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ABSTRACT

The iterative linear expansion of threshold framework, or iLET,
offers a new approach for solving image restoration problems un-
der sparsity assumptions. Instead of estimating the reconstructed
image directly, the iLET paradigm parametrizes the reconstruction
process as a linear combination of elementary thresholding functi-
ons and optimizes over their coefficients. Here, we rely on the fast
and accurate convergence of iLET, and propose an extension of this
framework, under the assumption that the reconstructed object is ap-
proximately piece-wise constant. This assumption leads to a new
total-variation framework of iLET. We demonstrate the applicability
of our technique to bio-medical imaging problems, such as compute-
rized tomography reconstruction. Our technique surpasses state-of-
the-art reconstructions in terms of PSNR and SSIM, while offering
an automatic way for tuning its regularization parameter.

Index Terms— Total Variation, Sparse Recovery, Convex Opti-
mization, Computed Tomography

1. INTRODUCTION

Image restoration is a well known problem in the scientific literature.
Recently, Pan and Blu [1] proposed a framework for image restora-
tion under sparsity assumptions, known as the iterative linear expan-
sion of thresholds, or iLET. The iLET approach consists of recove-
ring a sparse signal x ∈ RN from noisy measurements y ∈ RM ,
given by y = Hx + n, where n ∈ RN denotes additive noise. Spe-
cifically, in the context of image denoising, they proposed a solution
approximated by a linear combination of simple denoising steps on
the input image [2, 3]. The weights were then optimized by minimi-
zing an estimate of the MSE, termed SURE, or Stein’s unbiased risk
estimate [4]. While the approximation basis can be chosen arbitra-
rily, the approximation quality is determined by the number of vector
(or threshold) bases and their associated thresholding operations.

Pan and Blu then expanded these ideas to image restoration.
Instead of optimizing the weights over an estimate of the MSE, a
regularized majorization-minimization (MM) approach to sparse in-
verse problems, such as LASSO [5] was considered for optimizing
the weights. The regularization parameter was updated iteratively
using a simple update scheme. The final image was then synthesized
from the optimal linear combination of LET vectors. The iterative
LET scheme was shown to usually converge faster than state-of-the-
art methods such as FISTA [6].

Here, we utilize the benefits of the iLET framework, i.e. fast and
accurate convergence with computational efficiency, for the case of
regularized isotropic TV minimization. By using a MM approach to
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a TV regularized inverse problem and employing a fast TV denoising
algorithm [7], we formulate a new TV-based iLET recovery scheme.
We choose the iLET basis vectors to correspond to several simul-
taneous denoising steps with different scales of the regularization
parameter. The outputs of these steps are combined with a simple
iterative regularization parameter update rule, to allow a parameter-
free reconstruction method, which does not require any prior kno-
wledge of the noise variance. We provide several examples to the
efficacy of our technique in medical imaging applications, specifi-
cally here, in computerized tomography (CT) reconstruction. Our
method achieves superior reconstruction results compared to state-
of-the-art methods, in terms of PSNR and SSIM, coupled with lower
computational complexity and running time.

The paper is organized as follows. In the next section we sum-
marize the iLET framework. Our main contribution, the adaption
of the framework to TV regularization, is described in Section 3.
Section 4 explains the auto-update process of the method’s regulari-
zation paramter. In Section 5 we describe and present the results of
a simulation study, and conclude in Section 6.

2. ITERATIVE LINEAR EXPANSION OF THRESHOLDS

To understand the ideas behind TV-iLET, we follow the work of [1]
and start with a brief overview of the iLET framework. Consider a
linear measurement model y = Hx, where H ∈ RM×N . The ope-
rator H can correspond to a convolution matrix with some blurring
kernel, a CT scanning operator and more. The vector x is assumed
to be sparsely represented under a known basis, e.g. under the wave-
let decomposition W ∈ RN×D , such that x = Wc for some sparse
coefficient vector c, with ‖c‖0 � D. A common way to estimate
c (and from it reconstruct x) is to find the minimizer of the LASSO
optimization problem

minc J(c) = minc J0(c) + λ ‖c‖1 (1)

with J0(c) = ‖y −HWc‖22.
Problem (1) can be solved using many convex optimiza-

tion solvers, such as (fast) iterative shrinkage/soft-thresholding
(ISTA/FISTA) [6]. Another approach relies on the general MM
framework [8]. An example of such an algorithm is iterative re-
weighted least squares (IRLS) [9]. Its core idea is to majorize
the non-differentiable ‖·‖1 term in (1) with a majorizing function.
Specifically, the term ‖c‖1 is written as

‖c‖1 = cTDc,

with a diagonal matrix D ∈ RD×D whose iith element isDii = 1
|ci|

(or 0 if |ci| equals to zero). Fixing D, the latter quadratic term is
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differentiable with respect to c, and the minimizer of (1) is equiva-
lently [10] the minimizer of

c(n+1) = argminc ‖y −HWc‖22 + λcTD(n)c, (2)

where n is the iteration number. Each iteration of (2) admits a closed
form solution

c(n+1) =
(

(HW)T (HW) + λD(n)
)−1

(HW)Ty,

where the diagonal of D(n) is updated according to the previous
iteration c(n).

In the linear expansion of thresholds (LET) paradigm, the sparse
coefficient vector c is represented as a linear combination of elemen-
tary basis vectors, or processes, whose weights are further optimi-
zed. We denote the result of each such process on the measurement
vector y as Fk(y) ∈ RD , such that

c =
∑K

k=1
akFk(y) = Fa. (3)

The goal is to determine the optimal vector a. Writing F =
[F1(y), . . . ,FK(y)] and plugging (3) into (2) yields,

a(n+1) = argmin
a
‖y −HWFa‖22 + λ(Fa)TD(n)Fa

withD(n)
ii =

∣∣∣1/[Fa(n)]i

∣∣∣ (or zero if the denominator tends to zero).
The explicit expression for the optimal vector a at each iteration is
given by

a(n+1) =
[
FT
(
WTHTHW + λD(n)

)
F
]−1

(HWF)Ty.

Typically,K is chosen as a small number (between 4−7 in our tests),
such that the latter matrix inversion is easily performed numerically.
Thus, compared with IRLS performed directly on (1), the iterative
LET technique is computationally more tractable, since the column
dimension of F is usually much smaller than the dimension of the
recovered image.

To further refine the algorithm, it is possible to extend (3)
such that the LET basis is constructed not only from the measu-
rements y, but also from the output of previous iterations, e.g.,
F1 = c(n),F2 = c(n−1), leading to the iterative LET.

Another possible type of iLET vectors are based on a “generali-
zed gradient” of the non-differentiable function J (1), defined as

F3 = ∇̄τJ(c) = 2
τ

[
c− Tλτ/2

(
c− τ

2
∇J0(c)

)]
, (4)

with the soft-thresholding operator

Tα(x) = max{|x| − α, 0} · sign(x), α ≥ 0. (5)

In our TV approach we propose a generalized TV-based gradient
and combine several such gradients to promote a piece-wise constant
reconstruction without the need to hand-tune the value of λ.

3. TOTAL VARIATION ILET

Consider the TV minimization problem,

minx
1
2
‖y −Hx‖22 + λTV(x), (6)

with isotropic TV term TV(x) =
∑

i

√
(∆h

i x)2 + (∆v
i x)2, such

that ∆h
i = xi − xr(i) and ∆v

i = xi − xb(i) represent horizontal

and vertical first-order derivatives with cyclic boundary conditions,
respectively (r(i) represents the pixel on the right of pixel i while
b(i) represents the pixel below pixel i).

We use the derivation of Oliveira et al. [11] of a quadratic ma-
jorizing function for the isotropic TV norm TV(x), given by the
following function:

TV(x) ≤ xTDTM(n)Dx + C,

were D = [(Dh)T , (Dv)T ]T and Dh,Dv represent the horizontal
and vertical first-order differentiation matrices with cyclic boundary
conditions; C is a constant and as such does not affect the minimi-
zation process, and will be omitted from here on. The matrix M(n)

is given by

M(n) =

[
Λ(n) 0

0 Λ(n)

]
, (7)

where Λ(n) is a diagonal matrix whose iith element is given by (or
is set to zero if the denominator tends to zero)

[Λ(n)]ii =
(

(∆h
i x

(n))2 + (∆v
i x

(n))2
)−1/2

. (8)

Thus, (6) is replaced by

minx xT
(

1
2
HTH + λDTM(n)D

)
x− xTHTy.

Assuming that x is a linear combination of an iLET basis x = Fa,
we can formulate the IRLS update rule,

a(n+1) =
(
F(n)T

(
1
2
HTH + λDTM(n)D

)
F(n)

)−1

F(n)T HTy.

(9)

Similarly to the previous section, we use a TV-based generalized
gradient. Problem (6) can be viewed as a minimization of a more
general decomposition model

min
x≥0

f(x) + λg(x), (10)

where f is a smooth, convex function (such as J0(x)) with a Lip-
schitz continuous gradient, and a possibly non-smooth but proper,
closed and convex function g (for instance‖x‖1). We can iteratively
solve (10) by finding Moreau’s proximal (prox) mapping [12] of αg
for some α ≥ 0, defined as

proxαg(x) = argminu∈Rn

{
αg(u) + 1

2
‖u− x‖22

}
. (11)

For g(x) = ‖x‖1, proxαg(x) is given by the soft-thresholding ope-
rator (5). The generalized gradient step defined in (4) is based on the
latter prox mapping.

In [7], the authors derived an iterative solution to the proximal
mapping of the TV norm of an image TV(x), for both the isotro-
pic and anisotropic cases. Considering the definition of the prox
mapping (11), it is observable that the prox operator corresponds
to a regularized denoising problem. Hence, we adopt the iterative
TV-denoising procedure presented in the TV based FISTA formu-
lation [7], denoted as algorithm GPλ, to formulate our generalized
TV-gradient step. Intuitively, instead of performing a gradient step
along the direction of the gradient of J0 and then soft-thresholding,
we apply a gradient step in the direction of the gradient of J0 and
then carry out a TV denoising step. This gradient is given by

∇Jλ(x(n))TV = GPλ
{

x(n) − 1
Lf

HT
(
Hx(n) − y

)}
,
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Fig. 1. The iLET coefficients evolution over the IRLS iterations.
The different coefficients of the thresholds ak (3) shown in loga-
rithmic scale, over the iterations as computed in (9), for the example
in Fig. 2, left.

where Lf is the Lipschitz constant of the quadratic term of (6), rea-
dily given by Lf =

∥∥HTH
∥∥
2
.

In our experiments, we choose a total of 5 basis vectors for the
TV-iLET method as follows:

F1,2 = x{(n−1),(n)}

F3,4,5 = ∇J(
{ 1
5
,1,5}·λ

)(x(n)
)

TV
. (12)

This configuration optimizes over the latest two iterations, as well as
three different scales for TV regularization parameter λ, chosen em-
pirically as { 1

5
, 1, 5}.To achieve superior results in terms of PSNR

and SSIM, we use a combination of gradient steps with different sca-
les for λ, along with a simple regularization update rule, as we pre-
sent next. Figure 1 shows the values of the coefficients in each IRLS
iteration, confirming that indeed each gradient step takes part in the
formation of the final reconstructed object. The general description
of the TV-iLET algorithm is summarized in Algorithm 1.

4. AUTOMATIC REGULARIZATION

The choice of the TV regularization parameter λ is obviously a non-
trivial task, and in most modern applications this parameter is hand-
tuned until achieving desirable results for private cases. Since the
iLET-TV uses several basis vectors for composing the interim solu-
tion in every iteration, each with its own different scaling of λ, we
observe that the quality of the final solution does not heavily depend
on the initial choice of λ. Therfore, we propose to use the following
update rule that automatically tunes a satisfactory value for λ. We
first choose λ(0) = 0 and perform a gradient step on the fidelity
term, as shown in Algorithm 1. The regularization parameter is then
updated in every iteration according to

λ(n) = 1
2N

∥∥∥HTy −HTHx(n)
∥∥∥
2
,

where the factor 2N is used to normalize between the fidelity `2
norm and the TV norm, that operates on a total 2N (horizontal and
vertical) spatial gradients of the image.

Note that asymptotically, for the true object xopt, λ converges to
the noise variance. By updating the regularization constant to have
the same magnitude as the fidelity residue, as well as combining
gradient steps with different magnitudes for λ, in all of our tests we
converge to accurate and relatively clean solutions. In Figs. 2 and 3
we compare to TV-based FISTA with the same update rule, and show

Algorithm 1 TV iLET
Require: Lf Lipschitz constant, measurements y

Initialize x0 = 0
for k = 1 : Nmax do

1: λ(n) ← 1
2N

∥∥∥HTy −HTHx(n−1)
∥∥∥
2

2: Update F(n) ← [F
(n)
1 , . . . ,F

(n)
K ] according to (12)

3: Construct M(n) according to (7) and (8)
4: a(n) ← [F(n)T ( 1

2H
TH + λ(n)DTM(n)D)F(n)]−1F(n)THTy

5: x(n) = F(n)a(n)

end for
return x(Nmax)

that the TV-iLET scheme achieves better reconstruction. Thus, the
combination of both the above update rule and the choice of diffe-
rent gradient steps is the key to achieve the highest reconstruction
performance.

5. SETUP AND RESULTS

Medical images are usually considered as well approximated by
piece-wise constant functions, as was shown in many works, among
them [14–18], and specifically in CT. Motivated by testing our met-
hod on the problem of CT reconstruction, we chose to validate the
iLET-TV algorithm on a simulated CT problem. The vast majority
of reconstruction algorithms used today in CT scanners are based
on filtered back projection (FBP) [19, 20] mainly due to its compu-
tational speed. However, various works have shown that there are
great benefits [16, 17] employing modern iterative approaches for
reconstructing tomographic measurements, reducing radiation and
improving image quality. Since modern CT scanners are able to
produce tens of thousands of measurements per each revolution of
the X-ray tube, the measurements have an inherently large dimen-
sionality. This fact is the main reason scanners today still rely on
algorithms that were developed more than 30 years ago — applying
a modern iterative solver for the dimensions involved in a scan is not
feasible on available devices.

In our tests, we scan the Zubal [21] digitized brain phantom,
and a thorax phantom rendered from a real patient scan. Both are
with resolution of 256× 256 (N = 256) and scanned with parallel-
beam (PB) [19] tomographic simulator (AIR Tools v1.3 [22]). We
acquire only 64 equally spaced angular projections of the phantom
over a range of π radians, and contaminate the measurements with
Gaussian noise with SNR of 28 dB.

The PB scan measurements are then transformed to the pseudo-
polar (PP) [23–25] domain by employing the recent resampling algo-
rithm for PP tomographic reconstruction (RAPToR) [26]. By wor-
king in the PP domain, we gain several advantages. The PP Ra-
don transform (PPRT) (acting as H) and the adjoint PPRT operator
(HT ) can be computed with a fast and accurate algorithm [24, 25]
in O(N2 logN) complexity. In addition, the algebraic system that
describes the PPRT has a significantly lower condition number than
an equivalent PB system. Further advantages and discussions can be
found in [26].

All the algorithms we test operate directly on the same PP me-
asurements and the same system matrix. That way, the comparison
between the algorithms is fair. We compare our method to the fol-
lowing algorithms: a PP based FBP followed by a TV denoiser, a
FISTA+TV algorithm with an constant value for λ, a FISTA+TV al-
gorithm updated with an iterative update step for the value of λ as
discussed in Section 4 and to the sparse uniform resampling algo-
rithm (SPURS) [13] followed by TV denoising.
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Fig. 2. Zubal and Thorax phantom reconstruction results. We reconstruct the Zubal (left batch) and the Thorax (right batch) phantoms
from 64 PB projection angles, under SNR of 28 dB. The ground truth phantoms are shown in (a). The reconstructions for each phsantom
include: (b) FBP, (c) FBP+TV, (d) FISTA+TV, (e) SPURS+TV [13] and (f) our TV-iLET method.
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Fig. 3. TV-iLET Reconstruction graph comparisons. The hori-
zontal axis depicts the input SNR (in dB) of the PB scan measure-
ments. We measure the PSNR (top) and the SSIM (bottom) of the re-
constructed output, compared with the ground-truth Zubal phantom,
for several algorithms, as described in Section 5.

The results of our comparisons are shown as performance
graphs, measuring the output peak-SNR (PSNR) and structural si-
milarity index (SSIM) [27] vs. the input SNR of the measurements,
and shown in Fig. 3. An example of the reconstructed phantoms
for various algorithms is shown in Fig. 2. The TV-iLET algorithm
achieves superior results throughout the input SNR range, while
maintaining a low complexity.

6. CONCLUSIONS

In this work we presented an extension of the iLET paradigm to
TV-based minimization. Our approach relies on majorizing the non-
differentiable TV norm with a smooth quadratic term and minimi-
zing over a set of basis vectors with a generalized TV-based gradient
step. Our approach is also parameter free, and does not require em-
pirical tuning of the regularization parameter. We demonstrate the
superior performance of our technique on a medical imaging sce-
nario, CT reconstruction, showing that the TV-iLET framework is
applicable in this modality. Our method demonstrates low computa-
tional complexity and superior results over other state-of-the-art ap-
proaches, in terms of both PNSR and SSIM, as presented in Figs. 2
and 3.
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