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ABSTRACT

Quadratically constrained quadratic programming (QCQP) forms an
important class of optimization tasks in various engineering disci-
plines. Fast identification of a feasible point under low computa-
tional complexity load is critical for several approximation tech-
niques which have been developed to solve non-convex QCQPs. This
paper introduces two projection-based techniques to compute feasi-
ble points of non-convex QCQPs with low computational complexity
footprints: The first one employs successive projection mappings,
while the second one builds on a composition of successive and av-
eraged projection steps. Extensive experiments on synthetically gen-
erated instances of non-convex quadratically constrained feasibility
problems demonstrate that the simple successive-projection based
technique compares favorably against state-of-the-art feasible point
pursuit methods which capitalize on successive convex approxima-
tion, parallel projections and computationally demanding interior-
point techniques.

Index Terms— QCQP, non-convex, feasibility, projections.

1. INTRODUCTION

This paper studies the following feasibility problem:

Find x∗ ∈
⋂K

k=1
Ck 6= ∅ , (P)

where

Ck :=
{
x ∈ RD

∣∣∣x>Qkx− 2b>k x− ck ≤ 0
}

(1)

for a given symmetric D×D matrix Qk, D×1 vector bk, scalar ck
and positive integersD,K ∈ Z>0. To keep the exposition simple, all
quantities are considered to be real-valued ones. Since {Qk}Kk=1 are
only required to be symmetric, the quadratic constraints {Ck}Kk=1 are
in general non-convex; cf. Fig. 1. Notice that (1) accommodates also
quadratic equality constraints, since x>Qkx−2b>k x−ck = 0 can be
viewed as x>Qkx−2b>k x−ck ≤ 0 and−x>Qkx+2b>k x+ck ≤
0. Equality constraints will be explored in Sec. 3.

Task (P) is a special case of the QCQP problem: minx x>Q0x−
2b>0 x− c0 ≤ 0 such that (s.t.) x ∈ ∩K

k=1Ck 6= ∅, for given matrix
Q0, vector b0 and scalar c0. QCQPs are in general NP-hard, except
for special cases, where, for example, all {Qk}Kk=0 are positive semi-
definite [6].

Non-convex QCQPs form an important class of optimization
problems with applications which span from transmit beamforming
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in wireless networks [16] and portfolio risk management in finan-
cial engineering [10] to power system state estimation [22]. Several
methods have been proposed to solve non-convex QCQPs such as
(i) the (prevailing) semi-definite relaxation (SDR) approach, where
matrix lifting together with rank relaxation are used to approximate
the original problem by a convex semi-definite program [6]; (ii) the
reformulation linearization technique (RLT) [1]; where redundant
non-linear constraints and linearization steps are introduced to gener-
ate an approximate convex optimization problem; and (iii) successive
convex approximation (SCA) [5, 17, 21, 23], where each SCA iterate
is obtained by solving a convex optimization task, constructed locally
around the previous SCA iterate.

Both RLT and SCA need a feasible point as initialization. More-
over, in the case where all {Qk}Kk=1 are indefinite, SDR (with ran-
domization) often fails to provide a feasible solution [18, Sec. I].
Identifying, thus, a feasible point is a critical step for success in SDR,
RLT and SCA. To this end, feasible point pursuit (FPP)-SCA was
proposed in [18] specifically for this task. FPP-SCA uses SCA with
auxiliary slack variables to approximate the feasibility problem by
a sequence of convex subproblems. The algorithm works with any
choice of initialization, as the slack variables guarantee that each
SCA subproblem is feasible at every step. Notwithstanding, FPP-
SCA comes at the expense of increased computational complexity,
since it requires solving a sequence of convex optimization problems
via computationally demanding interior-point methods.

A consensus (C)ADMM algorithm, designed for general non-
convex QCQPs, can be also used to solve (P) [9]. The per-iteration
computational complexity of CADMM is much lower than that of
FPP-SCA, but CADMM is memory intensive since it uses local
copies of the global optimization variable (one for each constraint).
To surmount the large memory footprint of CADMM, [13] reformu-
lated the optimization criterion employed by FPP-SCA and applied
computationally light first-order methods (FOMs) to solve (P). The
work in [13] follows that of [12] where FOMs have been used on
a special class of non-convex QCQPs. FOMs employed in [13] to
solve (P) include the classical gradient descent (GD) method, its
stochastic gradient descent (SGD) version, the popular stochastic
variance reduced gradient (SVRG) approach [11, 24], and a custom-
made stochastic subgradient descent (SSGD-)SCA method which
solves a specific reformulation of (P) (cf. [13, Sec. IV.B]).

Following the success in solving convex feasibility problems [2],
projection-based methods have been attracting recently considerable
interest also for non-convex feasibility tasks [3, 4, 7, 8, 14, 15, 19, 20,
25]. Apart from the generic [7], [3,4,8,14,15,19,20,25] are based on
the classical method of alternating projections (MAP), where iterates
are alternatingly projected onto two closed sets C1, C2, in a cyclic
fashion, to generate a sequence that, under certain assumptions and
a proper choice of the starting point, converges to a point in C1 ∩C2
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(more details in Sec. 2). Parallel projection methods operating on
multiple sets {Ck}Kk=1 also stem from MAP and appropriate product-
space formulations [15, 25].

Motivated by the previous line of research, this paper explores
projection-based solvers for the specific feasibility problem (P). Two
algorithms are introduced: The first one is based on relaxed succes-
sive projections mappings (Alg. 1), while the second one combines
averaging with successive projections (Alg. 2). Extensive tests on
synthetically generated feasibility scenarios and initializations under-
line the rich potential of the advocated projection-based solvers. Hav-
ing all eigen-decompositions of {Qk}Kk=1 cached in memory, Alg. 1
compares favorably against all competing methods in computation
time and in averaged feasibility success rate, even in cases where
both inequality and equality constraints appear in (P), or, whenever
the number of constraints exceeds the dimensionality D.

2. PROJECTION-BASED FEASIBILITY SOLVERS

Prior to introducing the algorithms, further details on projection-
based solvers are provided to shed more light on the complications
that (P) entails. However, notation comes first. Given a point x ∈
RD and the closed set Ck, the distance of x from Ck is defined
as d(x, Ck) := infy∈Ck‖x − y‖2. The projection operator PCk

onto Ck is the set-valued mapping PCk
: RD ⇒ Ck defined as

PCk (x) := {y ∈ Ck | d(x, Ck) = ‖x − y‖2}, for any x ∈ RD .
To avoid confusion, any element y(k)

x of PCk (x) will be indexed by
the subscript x and the superscript (k) to uniquely identify its source
PCk (x). Specifically for (1) and any x ∈ RD , a y(k)

x in PCk (x) can
be efficiently computed via the root of a univariate polynomial equa-
tion, formed by the eigenvalues of Qk [9, Sec. III.C]. The classical
bisection method can be used to identify the root [9, Sec. III.C].

The method of successive projections onto closed and not nec-
essarily convex sets of a metric space was studied in [7]. Under
a boundedness constraint on the intersection ∩K

k=1Ck, and several
other technical conditions, the main result of [7] states a dichotomy:
Provided that the starting point x0 is properly chosen, the sequence
(xn)n∈Z≥0

generated by successive projections onto {Ck}Kk=1 either
converges to a point in ∩K

k=1Ck, or the cluster points of (xn)n∈Z≥0

form a non-trivial continuum in ∩K
k=1Ck [7, Thm. 4.3]. Following

these lines, [4] constructs two sets C1, C2 where the set of all cluster
points of the sequence (xn)n∈Z≥0

, generated by MAP, is indeed a
non-trivial compact continuum [4, Thm. 3.1(v)].

Recently, the local convergence properties of MAP have been
studied in [3, 8, 14, 15, 19]. Considering two closed sets C1, C2,
and by imposing a transversality condition at points of the in-
tersection C1 ∩ C2, i.e., a condition on how C1, C2 intersect
at such points, it is shown that MAP, initialized near to points
where C1, C2 meet transversally, converges linearly to a point in
C1 ∩ C2. Such a transversality condition holds true in the case
of (P), since the specific sets {Ck}Kk=1 are semi-algebraic, i.e.,
for each Ck there exists a finite number of D-dimensional poly-
nomials {ϕ(k)

ij , ψ
(k)
ij }(i,j)∈{1,...,I}×{1,...,J}, with I, J ∈ Z>0, s.t.

Ck = ∪I
i=1 ∩J

j=1 {x ∈ RD |ϕ(k)
ij (x) = 0, ψ

(k)
ij (x) < 0}. Indeed,

[8, Thm. 7.3] states that, provided thatC1 is bounded and the starting
point x0 is properly chosen, MAP generates a sequence whose limit
point belongs to C1 ∩ C2. Similar arguments can be found in [19].

All of the previous discussion on MAP provides only with local
convergence results. Seeking global behavior of the sequence of
iterates of projection methods, the study of [25] introduced a parallel
projections method (PPM) to solve (P) in the general case where

Algorithm 1 Relaxed successive projections method (RSPM).

Input: The set of constraints {Ck}Kk=1, an arbitrarily fixed start-
ing point x0 and a coefficient ξ ∈ (0, 2).

Output: Point x∗ in ∩K
k=1Ck.

1: n = 0.
2: while maxk∈{1,...,K} d(xn, Ck) > 0 do
3: Randomly reshuffle the order of constraints.
4: z0 := xn.
5: for k = 0, 1, . . . ,K − 1 do
6: Choose y

(k+1)
k ∈ PCk+1(zk).

7: zk+1 := ξy
(k+1)
k + (1− ξ)zk.

8: end for
9: xn+1 := zK .

10: n← n+ 1.
11: end while
12: x∗ := xn.

{Ck}Kk=1 are only required to be closed sets. PPM can be stated
as follows: For an arbitrarily fixed starting point x0, compute the
sequence xn+1 := (1/K)

∑K
k=1 y

(k)
n , where y

(k)
n ∈ PCk (xn) for

any n ∈ Z≥0. If the feasibility condition ∩K
k=1Inc(Ck) 6= ∅ is

satisfied, where

Inc(Ck) :=
⋂

x∈RD,

y
(k)
x ∈PCk

(x)

{z ∈ Ck | 〈x− y(k)
x | z− y(k)

x 〉 ≤ 0} ,

then it is guaranteed that PPM converges to a point which solves
(P) [25]. Although the previous feasibility condition is shown to hold
true in several cases of sparsity inducing non-convex constraints in
[25], it does not suit the present QCQP case. A simple toy exam-
ple which demonstrates that the previous feasibility condition is not
necessary in the present context is as follows: Consider R2, with
element x := (x1, x2) ∈ R2, and define the non-convex constraints
C1 := {x | −x21 + x2 − 1 ≤ 0}, C2 := {x | −x21 − x2 − 1 ≤ 0}.
It is not hard to see that C1 ∩ C2 6= ∅, but Inc(C1) ∩ Inc(C2) = ∅.
Nevertheless, for any starting point x0 ∈ R2, MAP converges to a
point in C1 ∩ C2 in a single step.

This paper introduces the relaxed successive projections method
(RSPM) in Alg. 1 to explore projection-based solvers for (P). To
provide with a clear exposition, steps 4–9 of Alg. 1 are depicted in
Fig. 1a. Notice that relaxation is viable here, by allowing ξy(k)

x +

(1−ξ)x as an iterate update, where ξ ∈ (0, 2) and y
(k)
x is taken from

PCk (x). The range (0, 2) of ξ is motivated by relaxation techniques
of projection mappings in the convex feasibility case [2]. Such a re-
laxation turns out to be beneficial in Sec. 3. To avoid potential “traps”
due to the order by which constraints {Ck}Kk=1 are employed, ran-
domization of the constraints’ order is introduced in step 3 of Alg. 1.
It is worth noticing here that MAP becomes a special case of RSPM
for K = 2, ξ = 1 and without step 3 of Alg. 1. To explore also
parallel or averaged projections, the successive averaged projections
method (SAPM), a hybrid method standing between RSPM and PPM
of [25], is also introduced in Alg. 2, having its steps 4–9 depicted in
Fig. 1b. Projections are combined in pairs before proceeding succes-
sively to the following pair of projections.
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Algorithm 2 Successive averaged projections method (SAPM).

Input: The set of non-convex quadratic constraints {Ck}Kk=1

and an arbitrarily chosen starting point x0.
Output: Point x∗ in ∩K

k=1Ck.
1: n = 0.
2: while maxk∈{1,...,K} d(xn, Ck) > 0 do
3: Randomly reshuffle the order of constraints.
4: z0 := xn.
5: for k = 1, 2, . . . ,K − 1 do
6: Choose y

(k)
k−1 ∈ PCk (zk−1) and y

(k+1)
k−1 ∈ PCk+1(zk−1).

7: zk := 1
2
[y

(k)
k−1 + y

(k+1)
k−1 ].

8: end for
9: xn+1 := zK−1.

10: n← n+ 1.
11: end while
12: x∗ := xn.

3. NUMERICAL TESTS

Algs. 1 and 2 are validated on synthetically generated feasibility
scenarios. Competing methods are FPP-SCA [18], CADMM [9],
the FOMs employed in [13], namely the classical GD and SGD,
SVRG [11,24] and SSGD-SCA [13, Sec. IV.B], as well as PPM [25].
All tests were conducted on a 32-CPU machine with Intel(R)
Xeon(R) E7-4830@2.13GHz processors and 256GB of RAM. Per-
formance is measured by the following metrics: (i) Computation
time: The clock starts ticking once a method is initialized, and stops
as soon as feasibility is achieved; and (ii) the average feasibility-suc-
cess rate, i.e., the number of cases where feasibility was achieved
over the total number of employed settings. Feasibility is said to
have been achieved if all of the constraints are satisfied. Regarding
computational complexities, each constraint Ck is visited once per it-
eration of RSPM (steps 4–9 in Alg. 1), and projections are computed
by applying the bisection method to a certain uni-variate polynomial
function, as in CADMM [9, Sec. III.C]. In the case of SAPM, there
is a total number of 2K − 2 constraint visits per iteration (steps 4–9
in Alg. 2). Similarly to RSPM, projections in SAPM are computed
via the bisection method.

To generate a single test scenario, matrices {Qk}Kk=1 are de-
signed according to the following lines: (i) All entries of the D ×D
matrices {Q′k}Kk=1 are drawn independently from the realizations of
a normally distributed random variable, with mean 0 and variance
1; and (ii) Qk is defined as the symmetric part of Q′k. All vectors
{bk}Kk=1 are set to be equal to zero for simplicity. To guarantee a
non-empty intersection in (P), a point is chosen randomly from a
ball of radius ∆ ∈ R>0, centered at the origin of RD , and scalars
{ck}Kk=1 are defined s.t. the previously selected point satisfies all
constraints {Ck}Kk=1. Per such scenario, all methods are run for 10
times, each time with a randomly generated initial point, which is
drawn randomly from a ball of radius 2∆ centered at the origin of
RD . A number of 10 scenarios are generated, and the average com-
putation time of all realizations is recorded. A maximum number of
iterations is also set for each method: If feasibility is not achieved for
a method during the prescribed number of iterations, then the method
is stopped and a “failure flag” is raised. For RSPM, SAPM and PPM,
it is assumed that all eigen-decompositions of {Qk}Kk=1 are cached
in memory. This holds true also for CADMM.

Fig. 2 corresponds to the case where D = 50. The previous

C2C1

C3

∩3
k=1Ck

z0(= xn)

z1

z̃1

z2
z3(= xn+1)

(a) Relaxed successive projections method (RSPM)

C2C1

C3

∩3
k=1Ck

z0(= xn)

y
(2)
0y

(1)
0 z1

y
(3)
1

y
(2)
1

z2(= xn+1)

(b) Successive averaged projections method (SAPM)

Fig. 1. (a) Steps 4–9 of Alg. 1, under ξ = 1, in the case of three
non-convex quadratic constraints, defined as the hypographs of three
parabolas in the two-dimensional plane. Relaxation of the projection
mapping is also demonstrated via the point z̃1 := ξy

(1)
0 + (1− ξ)z0,

where y
(1)
0 := y

(1)
z0 and ξ ∈ (0, 2). In this specific depiction, ξ ∈

(1, 2), since values of ξ larger than 1 promote “over-relaxation” and
move the point farther than the original projection, having thus the
potential to improve the convergence speed of the algorithm. Such
an improvement was verified by the numerical tests in Sec. 3. (b)
Steps 4–9 of Alg. 2.

randomly generated scenarios are run under a variable number of
inequality constraints: 20%, 50% and 90% of the dimensionality
D of the ambient space. Fig. 2 lists computation times and aver-
age feasibility-success rates (in %). As Fig. 2 demonstrates, RSPM
scores the least computation time, for all possible configurations of
the number of constraints, achieving at the same time perfect score
in the average feasibility-success rate. The second best method is the
classical GD, while SAPM follows. It is worth noticing that PPM
fails to achieve feasibility within the prescribed maximum number
of iterations. The same trend appears also in Fig. 3, where the dimen-
sionality D = 100.

A number of 100 inequality constraints are considered for D =
50 in Fig. 4. Still, RSPM exhibits the best performance among
competing methods. Once again, PPM fails to follow the tracks of
the other two projection-based techniques and achieves zero average
feasibility-success rate within the prescribed maximum number of
iterations. It is worth noticing that in Figs. 2–4 the relaxation coef-
ficient ξ of Alg. 1 is set to be equal to 1.9, which outperformed the
(ξ = 1)-value case in almost all tests (cf. Fig. 1a).
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10−2 10−1 100 101 102

RSPM
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SSGD

SVRG

SGD

GD

CADMM

FPP-SCA

3.5 · 10−3

1.32 · 10−2

15.28

0.66

7.7 · 10−2

7.8 · 10−3

5.2 · 10−3

0.18

1.46

1.68 · 10−2

0.8

41.99

0.73

0.12

5.69 · 10−2

2.16 · 10−2

8.21

5.71

4.74 · 10−2

0.2

74.79

0.73

0.14

0.23

5.06 · 10−2

20.54

12.38100%
100%
100%

61%
73%
99%

100%
100%
100%

100%
100%
100%

100%
100%
100%

0%
0%
10%

0%
0%
14%

100%
99%
100%

100%
100%
100%

Time (seconds)

90%
50%
20%

Fig. 2. Computation times and average feasibility-success rate for
the case where the dimensionality D of the ambient space is 50. The
number of inequality constraints in (P) varies: 20%, 50% and 90%
of the dimensionality D.

10−2 10−1 100 101 102 103

RSPM

SAPM

PPM

SSGD

SVRG

SGD

GD

CADMM

FPP-SCA

9.7 · 10−3

1.87 · 10−2

225.5

2.87

0.23

8.74 · 10−2

4.47 · 10−2

7.18

26.38

4.13 · 10−2

1.23

566.5

3.26

0.32

0.66

0.19

30.24

113.56

0.26

3.54

1,002.2

3.46

0.44

3.18

0.49

147.9

280.48100%
100%
100%
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92%
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100%
100%
100%

100%
100%
100%

100%
100%
100%

0%
0%
0%

0%
0%
0%

100%
100%
100%

100%
100%
100%

Time (seconds)

90%
50%
20%

Fig. 3. Computation times and average feasibility-success rate for
the case where the dimensionality D of the ambient space is 100.

Finally, the dimensionality of the space is set again equal to
50, but a single equality constraint is also considered in Fig. 5. To
avoid any numerical errors when checking for feasibility, the equality
constraints are relaxed in the following sense: For a very small ε ∈
R>0 (here, ε = 10−3), x>Qkx− 2b>k x− ck ≤ ε and −x>Qkx +
2b>k x+ck ≤ ε are considered. Moreover, as opposed to the previous
tests, ξ = 1, i.e., over-relaxation is not considered here. As Fig. 5
demonstrates, both RSPM and SAPM compare favorably against the
rest of the competing methods.

4. CONCLUSIONS AND THE ROAD AHEAD

Following very recent advances on projection-based iterative tech-
niques for non-convex feasibility problems, the present paper intro-

10−2 10−1 100 101 102

RSPM

SAPM

PPM

SSGD

SVRG

SGD

GD

CADMM

FPP-SCA

5.84 · 10−2

24.27

348.65

0.85

0.42

5.55

0.42

3.47

58.298%

100%

92%

100%

70%

0%

0%

99%

100%

Time (seconds)

Fig. 4. D = 50 and the number of inequality constraints is set to
K = 100 (200% of D).

10−3 10−2 10−1 100

RSPM

SAPM

PPM

SSGD

SVRG

SGD

GD

CADMM

FPP-SCA

6.2 · 10−3

2.2 · 10−2

0.14

0.77

1.41

4.25

0.92

5.2 · 10−2

1.44100%

92%

99%

100%

98%

0%

100%

100%

100%

Time (seconds)

Fig. 5. D = 50. The number of inequality constraints is set to
be equal to 8, while only one equality constraint is considered. In
total, the number of constraints reaches 20% of D, since the equality
constraint is recast as 2 inequality ones.

duced two projection-based algorithms for computing feasible points
of non-convex QCQPs. The first algorithm (RSPM; Alg. 1) builds
on relaxed successive projection mappings, while the second one
(SAPM; Alg. 2) combines successive projections with averaging.
Both of the methods exhibit low computational complexity footprints,
provided that eigen-decompositions of certain matrices are cached in
memory. Extensive experiments on synthetically generated instances
of non-convex quadratically constrained feasibility problems demon-
strate that the simple successive-projection based technique com-
pares favorably against state-of-the-art feasible point pursuit methods
which capitalize on successive convex approximation, parallel pro-
jections and computationally demanding interior-point techniques.

Open questions on RSPM and SAPM are abundant, revolving
mainly around the performance analysis of the methods. In the case
where K = 2, ξ = 1 and step 3 is not considered, the convergence
analysis of RSPM boils down to that of MAP for semi-algebraic
sets [3,4,7,8,14,15,19]. Partial theoretical results have been obtained
for the general case of RSPM, based on the transversality arguments
of [8, 14, 15, 19], but they are still premature to be included in this
version of the manuscript.
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