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ABSTRACT

Random distortion testing (RDT) addresses the problem of test-
ing whether or not a random signal, Ξ, deviates by more than a
specified tolerance, τ, from a fixed value, ξ0 [1]. The test is non-
parametric in the sense that the distribution of the signal under
each hypothesis is assumed to be unknown. The signal is observed
in independent and identically distributed (i.i.d) additive noise.
The need to control the probabilities of false alarm and missed de-
tection while reducing the number of samples required to make a
decision leads to the SeqRDT approach. We show that under mild
assumptions on the signal, SeqRDT will follow the properties de-
sired by a sequential test. Simulations show that the SeqRDT ap-
proach leads to faster decision making compared to its fixed sam-
ple counterpart Block-RDT [2] and is robust to model mismatches
compared to the Sequential Probability Ratio Test (SPRT) [3] when
the actual signal is a distorted version of the assumed signal espe-
cially at low Signal-to-Noise Ratios (SNRs).

Index Terms— Sequential tests, non-parametric tests, random
distortion testing, non-stationary signals

1. INTRODUCTION

In standard binary hypothesis testing problems, on the basis of
a fixed number of observations, a decision is made between two
possible statistical hypothesis, the so-called null (H0) and alter-
native (H1) hypotheses. The decision is generally made under the
Bayesian, minimax or Neyman-Pearson frameworks. In his semi-
nal works [3, 4], Wald moved from standard likelihood theory with
a fixed sample size to sequential procedures where observations
are collected and processed one after another, until a decision can
be made with specified confidence. Basically, at any stage of a se-
quential procedure, the same decision rule is applied. This rule
has three possible outcomes, instead of two: it may either 1) ac-
cept H0 and stop the testing, or 2) accept H1 and stop the test-
ing or 3) make no decision and acquire a new observation. These
three steps are repeated sequentially until a decision is reached, in
which case the testing stops. In sequential testing, the sample size
and the time instant when the decision is made are random. The
issue is then to devise a decision rule that optimizes a certain cri-
terion “to achieve a tradeoff between the average observation time
and the quality of the decision. ...It has been shown that the se-
quential procedure performs significantly better than the classical
Neyman-Pearson test in the case of two simple hypotheses." [5]. We
recall that simple hypotheses H0 and H1 correspond to two pos-
sible distributions for the observations. For details on Wald’s ap-
proach the reader can refer to [5].

This work was supported by ARO grant W911NF-14-1-0339.

Standard sequential testing is an extension of likelihood the-
ory in that it assumes prior knowledge regarding the distributions
of the observations under each hypothesis to derive the likelihood
ratio, perhaps up to a vector parameter in case of nuisance param-
eters. This procedure has the following limitations. In practice,
prior knowledge or good models for the distributions under each
hypothesis are usually not available. This is all the more detri-
mental when likelihood ratio tests are not robust to uncertainty or
model mismatch. Moreover, many approaches in sequential test-
ing make stationarity or independent and identically distributed
(iid) assumptions on the observed process under each hypothe-
sis [5]. Such assumptions are questionable in practice. In addi-
tion, proposed solutions that relax stationarity or iid assumptions
are still based on likelihood ratio tests and suffer from the same
drawbacks.

In many practical applications such as radar, sonar and com-
munication systems signals of interest, distorted by the environ-
ment, are acquired in noise and are cluttered by interfering echoes.
The observed random process resulting from this mixture — not
necessarily additive — of signal, distortions and interferences, can
hardly be modeled as a stationary random process with known
distribution. Therefore, the observation process here is modeled
as the sum of a non-stationary signal with unknown distribution
and independent noise. We introduce a theoretical framework suit-
ed for statistical signal processing applications such as those con-
sidered in [6–8], where the issue is to sequentially test the em-
pirical mean of a non-stationary random signal that has non-iid
samples and unknown sample distributions in additive and inde-
pendent Gaussian noise. In contrast to the preliminary approach
in [6, 7], the theory presented below introduces a sequential pro-
cedure that guarantees an almost surely finite stopping time and
error probabilities that can be rendered arbitrarily small. In partic-
ular, the analysis conducted in the paper exhibits nested models
and assumptions that help predict the behavior of sequential test-
ing without prior knowledge of the distribution of the signal and
without any stationarity or iid assumption. Because of space lim-
itations, detailed proofs of the results stated below are postponed
to the longer version of the paper.

2. NOTATIONS

All the random variables encountered below are defined on the
same probability space (Ω,F,P). As usual, for any given ξ ∈ R and
any σ ∈ [0,∞), Z ∼N(ξ,σ2) means that Z is Gaussian distributed
with mean ξ and variance σ2. In what follows, Q1/2 denotes the
Generalized Marcum Function [9] with order 1/2. Basically, we
have P

[ |Z | > η
] = Q1/2(|ξ|,η) for any given Z ∼ N(ξ,1). Given

γ ∈ (0,1) and ρ ∈ [0,∞), λγ(ρ) is defined as the unique solution
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in x to Q1/2(ρ, x) = γ [1, Lemma 2, statement (ii)], so that:

Q1/2(ρ,λγ(ρ)) = γ. (1)

The set of all real random variables defined on (Ω,F) is denoted
by M(Ω,R). Accordingly, M(Ω,R)N (resp. M(Ω,R)�1,N�) is the set
of all sequences or random processes defined on N (resp. �1, N� =
{1,2, . . . , N }). Given U in M(Ω,R)N, the realization by U of n ∈ N
(resp. n ∈ �1, N�) is called a sample of U and denoted by Un . Each
Un is an element of M(Ω,R). The empirical mean of U ∈M(Ω,R)N

is the real random variable defined by:

〈U 〉N = 1

N

N∑
n=1

Un .

Two elements U , V of M(Ω,R)N are said to be independent if Un
and Vn are independent for each n ∈N.

3. MATHEMATICAL FORMULATION AND ANALYSIS

LetΞ= (Ξn )n∈N be an element of M(Ω,R)N. This random process
models the random mixture of a distorted signal of interest and
possible interferences. In accordance with the introduction, no
assumption is made on the stationarity or the distribution of Ξ =
(Ξn )n∈N. In this respect, the samples Ξn are not necessarily iid.
We suppose that Ξ is observed in additive and independent noise
X = (Xn )n∈N. The observation process is then Y = (Yn )n∈N such
that Yn = Ξn + Xn for any n ∈ N and we write Y = Ξ+ X . In our
formulation, Ξ models distortion around a fixed model ξ0, in the
absence of any distortion, Ξ = ξ0, but due to distortions this will
not be true. We expect the empirical mean 〈Ξ〉N to remain close
to ξ0 under H0 and drift significantly away from ξ0 under H1 for
all N > N0. The role of τ is to distinguish small distortions from
large ones. The SeqRDT formulation is then given as

Observation : Y =Ξ+X ∈M(Ω,R)N

with


Ξ ∈M(Ω,R)N,

X1, X2, . . .
iid∼ F,

E [ X1 ] = 0,Var(X1) = 1 and E
[

X 3
1

]<∞
Ξ and X are independent.{

H0 : Ξ= (Ξn )n∈N, ∀N >N0, |〈Ξ〉N −ξ0|6 τ (a-s)
H1 : Ξ= (Ξn )n∈N, ∀N >N0, |〈Ξ〉N −ξ0| > τ (a-s)

(2)

where, τ ∈ [0,∞) is the tolerance and F is an unknown cdf. Note,
that the above testing model is the same as the Block-RDT model
[2] if the sample size, N , is fixed. Here, N0 is known a priori based
on some prior knowledge about the signal.

To solve the mean testing problem (2), we introduce the fol-
lowing assumptions, which can be regarded as weak notions of er-
godicity.

Assumption 3.1 (Asymptotic Convergence of |〈Ξ〉N −ξ0| ) We as-
sume that

∃〈Ξ〉∞ ∈M(Ω,R), lim
N

〈Ξ〉N=〈Ξ〉∞ (a-s).

we further assume that as N grows:

Under H0 : lim
N

|〈Ξ〉N −ξ0| = |〈Ξ〉∞−ξ0| < τ (a-s),

Under H1 : lim
N

|〈Ξ〉N −ξ0| = |〈Ξ〉∞−ξ0| > τ (a-s).

Remark 1 The first assumption in Assumption 3.1 is automatically
satisfied ifΞ is stationary and ergodic. Indeed, in this case, there ex-
ists ξ ∈R such that E [Ξn ] = ξ for every n ∈N, so that the assumption
holds true with 〈Ξ〉∞ = ξ. �

Given γ ∈ (0,1) and τ> 0, define T
λγ(τ

p
N )/

p
N :RN→ {0,1} for

any sequence x = (xn )n∈N ∈RN by :

T
λγ(τ

p
N )/

p
N (x) =

{
0 if |〈x〉N −ξ0|6λγ(τ

p
N )/

p
N

1 otherwise.
(3)

Next, in Proposition 3.2, we analyze the behavior of the type of
tests given by (3) as the number of samples N increases.

Proposition 3.2 For any γ ∈ (0,1) and τ> 0, T
λγ(τ

p
N )/

p
N satisfies

the following asymptotic behavior for testing H0 vs H1 in (2):

(i) we have

lim
N
P

[
T
λγ(τ

p
N )/

p
N (Y ) = 1

]
6 γ under H0

lim
N
P

[
T
λγ(τ

p
N )/

p
N (Y ) = 0

]
6 1−γ under H1 (4)

(ii) under Assumption 3.1 we have,

lim
N
P

[
T
λγ(τ

p
N )/

p
N (Y ) = 1

]
=

{
0 under H0
1 under H1

(5)

The asymptotic result of Proposition 3.2 enhances the interest of
the tests of type as defined in (3). In the above, Proposition 3.2
(i) suggests the use of two thresholds as the probabilities of false
alarm and missed detection both cannot be controlled with the
use of a single threshold designed for a fixed γ. One level must
be small to diminish the probability of false alarm and the second
level must be close to 1 so as to make the probability of missed de-
tection small. Such a strategy will naturally lead to a sequential ap-
proach. Proposition 3.2 (ii) highlights the importance of Assump-
tion 3.1 in achieving arbitrarily low probabilities of false alarm and
missed detection for a large sample size. But we need to control
the number of samples, so to this end we resort to a sequential
approach. We show that with the thresholds chosen according to
(3), one can design a sequential test which can reduce the decision
making time while guaranteeing certain levels of performance.

Next, we propose the SeqRDT approach for the mean testing
problem defined in (2).

4. SEQUENTIAL TEST

Given any natural number M >N0 −1, we can completely specify
a sequential test for H0 against H1 by defining the stopping time:

T = min
{

N ∈N :DM (N ) 6=∞}
, (6)

with:



DM (1) =DM (2) = . . . =DM (M) =∞,

for N > M , DM (N ) =


0 if |〈Y 〉N −ξ0|6λL(N ),

∞ if λL(N ) < |〈Y 〉N −ξ0|6λH (N ),

1 if |〈Y 〉N −ξ0| >λH (N ).
(7)

where the two thresholds λL(N ) and λH (N ) must be such that
λL(N ) 6 λH (N ). Note that M is the number of samples SeqRDT
waits for before starting the test. M can be chosen based on some
elementary knowledge of the signal and noise.
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We now define the False Alarm Probability of the proposed se-
quential test as:

PFA(DM )
def= P [DM (T ) = 1] under H0

In the same way, the Missed Detection Probability is defined as:

PMD(DM )
def= P [DM (T ) = 0] under H1

The goal of any sequential algorithm is to design the thresholds so
as to guarantee that PFA(DM ) and PMD(DM ) stay below certain
pre-specified levels α and β, respectively.

Next, in Proposition 4.1 we show that the thresholds λH (N )
and λL(N ) designed according to (3) for levels α and β, respec-
tively are indeed appropriate for SeqRDT.

Proposition 4.1 For α,β ∈ (0,1/2), τ ∈ (0,∞) and the thresholds
λH (N ) =λα(τ

p
N )/

p
N and λL(N ) =λ1−β(τ

p
N )/

p
N we have,

λL(N )6λH (N ),

for all N ∈N.

We thus know that the thresholds λH (N ) and λL(N ) satisfy the cri-
terion λL(N )6 λH (N ). The question that arises is then “Can this
choice of thresholds give some performance guarantees?". To an-
swer this, we next present the main Theorem of the paper.

Theorem 4.2 Givenα,β ∈
(
0, 1

2

)
, setλL(N ) =λ1−β(τ

p
N )/

p
N and

λH (N ) =λα(τ
p

N )/
p

N . If Assumption 3.1 is satisfied, then:

(i) P [T =∞ ] = 0 under H0 and H1,

(ii) lim
M→∞PFA(DM ) = lim

M→∞PMD(DM ) = 0

The above theorem shows that the thresholdsλH (N ) andλL(N )
will guarantee that the stopping time T is finite with probability
1. Moreover, these thresholds guarantee that SeqRDT can achieve
arbitrarily low PFA(DM ) and PMD(DM ) provided one has the free-
dom to choose sufficiently large M . Therefore, all the above re-
sults indicate that one can use the test defined in (7) for testing the
mean of a non-stationary process with the choice of thresholds as
given in Proposition 4.1 and Theorem 4.2.

Next, we perform some simulations to analyze the performance
of the SeqRDT.

5. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we perform some simulations to highlight the ad-
vantages of SeqRDT compared to Block-RDT and SPRT as proposed
in [2] and [3, 4], respectively. We first present the detection prob-
lem, then we outline each algorithm and finally, carry out the com-
parison of the presented algorithms.

5.1. Detection with signal distortions

We consider the detection of change in mean in Gaussian noise
with some model mismatch. Let us first consider the model Yn =
Ξn + Xn , for n ∈N, with the signal Ξn = ξ0 under H0 and Ξn = ξ1
under H1, with ξ0 and ξ1 as deterministic constants. The noise
is assumed to be Gaussian, i.e., Xn ∼ N(0,1) for any n ∈ N. This
model can be formulated in the SeqRDT framework as defined in
(2) with τ= 0 and N0 = 1 as



Observation : Y = ξi +X ∈M(Ω,R)N, for i = {0,1}

with X1, X2, . . .
iid∼ N(0,1).{

H0 : Ξ= (ξ0)n∈N, ∀N > 1, |〈Ξ〉N −ξ0|6 0 (a-s)
H1 : Ξ= (ξ1)n∈N, ∀N > 1, |〈Ξ〉N −ξ0| > 0 (a-s),

(8)

which is the classical Gaussian mean detection problem. But, in
many practical systems there might unfortunately be a mismatch
between the model and the actual signal observed in practice. In
reality, the actual signal would not be a constant ξ0 or ξ1, under ei-
ther hypothesis, the signal will be a perturbed version of the actual
signal and these perturbations are hard to model in a parametric
setup. Therefore, likelihood ratio based tests will fail to guarantee
reliable performance if there are model mismatches. However, the
Block-RDT setup as proposed in [2] and the SeqRDT setup as pro-
posed in (2) and (7) are not limited by these drawbacks.

Similar to [2], instead of dealing with the perfect and some-
what unrealistic model as described above, we consider the case
when the signal is Ξn = ξi +∆n under Hi for i ∈ {0,1} and for all
n ∈ N, with |ξ1 − ξ0| > τ. Here ∆n s model the possible additive
distortions in the above deterministic model with unknown dis-
tribution. Let us assume for all N > N0 we have some positive
value τ such that P[|〈∆〉N |6 τ] = 1 and P[|〈∆〉N +ξ1 −ξ0| > τ] = 1
are satisfied. Next, we show that even if these probabilities are not
strictly satisfied the algorithm will still be able to provide sufficient
performance guarantees.

5.2. SeqRDT, Block-RDT and SPRT

For illustration, let us consider the distortions ∆n ∼ N(0,σ2
∆

) for
all n ∈ N. Consider the SeqRDT framework. For the choice of tol-
erance τ = 2σ∆, we have P[|〈∆〉N | 6 τ] > 0.9545 for all N > 1,
and equality for N = 1, i.e., P[|〈∆〉1| 6 τ] = 0.9545. Moreover, we
have P[|〈∆〉N + ξ1 − ξ0| > τ] > 0.5 for all N > 1. This probability
will be increasing in |ξ1 − ξ0|. For example, if |ξ1 − ξ0| = 4σ∆, we
have P[|〈∆〉N + ξ1 − ξ0| > τ] ≈ 0.9772. Here, we choose the buffer
size M = N0 − 1 = 0. Although we do not have P[|〈∆〉N | 6 τ] =
1 and P[|〈∆〉N + ξ1 − ξ0| > τ] = 1 satisfied strictly for N0 = 1, we
show via simulations that this does not impact the results signif-
icantly. Therefore, the hypothesis test for this system with model
mismatch using (2) and (7) can be written as

Observation : Y = ξi +∆+X ∈M(Ω,R)N, for i = {0,1}

with

{
∆1,∆2, . . .

iid∼ N(0,σ2
∆

)

X1, X2, . . .
iid∼ N(0,1).{

H0 : Ξ= (ξ0 +∆)n∈N, ∀N > 1, |〈Ξ〉N −ξ0|6 2σ∆ (a-s)
H1 : Ξ= (ξ1 +∆)n∈N, ∀N > 1, |〈Ξ〉N −ξ0| > 2σ∆ (a-s),

Now, consider the detection of the same distorted signal with
the Block-RDT approach [2]. In this framework, the problem of
testing the mean of a random process observed over N samples
can be summarized as:

Observation:Y =Ξ+X ∈M(Ω,R)�1,N�

with

{
Ξ ∈M(Ω,R)�1,N�, X1, X2, . . . , XN

iid∼ N(0,1),
Ξn and Xn independent for each n ∈ �1, N�,

H0 : |〈Ξ〉N −ξ0|6 τ,
H1 : |〈Ξ〉N −ξ0| > τ.

(9)

Before proceeding further let us first analyze the invariance prop-
erties of the above problem for the Block-RDT framework. The
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α=β= 0.001

SDR
(
= SNR

τ

)
(dB) 6.02 7.96 9.54 12.00

SeqRDT
Stopping time, T 3.98 3.28 3.04 2.90

PFA(DM ) 3.33×10−4 3.47×10−4 3.19×10−4 3.17×10−4

PMD(DM ) 1.24×10−4 5×10−6 5×10−6 0

Block-RDT
Number of samples, NB-RDT 14 7 4 2

P B-RDT
FA 0 0 0 2.2×10−5

P B-RDT
MD 9.45×10−4 3.12×10−4 2.44×10−4 6.80×10−5

SPRT
Stopping time, TSPRT 2.44 1.73 1.34 1.05

P SPRT
FA 2.08×10−4 1.59×10−4 1.03×10−4 2.85×10−5

P SPRT
MD 2.09×10−4 1.54×10−4 1.03×10−4 2.57×10−5

SPRT-MM
Stopping time, TSPRT-MM 1.57 1.24 1.10 1.01

P SPRT-MM
FA 6.2×10−3 3.5×10−3 1.8×10−3 2.88×10−4

P SPRT-MM
MD 6.2×10−3 3.6×10−3 1.8×10−3 3.05×10−4

Table 1: SeqRDT versus Block-RDT and SPRT for buffer size M = 0.

set G = {e, s}, where e(x) = x is the identity in R and s(x) = −x +
2ξ0, is a group. It is even the smallest group for which the sequel
holds true. Consider the group action [10, Definition 6.3, p. 186]
π that associates each g ∈ G to the map πg : R�1,N� → R�1,N� by:
πg (x) = (g (x1), g (x2), . . . , g (xN )). It can be easily shown that πg (Y )
satisfies the same model as Y , i.e., πg (Y ) = πg (Ξ) + X ′, where,
πg (Ξ) is independent of X ′ and X ′ = (X ′

1, X ′
2, . . . , X ′

N ) ∼ N(0, IN ).
Moreover, we have |〈πg (Ξ)〉N − ξ0| = |〈Ξ〉N − ξ0|. Therefore, the
above change-in-mean detection problem (9) remains unchanged
by substitutingπg (Ξ) forΞ and X ′ for X . In [2], the authors seekπ-

invariant tests, that is, N dimensional tests T : R�1,N� → {0,1} that
are invariant under the action of π : T(πg (x)) = T(x) for any g ∈ G

and any x ∈RN . Because signal averaging reduces noise variance,
we naturally consider π-invariant integrator tests, that is, tests T :
R[1,N ] → {0,1} that are not merely π-invariant but for which exists
T̄ : R→ {0,1}, such that ∀ x ∈ R�1,N�, T(x) = T̄(〈x〉N ). The test T̄ is
called the reduced form ofT and turns to beG-invariant: T̄(g (x)) =
T̄(x) for any x ∈R and any g ∈G. Tests of type T

λγ(τ
p

N )/
p

N (Y ), as

defined in (3) with γ ∈ (0,1), are then UMP among all π-invariant
integrator tests with level γ for the above change-in-mean detec-
tion problem [2].

Now, consider the Block-RDT approach for the detection of
the same distorted signal model as considered for SeqRDT and for
the same tolerance, τ = 2σ∆ we have P [|∆n |6 τ] = 0.9545 for all
n ∈ N. Here we do not have |∆n |6 τ, however, we show via sim-
ulations that this does not impact the results below. The goal of
Block-RDT is to design an α level test such that the probability of
missed detection P B-RDT

MD stays below levelβ. The threshold is cho-

sen to be λα(
p

Nτ)/
p

N from (3) and [2]. We denote the probabil-
ity of false alarm as P B-RDT

FA and the number of samples required

to achieve P B-RDT
MD by NB-RDT. Now, let us consider SPRT for the

cases when the distortion is known and when the it is unknown.
SPRT computes the likelihood ratio (ΛN ) of the observations

under the two hypotheses as a function of the number of obser-
vations. The aim of SPRT is to decide which hypothesis is true as
soon as possible. For this purpose, two thresholds λSPRT

H > λSPRT
L

are chosen as λSPRT
H = (1−β)/α and λSPRT

L = β/(1−α) such that

the probability of false alarm P SPRT
FA and the probability of missed

detection P SPRT
FA stay belowα and β, respectively. SPRT stops once

ΛN > λSPRT
H and decides in favor of H1 or once ΛN 6 λSPRT

L and

decides in favor of H0. Otherwise SPRT updates the likelihood ra-
tio for N +1th observation and repeats the procedure. Let TSPRT
denote the stopping time for SPRT [3, 4]. We represent the algo-
rithm by SPRT when the distortion is completely known and by
SPRT-MM when the distortion is unknown. We denote by TSPRT-MM,
P SPRT-MM

FA and P SPRT-MM
MD the stopping time, the probability of false

alarm and the probability of missed detection, respectively, for
SPRT-MM. Knowing the distortion completely is infeasible in most
practical situations, therefore, SPRT-MM will capture the perfor-
mance loss when there are model mismatches. Next, we compare
SeqRDT to SPRT and SPRT-MM.

5.3. Comparison
We define |ξ1 −ξ0| as the Signal-to-Noise Ratio (SNR) and |ξ1−ξ0|

τ
as Signal-to maximum-Distortion Ratio (SDR) [1, 2]. We analyze
the average number of samples taken by SeqRDT compared to its
fixed sample size counterpart Block-RDT, SPRT and SPRT-MM. We
choose the distortion variance to be σ∆ = 1. We average the stop-
ping times and count the probability of false alarm and missed
detection over 106 Monte carlo iterations for SeqRDT, SPRT and
SPRT-MM. Whereas, for Block-RDT the P B−RDT

FA and P B−RDT
MD can

be derived in closed form for the given signal model. In Table 1, we
compare the number of samples taken by SeqRDT versus Block-
RDT, SPRT and SPRT-MM for different SDR (SNR) values and for
levels α = β = 0.001. We also compare the probability of false
alarm and missed detection achieved by each of the tests. Notice
that SeqRDT is faster compared to the Block-RDT especially at low
SNRs. SPRT is optimal when distortion and noise distributions are
completely known but note that for SPRT-MM the probability of
false alarm and missed detection do not stay below the levels α
and β, respectively at low SNRs.

6. CONCLUSION AND FUTURE WORK

In this work, we proposed a sequential algorithm SeqRDT for de-
tecting the change-in-mean of a non-stationary random process.
The performance of the algorithm was analyzed and compared to
Block-RDT and SPRT for a simple Gaussian change-in-mean de-
tection problem. It was shown that the proposed algorithm makes
a decision faster on average compared to its equivalent fixed sam-
ple test Block-RDT and is robust to model mismatches compared
to SPRT, especially at low SNRs. Future directions include a de-
tailed study of the threshold behavior. Also, the bounds on the
probabilities of errors need to be derived in the future.
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