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ABSTRACT
Consider a binary hypothesis where data are independent and
identically distributed under the null hypothesis, and known
only to be independent under the alternative. The statistician
observes an n-vector Xn (n� 1) and makes a decision using
the optimal likelihood ratio test. This seems a widely-known
detection problem, but: What if only the set of samples of Xn

are made available to the statistician, while the positions of
the individual samples inside the vector are not? Does there
exist an optimal test in that case? What is the fundamental
performance limit? Are there nicely-performing practical de-
tectors with affordable computational complexity?

Answers to these questions are in large part unknown, de-
spite the fact that the problem – which is becoming known
under the name of unlabeled detection – is very relevant in
modern sensor network applications where the sample posi-
tions can be lost due to their means of delivery from the re-
mote units, or because of network attacks.

Index Terms— Unlabeled detection, fundamental limits
of detection, auction algorithm.

1. INTRODUCTION

In many implementations of sensor networks, the data deliv-
ered from the remote nodes to the fusion center (FC) carry
timing information, which is crucial for certain inference
tasks such as binary detection. This is certainly the case when
the system is faced with a binary detection problem with inde-
pendent and identically distributed (i.i.d.) data under the null
hypothesis, and independent but not identically distributed
data under the alternative. Let Xn be the vector of observa-
tions collected at the FC. If the alternative hypothesis involves
a pattern, the exact position (labels) of the samples inside the
vector is key for solving the test. However, sensor networks
are vulnerable to all sorts of attacks, and a particularly insid-
ious one consists of altering the timing information such that
the data arrive at the FC permuted. Even in absence of an
attack, there is recent evidence that equipping the observa-
tions with time/space labels can be too costly or inefficient in
many sensor network implementations, especially when the
data are drawn from a finite alphabet of small cardinality, or
∗P. Willett was supported by NPS via ONR contract N00244-16-1-0017.

when the finite cardinality is the consequence of quantization
of originally continuous observations. In severely quantized
systems, the additional bits necessary to encode timing could
instead improve quantization precision, and it is by no mean
obvious which use is more important.

This motivates our study that is a revisitation of the classi-
cal two-simple-hypotheses statistical test with i.i.d. data under
the null hypothesis and independent data under the alterna-
tive. The difference with the classical setup is the assumption
that the labels of the data have been lost, namely we assume
that the FC does not observe Xn, but only an unlabeled ver-
sion thereof, denoted by Xn

u. That is, the values of the entries
of Xn are observed, but their positions inside Xn are not.
Signal processing with permuted data is of mounting interest,
and might refer to observations obtained by broadcast from a
sensor network. In any case, we cite [1–3] as examples and
access points to potential applications.

As a consequence of the lack of labels, the FC cannot im-
plement the optimal log-likelihood test. One typical alterna-
tive is to resort to the generalized likelihood ratio test (GLRT),
in which the decision statistic is the largest among all the n!
statistics that correspond to the possible assignments of the n
values available to the FC to the set of n labels {1, 2, . . . , n}.
At first glance, the problem seems combinatorial and there-
fore impractical. However, we shall see that there exist al-
gorithms able to compute the GLRT statistic in a polynomial
time. Intriguingly, even in the case of Gaussian shift-in-mean
detection problem (the only case studied so far in the litera-
ture, to the best of our knowledge) the maximization needed
for computing the GLRT does not require exhaustive search,
but simply to order the vector of the data and the vector of the
mean values [4] – quite easy computationally.

In this paper we address the unlabeled binary detection
problem (i.i.d. under the null, independent under the alterna-
tive) in the case where data come from a discrete alphabet.
One contribution of the present work is to provide a limiting
result that assesses the ultimate performance – the fundamen-
tal limit – of the unlabeled detection problem. We also proffer
practical algorithms to solve the test with affordable compu-
tational complexity in the non-asymptotic regime.
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2. PROBLEM FORMULATION

Consider the following standard hypothesis test

H1 : Xn ∼ p1:n(xn) =
∏n
i=1 pi(xi),

H0 : Xn ∼ q1:n(xn) =
∏n
i=1 q(xi),

(1)

where Xn = (X1, . . . , Xn) represents the vector of the ob-
servations (lowercase letter xi will denote realizations), and
where q and the elements of the sequence {pi}ni=1 are strictly
positive probability mass functions (PMFs) over a common
finite alphabet X . The error probabilities of test (1) are
P0(Xn 6∈ An) (type I error), and P1(Xn ∈ An) (type II er-
ror), where P1 and P0 are the probability operators under H1

and H0, respectively, and where An ⊆ Xn is some decision
region in favor ofH0.

We are interested in a modification of the above test that
amounts to replacing the observed vector Xn with its unla-
beled version Xn

u, which is defined as the set of the n values
appearing in Xn, without any ordering. This is equivalent to
assume that the observed vector has undergone an unknown
permutation, or that we observe the sorted (e.g., increasing
value) version (x(1), . . . , x(n)) of Xn, or that we observe n
and the type vector1 tXn , whose x-th entry tXn(x) is the rela-
tive frequency of occurrence of the symbol x ∈ X . This leads
us to consider the following test:

H1 : Xn
u with Xn ∼ p1:n(xn) =

∏n
i=1 pi(xi),

H0 : Xn
u with Xn ∼ q1:n(xn) =

∏n
i=1 q(xi),

(2)

for which the decision region Tn in favor ofH0 is some subset
of Pn — the set of all n-types. The error probabilities for
test (2) are P0(tXn 6∈ Tn) = P0(chooseH1) and P1(tXn ∈
Tn) = P1(chooseH0).

For later use, let us introduce the arithmetic mean of the
PMFs under H1, that is p̄ = limn

1
n

∑n
i=1 pi, and let us de-

note by D(q‖p) the divergence from q(x) to p(x) [6].

3. FUNDAMENTAL LIMIT OF UNLABELED DETECTION

THEOREM. Consider test (2). Let 0 < α < ∞, and de-
fine ψ(α)

∆
= infq′∈P(X ):D(q′‖q)<αD(q′‖p̄). (a) For any se-

quence {Tn} of acceptance regions forH0:

lim inf
n→∞

− 1

n
log P0(tXn 6∈ Tn) ≥ α (3)

⇒ lim sup
n→∞

− 1

n
log P1(tXn ∈ Tn) ≤ ψ(α). (4)

(b) By using the sequence {Un,α}, where Un,α = {txn :
D(txn‖q) < α}, one gets

lim inf
n→∞

− 1

n
log P0(tXn 6∈ Un,α) ≥ α, (5)

lim
n→∞

− 1

n
log P1(tXn ∈ Un,α) = ψ(α). (6)

1This is also equivalent to consider the class of invariant tests under the
group of the n! permutations of the data, namely, tests that depend on the
data only through the type vector tXn , see [5, Th. 6.2.1]. Using tXn as
test statistic reduces the problem to a simple hypothesis testing for which the
optimal solution is provided by the Neyman-Pearson Lemma [5, Th. 3.2.1].

information contained in the unlabeled obs. 

information contained in the labels 

Fig. 1. Fundamental limit of unlabeled detection. Ψ(α) is the error
exponent for the labeled data, while ψ(α) represents the error expo-
nent in the unlabeled case. The information for detection contained
in the labels is the difference Ψ(α)− ψ(α), and the information for
detection available to the statistician that observe only Xn

u is ψ(α).

Sketch of the proof: The detailed proof will be given in a full
paper version of this work, which is in preparation. The es-
sential ideas are as follows. First, the information embodied
in the unlabeled vector Xn

u amounts to the information con-
tained in the type tXn . Thus, one can introduce a fictitious
set of random variables X̃n, i.i.d. under both hypotheses, dis-
tributed as q under H0, and as the arithmetic average p̄ under
H1. It is not hard to show that the types tXn and tX̃n have
the same asymptotic behavior for n→∞, and therefore they
carry the same information for detection. Known results of
the method of types [7], along with a sandwich argument be-
tween the error probabilities of the original test and those of
the test involving X̃n, yield the desired result. •

Informally the previous theorem states that, for suffi-
ciently large values of n, if the type I error is bounded above
by e−nα then, no matter what the decision statistic is, it must
be true that the type II error is bounded below by e−nψ(α).
It is not possible to obtain a stronger pair of asymptotical
error probabilities. Also, there exists a decision statistic such
that type I error is ≤ e−nα and type II error approaches its
upper bound e−nψ(α), namely, there exists an asymptotically
optimal decision strategy.

Some comments are now in order. First, the asymptotic
behavior of the unlabeled test is characterized by a single
function, the error exponent ψ(α), which is the fundamental
limit for unlabeled detection. Second, asymptotically, test (2)
with unlabeled observations is equivalent to the following:

H1 : X̃n ∼ p̄1:n(xn) =
∏n
i=1 p̄(xi),

H0 : X̃n ∼ q1:n(xn) =
∏n
i=1 q(xi),

(7)

in the sense that both have the same error exponent func-
tion ψ(α). Third, the error exponent function pertain-
ing to test (1) with labeled observations can be shown to
be Ψ(α)

∆
= infq′1:∞: D̄(q′1:∞‖q)<α D̄(q′1:∞‖p1:∞), where

D̄(q1:∞‖p1:∞)
∆
= limn

1
n

∑n
i=1D(qi‖pi). Thus, we have

that, for each α, the difference Ψ(α) − ψ(α) represents the
information contained in the data labels that has been lost
when the unlabeled Xn

u is observed in place of Xn. Figure 1
depicts the typical behaviors of ψ(α) and Ψ(α).
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4. PRACTICAL ALGORITHMS

While the result of the previous section gives the complete
characterization of the test in the asymptotic regime of un-
boundedly large number of samples n, and provides a satis-
fying answer to the theoretical questions about the unlabeled
detection, the question remains whether there exist practical
algorithms that for finite values of n can be implemented with
affordable computational complexity.

To address the issue consider first a statistical test in
the form (1) and suppose that the labeled vector xn =
(x1, . . . , xn) is observed. Without loss of generality, let
X = {1, 2, . . . ,m} be the alphabet of the observations. The
log-likelihood can be written in matrix form:

`11 `12`12`12 `13 ... `1(n−1) `1n
`21 `22 `23 ... `2(n−1)`2(n−1)`2(n−1) `2n
`31`31`31 `32 `33 ... `3(n−1) `3n`3n`3n

...
. . .

...
`m1 `m2 `m3`m3`m3 ... `m(n−1) `mn

 (8)

where `ki = log pi(k)
q(k) is the marginal log-likelihood of the

the i-th observed sample xi, when xi = k. The optimal log-
likelihood statistic is

∑n
i=1 `jii where ji is the value taken by

the i-th observation xi. Such statistic can be visualized as the
sum of n entries of matrix (8), one entry for each column and
n txn(k) entries for the k-th row. Regarding matrix (8) as a
trellis, this identifies a path over the trellis. As an example,
the path emphasized in bold in (8) corresponds to the vector
of observations xn = (3, 1,m, . . . , 2, 3).

When the statistician does not observe xn but only the un-
labeled version thereof, the path over the trellis associated to
xn cannot be identified, and the optimal decision statistic (the
sum of the entries of the optimal path) cannot be computed.
What is available, however, is the type txn , which tells us how
many entries should be selected on each row. In this situation,
a convenient non-optimal but usually nicely-performing alter-
native approach, is to resort to the GLRT [8]. For the case
at hand, the GLRT approach consists of replacing the log-
likelihood that contains unknown parameters with its maxi-
mum over all the possible choices of these parameters. In
other words, among all the possible paths over the trellis (8),
which are compatible with the observed txn , the GLRT deci-
sion statistic is the one yielding the largest sum. The compat-
ible paths are those with exactly one entry per column, and
exactly n txn(k) entries over the k-row, k = 1, . . . ,m. Com-
puting the GLRT statistic by means of an exhaustive search
over all the compatible paths is combinatorially complex and
may be unaffordable even for moderate values of n. Fortu-
nately, there exist valid alternatives to exhaustive search. The
problem of finding the GLRT path over the trellis (8) is an in-
stance of a transportation problem – a special case of the as-
signment problem – for which efficient algorithms have been
developed [9]. Consider in fact an augmented version of the
matrix (8) where each row appearing in (8) is copied a num-
ber of times equal to the number of occurrences of the cor-
responding symbol in the unlabeled vector. Namely, the k-th

row is copied n txn(k) times, and we obtain an augmented
version of (8) which is an n by n square matrix.

With this trick, it is easily seen that the problem of find-
ing the GLRT path over (8) becomes a standard assignment
problem for the square augmented matrix, namely it becomes
the classical optimization problem that consists of selecting
exactly one entry for each row and one entry for each col-
umn, in such a way that the sum of the n selected entries is
maximum over all the possible choices. This optimization
problem is usually visualized by thinking of each row of the
augmented matrix as a person and each column as an object.
The augmented matrix is a benefit matrix whose (k, i)-th en-
try is the benefit for person k if it obtains object i. To each
person must be assigned exactly one object, and to each ob-
ject must be assigned exactly one person. This is known as
the (linear, symmetric) assignment problem.

Many algorithms have been developed for the assignment
problem. The Hungarian algorithm solves exactly the prob-
lem in O(n3) operations [10], and is sometimes known as
the Munkres or Munkres-Kuhn algorithm [11]. The auction
method has lower complexity and is amenable to parallel
implementation. There exist many variants of the auction
method, and one of the most popular is the ε-scaled im-
plementation, which achieves a solution of the assignment
problem nε-close to the actual maximum (when the benefit
matrix is transformed into a matrix of integers, this means
that selecting ε < 1/n achieves exactly the maximum) [12].
The computational complexity of the auction algorithm de-
pends on the data structure. When the assignment problem
involves similar persons (i.e., equal rows), it can be highly
inefficient [13]. A variation of the auction algorithm specif-
ically tailored to address assignment problems with similar
persons and similar objects (in fact, an instance of the trans-
portation problem) has been proposed in [13,14]. The auction
algorithm used in this paper is a special form of that proposed
in [13], accounting for the presence of similar persons but not
of similar objects. The details of the algorithm – here referred
to as “auction-sp” – can be found in [13], and a nice overview
of auction and its application to data association can be found
in [15]. The version we use is ε-scaled: there is no guarantee
of achieving exactly the maximum over the trellis, but after
several trials and errors we find that ε = 10−3/m practically
achieves the same total benefit as the Hungarian algorithm. In
the numerical experiments that follow we set ε = 10−3/m.

As an alternative to the auction-sp algorithm, we also con-
sider two greedy procedures. The first, called “greedy-1”,
proceeds sequentially over the observed sorted (e.g., increas-
ing ordered) version (x(1), . . . , x(n)) of vector xn as follows.

Set Γ = matrix (8)
For k = 1, . . . , n, do: add to the path the maximum entry

over the x(k)-th row of Γ, then remove from Γ the column
where the maximum has been found

end do
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The second algorithm, referred to as “greedy-2” is now
described. First of all, regardless of the observed number of
symbol occurrences n txn , a candidate path is selected over
the trellis (8) by choosing the maximum entry over each col-
umn. To this candidate path it corresponds some type tx̂n :
n tx̂n(k) equals the number of times that an entry over the k-
th row is included in the candidate path. If tx̂n = txn we are
done. Otherwise there are a number of symbol modifications,
say h, needed to convert tx̂n to txn . Let us say that symbols
x̂1, . . . , x̂h must be replaced with x1, . . . , xh. The algorithm
greedy-2 proceeds sequentially over the entries of these two
sequences in the following way.

Set Γ = matrix (8)
For k = 1, . . . , h, do: consider all the columns of Γ for

which the entries on the x̂k-th row have been included in the
candidate path, denoted by γx̂kδ1 , . . . , γx̂kδj ; consider also
the entries over the same columns, but on the xk-th row,
namely γxkδ1 , . . . , γxkδj ;
δ∗ = arg minδ1,...,δj{γx̂kδ1 − γxkδ1 , . . . , γx̂kδj − γxkδj};
modify the candidate path by replacing the current entry
γx̂kδ∗ with γxkδ∗ ; remove colunm δ∗ from Γ

end do

The rationale is to modify the candidate path in such a
way that (i) each modification yields the minimum reduction
of the total sum of the path entries, and (ii) the final path
complies with the observed txn .

4.1. Computer Experiments

To illustrate by computer experiments the performance of the
three detectors (auction-sp, greedy-1 greedy-2), we consider
two scenarios. Scenario S1: Suppose that under H0 the data
are uniformly distributed. Suppose also that we organize the
entries of the n PMFs under H1 in a matrix P = {pki}, just
as we did for the log-likelihoods `ki in (8). Then we set the
entries of the first column p11, . . . , pm1 as linearly increas-
ing values from p11 = 0 to pm1 = 2/m, and we set the
entries over the last column p1n, . . . , pmn all equal to 1/m.
The entries on the generic i-th row of P vary linearly (in in-
creasing or decreasing way) from the first entry pi1 to the last
entry pin. Scenario S2: Each PMF underH1 is randomly and
independently generated, by drawing m numbers from a uni-
form (0, 1) distribution and then normalizing to their sum; un-
derH0 we set q = [∆, 2∆, . . . ,m∆]T , where ∆ = 2

M(M+1) .
The results of computer experiments for the two scenarios are
shown in Fig. 2.

5. DISCUSSION & CONCLUSIONS

As a benchmark for the detection performance of the detec-
tors introduced in the previous section, we consider the opti-
mal likelihood ratio decision statistic for the detection prob-
lem shown in (7), in which data are i.i.d. under both hypothe-
ses. Its performance represents a benchmark for the unlabeled
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Fig. 2. Results of computer experiments using 105 Monte Carlo
runs, for the two scenarios described in the main text.

detection because, as shown in Sect. 3, in the limit n → ∞
the performance of the optimal test for (7) is an upper bound
to the performance achievable for the unlabeled case (2).

Our computer experiments, instances of which are shown
in Fig. 2, show that the detector performance improve with n,
while the dependence onm depends on the detection scenario
(i.e., data structure). The auction-sp detector performs quite
close to the benchmark, especially for large n, while the best
between greedy-1 and greedy-2 depends on the scenario. For
scenario S1 greedy-2 performs exactly as auction-sp.

In terms of computational complexity it turns out that the
algorithm greedy-2 is the less time consuming. The execution
time is, of course, highly dependent by a number of factors.
Just to give an order of magnitude, we mention that in our ex-
periments greedy-2 takes about 3 10−2 seconds with n = 103,
and about 3 seconds with n = 104, with little variation for
m = 5, 20. For m = 5 and large n (in the order of 103 or
104), the algorithm greedy-1 may be ≈ 1.5 times more ex-
pensive, and auction-sp requires something like 10 times the
execution time of greedy-2. This factor grows with m (for
m = 20, can reach ≈ 60 for scenario S1 and more than 20
for scenario S2). The loss factor of greedy-1 does not vary
significantly with m. All in all, greedy-2 seems to represent a
valid detector in many practical cases. For this reason, char-
acterizing its performance with respect to the data structure
represents an important open problem.

Other possible topics for future investigations include the
characterization of the detection performance for finite n, and
the study of the rate of convergence to the asymptotic results.
It would be also interesting to address the generalization of
the theorem in Sec. 3 to the case where observations are drawn
from a continuous alphabet.
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