclear norm relaxation. Besides the nuclear
norm relaxation, multiple non-convex methods have been
proposed in the literature. For example, the authors in [8]
suggest an alternating minimization approach and the authors
in [9] propose an adaptive sampling approach to solving the
more general problem of tensor completion. Similarly, tak-
ing advantage of the geometry of the low-rank constraint,
the authors in [10] recast the problem as an unconstrained
optimization on the Grassmann manifold. Reference [11]
suggests a regularized version of the Riemannian optimiza-
tion and shows its convergence.

As mentioned earlier, the low-rank matrix completion
problem is intrinsically non-convex. Many of the local opti-
mization algorithms start with an initialization, and therefore,
the performance heavily depends on that initialization. The
paper’s main contribution is to propose a rank-1 update based
approach to discover an improved initialization and gives
theoretical guarantees under which the found initial point
is closer to the unknown optimal solution than the all zeros
initialization in the Frobenius norm sense.

The philosophy of the approach is a greedy determina-
tion of the best rank-1 update such that the distance to the
partially observed data is minimized. Such rank-1 updates
have been used in different contexts in the literature, e.g.,
[12, 13, 14, 15, 16]. However, the aforementioned works used
the approach to directly solve the problem whereas this paper
aims to discover an improved initialization to solve the orig-
inal non-convex problem. The work is closely related to the
orthogonal rank-1 pursuit in [17]. However, instead of consid-
ering the usual Frobenius norm for which the rank-1 update is
no longer orthogonal, this paper builds an algebraic structure
for which the update is indeed orthogonal in the appropriate
weighted Frobenius norm. To the best of the authors’ knowl-
edge, the theoretical guarantees and the proofs technique and
tools are novel. To mitigate the effect of the local minima,
the paper introduces a random norm that randomizes the lo-
cations of the local minima while preserving the global one.
Therefore, by starting near the global solution and shuffling
the positions of the local minima, the proposed algorithm has
a high probability of success which is confirmed by the simu-
lation results.
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2. DEFINITIONS AND PROBLEM FORMULATION

2.1. Notation and Definitions

Throughout this paper, vectors and matrices are denoted by
bold lower and upper case characters, respectively. For a vec-
tor x, the notation xi refers to the i-th entry of the vector.
Likewise, for a matrix X, the notations xi and Xij represent
the i-th columns and the entry at the i-th row and the j-th
column, respectively. The `2 and the Frobenius norms of a
vector x and a matrix X are denoted by ||x||2 and ||X||F ,
respectively. The weighted Frobenius norm of a matrix X,
wherein the weighing matrix Ψ consists of positive entries,
is defined by ||X||Ψ = ||

√
Ψ � X||F , where � represents

the usual Hadamard product of two matrices X and Y, i.e.,
(X�Y)ij = XijYij , and

√
Ψ is the entry-wise square root

of the matrix Ψ.
The set of strictly positive integers less than n, i.e.,

{1, · · · , n}, is denoted by [n]. The set of strictly posi-
tive pair of integers (i, j) with 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 is
denoted by [n1]× [n2].

Let A be an n1 × n2 partially observed matrix and let
Ω ⊆ [n1]×[n2] be the set of observed indices. The paper uses
the standard assumption that entries are revealed identically
and independently from a uniform distribution with probabil-
ity p. For ease of notations, we use the symbol Ω to denote
the binary matrix such that Ωij = 1 if and only if the entry
is revealed. The complement of Ω, i.e., the set of unknown
entries, is denoted by Ωc = [n1]× [n2] \ Ω.

Definition 1. A matrix B ∈ Rn1×n2 is said to fit the partially
observed matrix A of size n1 × n2 and observed set Ω if and
only if Aij = Bij , ∀ (i, j) ∈ Ω. For such matrices, we use
the notation A 'Ω B. The index Ω in 'Ω is omitted in the
rest of the paper as it is clear from the context.

2.2. Problem Formulation

Given a partially observed data matrix A of size n1×n2 with
observed set Ω, the problem of low-rank matrix completion is
the problem of finding a low-rank matrix that fits the data. In
other words, the goal is to find matrix A? such that:

A? = arg min
X∈Rn1×n2

Rank(X) (1a)

s.t. X ' A. (1b)

The paper uses the standard assumption that the matrix A?

is unique for a sufficient number of revealed entries. It also
uses the standard assumption that the entries of A? are drawn
from the same distribution, e.g., A? = UVT , with U and
V being two independent standard normal matrices. Define
r∗ = Rank(A?) as the minimum achievable rank. Assum-
ing that the completion rank r∗ is given a priori, a traditional
method to efficiently solving the above problem with a mod-
erate computation complexity is to reinterpret the problem as

Algorithm 1 Rank-1 Update Matrix Completion Algorithm
Require: A, Ω, and r∗.

1: Initialize X?
0 = 0.

2: for n = 1 to r∗ do
3: Solve (P′n) to obtain X?

n.
4: end for
5: Output X?

r∗ .

an optimization on the Grassmann manifold. While such op-
timization is efficient, it is intrinsically non-convex, and thus,
its performance highly depends on the used initialization. The
rest of this paper suggests an improved initialization based on
a rank-1 update approach. Strong theoretical guarantees are
given to attest the efficiency of the initialization.

3. PROPOSED IMPROVED INITIALIZATION

3.1. Problem Reformulation

As shown in the previous section, solving the matrix comple-
tion problem requires an exponential number of floating point
operations. This section proposes an iterative approach to the
problem by introducing the “distance” operator ||A−X||2Ω =∑n1

i=1

∑n2

j=1(Aij −Xij)
2Ωij . This section suggests replac-

ing the matrix completion problem (1) by the following set of
fixed rank optimization problems indexed by n:

(Pn) min
X∈Rn1×n2

||A−X||2Ω

s.t. Rank(X) = n. (2)

Let r∗ be the smallest index n for which the program (Pn)
in (2) produces a zero solution, then r∗ is the rank of the op-
timal solution to the matrix completion optimization problem
in (1). Furthermore, we have A? ' Xr∗ wherein A? and
Xr∗ are the optimal arguments of (1) and (2).

The set of (Pn) suffers from the rank constraint that
makes it difficult to solve. Indeed, the search space, i.e.,
matrices of a given rank, is neither linear nor convex. Hence,
unless a good initialization is provided, the problem suffers
from local optima. Furthermore, solving (Pn) iteratively un-
til reaching the rank r∗ is not only a computation bottleneck
but also a waste of computational resources as each itera-
tion does not use the result of the previous one. The rest of
the paper circumvents these drawbacks by adding extra con-
straints to the successive problem to produce the improved
initialization.

3.2. Proposed Initialization

As discussed above, in the initial step, the closest rank-1
matrix to the solution is discovered. In other words, the solu-
tion X?

1 is initialized by solving (P1). For n > 1, the prob-
lems (Pn) are difficult to solve and do not use the previous
results. This section suggests updating the existing solution
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with a rank-1 matrix to find the solution to the next problem.
In particular, it solves, at each iteration n, the distance min-
imization problem (2) by imposing a certain structure to the
solution. In this context, the proposed modified fixed rank
optimization problem is formulated as follows:

(P′n) X?
n ∈ arg min

X∈Rn1×n2

||A−X||2Ω

s.t. X = X?
n−1 + xyT ,

x ∈ Rn1 ,y ∈ Rn2 (3)

with the initialization X?
0 = 0. The steps of the algorithm are

summarized in Algorithm 1. All the optimization algorithms
are solved in this paper by using a Riemannian optimization
routine on the manifold of low-rank matrices [18].

4. PERFORMANCE ANALYSIS AND
INPLEMENTATION

This section derives conditions under which the found ini-
tialization is closer to the global optimal solution to the ma-
trix completion problem than the all zeros initialization in
the Frobenius norm sense. To cope with the presence of lo-
cal minima, we further present an implementable version that
randomizes the local optima while preserving the global one.

4.1. Performance Analysis

In general, there is a discrepancy between the solutions pro-
duced by the optimization problems (Pn) and (P′n). Never-
theless, under some conditions, the solution reached by (P′n)
presents an improved initialization to solving the fixed rank
optimization. The section exhibits conditions under which
the output of (P′r∗) is a good initialization. Such sufficient
conditions are obtained by introducing the extended singular
value decomposition (E-SVD).

The E-SVD can be computed efficiently. However, due to
space limitation, such construction is omitted herein and only
the properties of the decomposition are given. The decom-
position allows to write the partially observed matrix as the
sum of rank one matrices that are orthogonal in the Ω-norm
sense. In other words, the extended singular value decompo-
sition of a partially observed matrix is A '

∑n
i=1 σiuiv

T
i

with 〈uiv
T
i |ujv

T
j 〉Ω = δij , 1 ≤ i, j ≤ n. Normalizing the

right (only one side can be normalized) generalized eigen-
vectors, the decomposition can be written in the compact
form A ' UΣVT with U = [u1, · · · , un] ∈ Rn1×n and
V = [v1, · · · , vn] ∈ Rn2×n, n = min(n1, n2) satisfying
UTU = diag(γ1, · · · , γn) and VTV = In. Therefore, the
Ω-norm of A is given by ||A||2Ω =

∑n
i=1 σ

2
i .

The solution Xr∗ reached by (P′r∗) presents an improved
initialization to solving the matrix completion problem if the
criteria given in the following theorem is satisfied:

Theorem 1. A sufficient condition for the output Xr∗ of Al-
gorithm 1 after r∗ iterations to serve as a good initialization

Algorithm 2 Proposed Matrix Completion Algorithm
Require: A, Ω, r∗ and T .

1: Estimate X̂ using Algorithm 1.
2: Initialize X? = X̂.
3: for t = 1 : T do
4: Generate Ψ randomly from Ω.
5: Initialize with X̂ and solve (Pr∗) with the Ψ distance

to obtain X?
t .

6: end for
7: Output X? the best X?

t , 1 ≤ t ≤ T in the ||A −
X?

t ||Ω/||A||Ω sense.

to solving the matrix completion problem (Pr∗) in (2), in the
sense that it is closer in the Frobenius norm to the optimal
solution than the all zeros matrix, is:

(1− α)||A−Ur∗Σr∗VT
r∗ ||Ω ≤

√
1 + α2||A||Ω.

where UΣVT is the extended generalized singular value de-
composition of A, Ur∗Σr∗VT

r∗ is the truncated E-SVD, and

α =
√

1−p
p , with p being the probability that an entry is re-

vealed.

It is worth mentioning that the above theorem shows that
the performance of the initialization can be assessed even be-
fore computing the actual point as it only requires computing
the extended singular value which can be done efficiently in
n4 operations. Furthermore, note that the sufficient condi-
tion given in Theorem 1 does not require knowledge of the
completed matrix A. Indeed, the knowledge of the partially
observed matrix is sufficient to construct the extended sin-
gular value decomposition and to verify how good the initial
guess is. However, since the condition is only sufficient, the
actual initialization may be good even when the conditions of
Theorem 1 are not met.

4.2. Implementation

Due to the presence of local minima, initializing the al-
gorithm close to the optimal does not guarantee convergence
to the global minimum. In order to cope with the local
minima, the paper introduces the following inner product
〈X|Y〉Ψ =

∑n1

i=1

∑n2

j=1 XijYijΨij , wherein the matrix Ψ
satisfies Ψij > 0 is (i, j) ∈ Ω and 0 otherwise.

To mitigate the effects of the local minima, this section
proposes using the previously defined Ψ-norms as an objec-
tive function when solving the optimization problem (Pr∗) in
(2). Indeed, all Ψ-norms conserve the fitting property, i.e., if
X ' A, then ||X −A||2Ψ = 0 for all Ψ. However, the local
minima of these norms do not necessary match since the re-
sult depends on the particular Ψ. Therefore, by exploiting the
diversity of Ψ’s, a closer initialization point translates to a bet-
ter convergence as shown in [19] in the context of a weighted
low-rank approximation. The details of the algorithm are dis-
played in Algorithm 2.
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Fig. 1. Perfect recovery of a randomly generated 50 × 50
matrices of rank r and fraction of revealed entries p using
the non-convex method in Algorithm 2 in (a) and the convex
nuclear norm relaxation in (b).

5. SIMULATION RESULTS

To attest the effectiveness of the proposed algorithm, this sec-
tion shows simulation results of square n × n matrices of
rank r. The matrix A is generated by multiplying two n × r
independent and identically distributed (i.i.d) Gaussian ma-
trices U and V as A = UVT . The set of revealed en-
tries is sampled independently from a Bernoulli random vari-
able with probability p. The fixed rank optimization problem
(Pn) is solved using the ManOpt toolbox for Riemannian op-
timization algorithms on manifolds provided in [18] and the
trust-region algorithm [10]. These simulations use a maxi-
mum of T = 10 Ψ-norm. The recovery is declared perfect if
||X?−A||F /||A||F < 10−3. The color of each pixel reflects
the average success with black being 100% failure and white
being 100% success.

Figure 1 (a) plots the success rate of the proposed algo-
rithm against both the rank of the partially observed matrix
and the fraction of the revealed entries for a randomly gen-
erated matrix 50 × 50 matrix for a maximum number of 500
iteration. Figure 1 (b) shows the performance of the nuclear
norm approach. Unlike the proposed algorithm, the convex
nuclear norm relaxation often times returns a matrix with a
higher rank than wanted. For fair comparison, the solution
X? obtained by the nuclear norm relaxation is projected by
using the Eckart-Young-Mirsky low-rank approximation. By
comparing both results from Figure 1 (a) and Figure 1 (b),
it can be concluded that the proposed algorithm significantly
outperforms the nuclear norm minimization in all configura-
tions of rank and fraction of revealed entries.

The second part of the simulation compares the con-
vergence speed for different initialization points using the
same trust-region algorithm [10]. Since the initialization
A = UrΣrV

T
r , i.e., the Eckart-Young-Mirsky low-rank ap-

proximation of A � Ω = UΣVT � Ω, usually gives better
results than the all zeros matrix, it is used in the simulations.

Figure 2 plots the success rate of correctly recovering a
50× 50 randomly generated matrix against the fraction of re-
vealed entries and the rank of the partially observed matrix
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Fig. 2. Perfect recovery of a randomly generated 50 × 50
matrices of rank r and fraction of revealed entries p using
Algorithm 2 for 50 iterations with the proposed initialization
X̂ in (a) and the initialization UrΣrV

T
r in (b).
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Fig. 3. Performance of the proposed initialization in finding
the optimum of the fixed rank optimization (Pr) against the
completion rank r for the Jester Datasets 1.

for a fixed number of 50 iteration of the trust-regions algo-
rithm for the proposed initial guess X̂ and the one found in
literature UrΣrV

T
r . For the same computational resources,

the proposed algorithm is able to recover more matrices. An
average comparison between the figures reveals that the pro-
posed algorithm outperforms the initialization UrΣrV

T
r in

almost all configurations.
Finally, to attest the performance of the proposed initial-

ization in real world data, the paper solves the non-convex
optimization problems (Pr) for different completion rank r
with the arbitrary initialization UrΣrV

T
r and the proposed

initialization X̂. The experiment is run on a data file con-
taining anonymous ratings of 100 jokes from 24, 983 users
known as Jester Dataset [20]. The optimization problem (Pr)
is solved for different r and the resulting objective, i.e., ||X?−
A||Ω/||A||Ω, is plotted. Figure 3 shows the performance of
the proposed initialization. One can note that the proposed
scheme systematically outperforms the arbitrary initialization
which confirms that it allows starting the optimization proce-
dure near to the optimum.
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“Lifted coordinate descent for learning with trace-norm
regularization,” in Artificial Intelligence and Statistics,
2012, pp. 327–336.

[14] Martin Jaggi, Marek Sulovsk, et al., “A simple algo-
rithm for nuclear norm regularized problems,” in Pro-
ceedings of the 27th International Conference on Ma-
chine Learning (ICML-10), 2010, pp. 471–478.

[15] Shai Shalev-Shwartz, Alon Gonen, and Ohad Shamir,
“Large-scale convex minimization with a low-rank con-
straint,” in Proceedings of the 28th International Con-
ference on Machine Learning (ICML-11), Lise Getoor
and Tobias Scheffer, Eds., New York, NY, USA, June
2011, ICML ’11, pp. 329–336, ACM.

[16] Xinhua Zhang, Dale Schuurmans, and Yao-liang Yu,
“Accelerated training for matrix-norm regularization: A
boosting approach,” in Advances in Neural Information
Processing Systems, 2012, pp. 2906–2914.

[17] Zheng Wang, Ming-Jun Lai, Zhaosong Lu, Wei Fan,
Hasan Davulcu, and Jieping Ye, “Orthogonal rank-one
matrix pursuit for low rank matrix completion,” SIAM
Journal on Scientific Computing, vol. 37, no. 1, pp.
A488–A514, 2015.

[18] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre,
“Manopt, a Matlab toolbox for optimization on mani-
folds,” Journal of Machine Learning Research, vol. 15,
pp. 1455–1459, 2014.

[19] Nathan Srebro, Tommi Jaakkola, et al., “Weighted low-
rank approximations,” in Icml, 2003, vol. 3, pp. 720–
727.

[20] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris
Perkins, “Eigentaste: A constant time collaborative fil-
tering algorithm,” Inf. Retr., vol. 4, no. 2, pp. 133–151,
July 2001.

3963


