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ABSTRACT

An active inference problem of detecting an anomalous process
among M heterogeneous processes is considered. At each time,
a subset of processes can be probed. The objective is to design a
sequential probing strategy that dynamically determines which pro-
cesses to observe at each time and when to terminate the search so
that the expected detection time is minimized under a constraint on
the probability of misclassifying any process. This problem falls into
the general setting of sequential design of experiments pioneered by
Chernoff in 1959, in which a randomized strategy, referred to as the
Chernoff test, was proposed and shown to be asymptotically optimal
as the error probability approaches zero. For the problem consid-
ered in this paper, a low-complexity deterministic test is shown to
enjoy the same asymptotic optimality while offering significantly
better performance in the finite regime and faster convergence to the
optimal rate function, especially when the number of processes is
large. Furthermore, the proposed test offers considerable reduction
in implementation complexity.

Index Terms— Active hypothesis testing, sequential design of
experiments, anomaly detection, dynamic search.

1. INTRODUCTION

We consider the problem of detecting an anomalous process (re-
ferred to as the target) among M heterogeneous processes (referred
to as the cells). At each time, K (1 ≤ K < M ) cells can be probed
simultaneously to search for the target. Each search of cell i gen-
erates a noisy observation drawn i.i.d. over time from two different
distributions fi and gi, depending on whether the target is absent or
present. The objective is to design a sequential search strategy that
dynamically determines which cells to probe at each time and when
to terminate the search so that the expected detection time is min-
imized under a constraint on the probability of declaring a wrong
location of the target.

The above problem is prototypical of searching for rare events
in a large number of data streams or a large system. The rare events
could be opportunities (e.g., financial trading opportunities or trans-
mission opportunities in dynamic spectrum access [1]), unusual
activities in surveillance feedings, frauds in financial transactions,
attacks and intrusions in communication and computer networks,
anomalies in infrastructures such as bridges, buildings, and the
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power grid that may indicate catastrophes. Depending on the ap-
plication, a cell may refer to an autonomous data stream with a
continuous data flow or a system component that only generates
data when probed.

1.1. Main Results

The anomaly detection problem considered in this paper is a special
case of active hypothesis testing originated from Chernoff’s seminal
work on sequential design of experiments in 1959 [2]. In [2], Cher-
noff proposed a randomized strategy, referred to as the Chernoff test,
and established its asmyptotic (as the error probability diminishes)
optimality. This randomized test chooses, at each time, a probability
distribution that governs the selection of the experiment to be carried
out at this time. This distribution is obtained by solving a minimax
problem so that the next observation generated under the random ac-
tion can best differentiate the current maximum likelihood estimate
of the true hypothesis (using all past observations) from its closest al-
ternative, where the closeness is measured by the Kullback-Liebler
(KL) divergence. Due to the complexity in solving this minimax
problem at each time, the Chernoff test can be expensive to com-
pute and cumbersome to implement, especially when the number of
hypotheses or the number of experiments is large.

In this paper, we show that the anomaly detection problem con-
sidered here exhibits sufficient structures to admit a low-complexity
deterministic policy with strong performance. In particular, we de-
velop a deterministic test that explicitly specifies which K cells to
search at each given time and show that this test enjoys the same
asymptotic optimality as the Chernoff test. Furthermore, extensive
simulation examples have demonstrated a significant performance
gain over the Chernoff test in the finite regime and faster conver-
gence to the optimal rate function, especially when M is large. In
contrast to the Chernoff test, the proposed test requires little offline
or online computation.

We point out that proving the asymptotic optimality of the deter-
ministic policy is much more involved comparing with the Chernoff
test, due to the time dependency in the test statistics, namely, the
log-likelihood ratios (LLRs), introduced by deterministic actions. In
particular, since the distribution of the random action chosen by the
Chernoff test depends only on the current maximum likelihood es-
timate of the underlying hypothesis which becomes time-invariant
after an initial phase with a bounded duration, the stochastic behav-
iors of the LLRs are independent over time, resulting in a much eas-
ier analysis of the detection delay. The deterministic actions of the
proposed test, however, lead to complex time dependencies in LLRs
that make the analysis much more involved.
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1.2. Related Work

Chernoff’s pioneering work on sequential design of experiments fo-
cuses on sequential binary composite hypothesis testing [2]. Varia-
tions and extensions of the problem were studied in [3–7], where the
problem was referred to as controlled sensing for hypothesis testing
in [4, 5] and active hypothesis testing in [6, 7]. As variants of the
Chernoff test, the tests developed in [3–7] are all randomized tests.

There is an extensive literature on dynamic search and target
whereabout problems under various scenarios, (see [8–15] and refer-
ences therein). In [16, 17], the problem of quickly detecting anoma-
lous components under the objective of minimizing system-wide
cost incurred by all anomalous components was studied. The ob-
jective of minimizing operational cost as opposed to detection delay
led to a different problem from the one considered in this paper. The
readers are also referred to [18] for a comprehensive survey on the
problem of detecting outlying sequences.

A prior study by Cohen and Zhao considered the problem for
homogeneous processes (i.e., fi ≡ f and gi ≡ g) [19]. This work
builds upon this prior work and addresses the problem in heteroge-
neous systems where the absence distribution fi and the presence
distribution gi are different across processes. Allowing heterogene-
ity significantly complicates the design of the test and the establish-
ment of asymptotic optimality. Specifically, since each process has
different observation distributions, the rate at which the state of a
cell can be inferred is different across processes. Hence, the decision
maker must balance the search time effectively among the observed
processes, which makes both the algorithm design and the perfor-
mance analysis much more involved under the heterogeneous case.
In terms of algorithm design, when dealing with homogeneous pro-
cesses, the search strategy is often static in nature [9, 11, 13, 19]. In
contrast, the asymptotically optimal search strategy developed here
for heterogeneous processes dynamically changes based on the cur-
rent belief about the location of the target. In terms of performance
analysis, handling heterogeneity adds new challenges and difficul-
ties for establishing asymptotic optimality. When searching over ho-
mogeneous processes, the resulting rate function (which is inversely
proportional to the search time) always obeys a certain averaging
over the KL divergences between normal and abnormal distributions
of all process. This observation follows from the fact that the de-
cision maker completes gathering the required information from all
the processes at approximately the same time due to the homogene-
ity. In contrast, when searching over heterogeneous processes, the
overall rate function does not always obey a simple averaging across
the KL divergences of all processes. Our approach to circumvent this
difficulty is to analyze the detection time by considering two sepa-
rate scenarios, referred to as the balanced and the unbalanced cases.
The balanced case holds when a judicious allocation of probing re-
sources can ensure the information gathering from all the processes
be completed at approximately the same time, in which case the rate
function is a weighted average among the heterogeneous processes.
The unbalanced case occurs when there is a process with a suffi-
ciently small KL divergence that dominates the overall rate function
of the search.

Besides the active inference approach to anomaly detection con-
sidered in this paper, there is a growing body of literature on various
approaches to the general problem of anomaly detection. We refer
the readers to [20, 21] for comprehensive surveys on this topic.

2. PROBLEM FORMULATION

We consider the problem of detecting a single target located in one
of M cells. Extensions to detecting multiple targets can be found
in [22].

If the target is in cell m, we say that hypothesis Hm is true.
The a priori probability that Hm is true is denoted by πm, where∑M
m=1 πm = 1. To avoid trivial solutions, it is assumed that 0 <

πm < 1 for all m.
When cell m is observed at time n, an observation ym(n) is

drawn, independent of previous observations. If cell m contains a
target, ym(n) follows distribution gm(y). Otherwise, ym(n) fol-
lows distribution fm(y). Let Pm be the probability measure under
hypothesis Hm and Em the operator of expectation with respect to
the measure Pm.

An active search strategy Γ consists of a stopping rule τ govern-
ing when to terminate the search, a decision rule δ for determining
the location of the target at the time of stopping, and a sequence
of selection rules {φ(n)}n≥1 governing which K cells to probed at
each time n. Here we consider the case where only a single process
can be observed at a time, i.e., K = 1 (See [22] for the extension to
K > 1). Let y(n) be the set of all cell selections and observations
up to time n. A deterministic selection rule φ(n) at time n is a map-
ping from y(n − 1) to {1, 2, ...,M}. A randomized selection rule
φ(n) is a mapping from y(n−1) to probability mass functions over
{1, 2, ...,M}.

The error probability under policy Γ is defined as Pe(Γ) =∑
m πmαm(Γ), where αm(Γ) = Pm(δ 6= m|Γ) is the prob-

ability of declaring δ 6= m when Hm is true. Let E(τ |Γ) =∑M
m=1 πmEm(τ |Γ) be the average detection delay under Γ.

We adopt a Bayesian approach as in Chernoff’s original study [2]
by assigning a cost of c for each observation and a loss of 1 for a
wrong declaration. Note that c represents the ratio of the sampling
cost to the cost of wrong detections. The Bayes risk under strategy
Γ when hypothesis Hm is true is given by:

Rm(Γ) , αm(Γ) + cEm(τ |Γ). (1)

The average Bayes risk is given by:

R(Γ) =

M∑
m=1

πmRm(Γ) = Pe(Γ) + cE(τ |Γ). (2)

The objective is to find a strategy Γ that minimizes the Bayes
risk R(Γ):

inf
Γ

R(Γ). (3)

A strategy Γ∗ is asymptotically optimal if

lim
c→0

R(Γ∗)

infΓ R(Γ)
= 1, (4)

which is denoted as

R(Γ∗) ∼ inf
Γ
R(Γ). (5)

3. THE DETERMINISTIC DGFi POLICY

In this section we propose a deterministic policy, referred to as the
DGFi policy.

Let 1m(n) be the indicator function, where 1m(n) = 1 if cell
m is observed at time n, and 1m(n) = 0 otherwise. Let

`m(n) , log
gm(ym(n))

fm(ym(n))
, (6)
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Fig. 1: Typical sample paths of sum LLRs.

and

Sm(n) ,
n∑
t=1

`m(t)1m(t) (7)

be the log-likelihood ratio (LLR) and the observed sum LLRs of cell
m at time n, respectively. Let D(g||f) denote the KL divergence
between two distributions g and f given by

D(g||f) ,
∫ ∞
−∞

log
g(x)

f(x)
g(x) dx. (8)

Illustrated in Fig. 1 are typical sample paths of the sum LLRs of
M = 4 cells, where, without loss of generality, we assume that cell 1
is the target. Note that the sum LLR of cell 1 is a random walk with a
positive expected incrementD(g1||f1), whereas the sum LLR of cell
i is a random walk with a negative expected increment −D(fi||gi)
for i = 2, 3, 4. Thus, when the gap between the largest sum LLR
and the second largest sum LLR is sufficiently large, we can declare
with sufficient accuracy that the cell with the largest sum LLR is the
target. This is the intuition behind the stopping rule and the decision
rule. Specifically, we definem(i)(n) as the index of the cell with the
ith largest observed sum LLRs at time n. Let

∆S(n) , Sm(1)(n)(n)− Sm(2)(n)(n) (9)

denote the difference between the largest and the second largest ob-
served sum LLRs at time n. The stopping rule and the decision rule
under the DGFi policy are given by:

τ = inf {n : ∆S(n) ≥ − log c} , (10)

and
δ = m(1)(τ) . (11)

We now specify the selection rule of the DGFi policy. The intu-
ition behind the selection rule is to select a cell from which the ob-
servation can increase ∆S(n) at the fastest rate. The selection rule is
thus given by comparing the rate at which Sm(1)(n) increases with
the rate at which Sm(2)(n)(n) decreases. If Sm(1)(n) is expected to
increase faster than Sm(2)(n)(n) decreases, cell m(1)(n) is chosen.
Otherwise, cell m(2)(n) is chosen. This leads to the following se-
lection rule:

φ(n) =

{
m(1)(n), if D(gm(1)(n)||fm(1)(n)) ≥ Fm(1)(n)

m(2)(n), otherwise
,

(12)
where

Fm ,
1∑

j 6=m
1

D(fj ||gj)

. (13)

The selection rule in (12) can be intuitively understood by notic-
ing that D(gm(1)(n)||fm(1)(n)) is the asymptotic increasing rate of

Sm(1)(n) when cell m(1) is probed at each time. This is due to the
fact that m(1)(n) is the true target after an initial phase (defined by
the last passage time that m(1)(n) is an empty cell) which can be
shown to have a bounded expected duration. Similarly, even though
much more involved to prove, Fm(1)(n) is the asymptotic rate at
which Sm(2)(n)(n) decreases when cell m(2)(n) is probed at each
time. To see the expression of Fm for any m as given in (13), con-
sider the following analogy. Consider M − 1 cars being driven by
a single driver from 0 to −∞. Car j (j = 1, . . . ,M , j 6= m) has
a constant speed of D(fj ||gj). At each time, the car closest to the
origin is chosen by the driver and driven by one unit of time. We are
interested in the average moving speed of the position of the clos-
est car to the origin. It is not difficult to see that it is given by Fm
in (13). This analogy, concerned with deterministic processes, only
serves as an intuitive explanation for the expression of Fm. As de-
tailed in Sec. 4, proving Fm(1)(n) to be the asymptotic decreasing
rate of Sm(1)(n)(n) requires analyzing the trajectories of theM sum
LLRs {Sm(n)}Mm=1, which are stochastic processes with complex
dependencies both in time and across processes.

4. PERFORMANCE ANALYSIS

In this section, we establish the asymptotic optimality of the DGFi
policy. While the intuitive exposition of DGFi given in Sec. 3 may
make its asymptotic optimality seem expected, constructing a proof
is much more involved. In particular, bounding the detection time
of DGFi requires analyzing the trajectories of the M stochastic pro-
cesses {Sm(n)}Mm=1 which exhibit complex dependencies both over
time and across processes as induced by the deterministic selection
rule.

Define
Im , max{D(gm||fm), Fm}, (14)

which is the increasing rate of ∆S(n) under hypothesis Hm. For a
given a priori distribution {πm}Mm=1 of the true hypothesis, define

I∗ ,
1∑M

m=1
πm
Im

. (15)

As shown in Theorem 1 below, I∗ is the optimal rate function of the
Bayes risk.

Theorem 1. Let R∗ and R(Γ) be the Bayes risks under the DGFi
policy and an arbitrary policy Γ, respectively. Then,

R∗ ∼ −c log c

I∗
∼ inf

Γ
R(Γ) (16)

Proof. Here we provide a sketch of the proof. The detailed proof
can be found in [22].

We first show that the proposed DGFi policy achieves a Bayes
risk−c log c/I∗ asymptotically. First, we show that when ∆S(τ) is
large, the probability of error is small, i.e. Pe = O(c). As a result,
by the definition of the Bayes risk, it suffices to show that the detec-
tion time is upper bounded by − log c/I∗. By the definition of I∗

in (15), it suffices to show that the detection time is upper bounded
by− log c/Im under hypothesisHm. This analysis is carried out by
considering the balanced and the unbalanced cases separately.

The balanced case holds when a judicious allocation of prob-
ing resources can ensure the information gathering from all the pro-
cesses be completed at approximately the same time, in which case
the rate function is a weighted average among the heterogeneous
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processes. The unbalanced case occurs when there is a process with
a sufficiently small KL divergence that dominates the overall rate
function of the search. Combining this analysis with a lower bound
on the Bayes risk −c log c/I∗ as we show in [22] completes the
proof.

5. COMPARISON WITH THE CHERNOFF TEST

In this section, we compare the performance of the proposed DGFi
policy and the Chernoff test in terms of both computational com-
plexity and sample complexity.

5.1. The Chernoff Test

The Chernoff test has a randomized selection rule. Specifically, let
q = (q1, ..., qκ) be a probability mass function over a set of κ avail-
able experiments {ui}κi=1 that the decision maker can choose from,
where qi is the probability of choosing experiment ui. Note that in
our case, κ =

(
M
K

)
. For a general M -ary active hypothesis testing

problem, the action at time n under the Chernoff test is drawn from
a distribution q∗(n) = (q∗1(n), ..., q∗κ(n)) that depends on the past
actions and observations:

q∗(n) = arg max
q

min
j∈M\{î(n)}

∑
ui

qiD(pui

î(n)
||pui
j ) , (17)

whereM is the set of the M hypotheses, î(n) is the ML estimate of
the true hypothesis at time n based on past actions and observations,
and pui

j is the observation distribution under hypothesis j when ac-
tion ui is taken. The stopping rule and the decision rule are the same
as in (10), (11).

5.2. Comparison in computational complexity

Here we compare the computational complexity of the proposed
DGFi policy with the Chernoff test. We show that the Chernoff test
can be expensive to compute especially when the number of pro-
cesses or the number of experiments is large. In contrast to the Cher-
noff test, the DGFi policy requires little computation.

For the case of detecting a single target, computing the selection
rule of Chernoff test defined in (17) requires solving M minimax
problems, each corresponding to a particular value of the ML esti-
mate î(n) ∈ {1, . . . ,M}. One efficient way of solving minimax
problems is through linear programming which takes polynomial
time with respect to the number of variables and constraints. For
this problem, however, the number of variables is

(
M
K

)
, which is not

polynomial and can be exponential in M in the worst case.
The only computation involved in the selection rule of DGFi is

(13), which requires M summations each with M − 1 elements. As
a result, the computational time is O(M2), which is polynomial in
M and independent of K.

5.3. Comparison in sample complexity

Although both the Chernoff test and the DGFi policy are asymptot-
ically optimal1, we show below via simulation examples the signif-
icant performance gain of DGFi over the Chernoff test in the finite
regime (i.e., when the sample cost c is bounded away from 0).

1While the assumption of positive KL divergence between every pair of
hypotheses under every probing action as required in Chernoff’s proof of
asymptotic optimality does not hold here, it can be shown that Chernoff test
preserves its asymptotic optimality for the problem at hand.

Fig. 2: Performance comparison (K = 1, λ
(m)
g = 9 + m,λ

(m)
f =

0.0188, c = 10−5).

Consider a uniform prior and exponentially distributed observa-
tions: fm ∼ exp(λ

(m)
f ) and gm ∼ exp(λ

(m)
g ). The KL divergences

can be easily computed as follows.

D(gm||fm) = log(λ(m)
g )− log(λ

(m)
f ) +

λ
(m)
f

λ
(m)
g

− 1 ,

D(fm||gm) = log(λ
(m)
f )− log(λ(m)

g ) +
λ

(m)
g

λ
(m)
f

− 1 .

Shown in Fig. 2 is the performance comparison between DGFi
policy and Chernoff test for K = 1. More simulation examples
for general cases with K > 1 and detecting multiple targets can
be found in [22]. The figure clearly demonstrates the significant
reduction in detection delay offered by the DGFi policy as compared
with the Chernoff test. The performance gain increases drastically
as M increases.

Next, we provide an intuition argument for the better finite-time
performance of DGFi. Consider a special case where K = 1 and
all fi and gi are identical, i.e., fi ≡ f and gi ≡ g and we assume
D(f ||g) > (M −1)D(g||f). In this case, the DGFi policy chooses,
at each time, the cell with the second largest sum LLR whereas the
Chernoff test randomly and uniformly chooses a cell from all but
the one with the largest sum LLR at each time. Consider a short
horizon scenario where the sampling cost c is sufficiently high such
that D(f ||g) > − log c. This means each empty cell only need one
observation (with high probability) to distinguish from the true cell.
We can formulate this as coupon collectors problem, where each
empty cell is a coupon and the goal is to collect all M − 1 coupons.

Since Chernoff test employs a randomized strategy that chooses
empty cells with equal probability, based on results in coupon collec-
tors problem, the expected probing time will be roughly M logM .
However, the proposed DGFi policy is deterministic and guaranteed
to collect a new coupon at each time, therefore the expected probing
time will only be M .

6. CONCLUSION

The problem of detecting anomalies among a large number of het-
erogeneous processes was considered. A low-complexity determin-
istic test was developed and shown to be asymptotically optimal. Its
finite-time performance and computational complexity were shown
to be superior to the classic Chernoff test for active hypothesis test-
ing, especially when the problem size is large.
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