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Abstract—We consider the problem of evaluating outage prob-
ability (OP) values of generalized selection combining diversity
receivers over fading channels. This is equivalent to computing
the cumulative distribution function (CDF) of the sum of order
statistics. Generally, closed-form expressions of the CDF of
order statistics are unavailable for many practical distributions.
Moreover, the naive Monte Carlo method requires a substantial
computational effort when the probability of interest is suffi-
ciently small. In the region of small OP values, we propose instead
an efficient, yet universal, importance sampling (IS) estimator
that yields a reliable estimate of the CDF with small computing
cost. The main feature of the proposed IS estimator is that it has
bounded relative error under a certain assumption that is shown
to hold for most of the challenging distributions. Moreover, an
improvement of this estimator is proposed for the Pareto and the
Weibull cases. Finally, the efficiency of the proposed estimators
are investigated through various numerical experiments.

Index Terms—Outage probability, generalized selection com-
bining, order statistics, Monte Carlo, importance sampling.

I. INTRODUCTION

Order statistics play an important role in the performance
analysis of wireless communication systems over fading chan-
nels [1]. For instance, in the generalized selection combin-
ing (GSC) model combined with maximum ratio combining
(MRC) diversity technique, the output signal-to-noise-ratio
(SNR) is expressed as the partial sum of ordered channel gains,
i.e. squares of the amplitudes of the fading channels. More
specifically, this scheme selects and combines the L largest
SNRs among a total of N diversity branches [2]. Therefore,
it is of major practical interest to evaluate the cumulative
distribution function (CDF) of the sum of ordered random
variables (RVs) as it can serve to compute outage probability
(OP) values of GSC diversity receivers combined with MRC.

Closed-form expressions of the CDF of the partial sum
of order RVs exist only for particular distributions. In [3], a
unified moment generating function approach has been derived
to determine the joint statistics of partial sums of ordered RVs
and in particular closed-form expressions have been presented
for the exponential RV. A further work on the joint statistics
of partial sum of ordered exponential RVs, that is useful for
instance for the analysis of OP of GSC receivers subject
to self-interference, has been developed in [4]. Based on an
equivalent methodology to [3], closed-form results on partial
sums of ordered Gamma variates have been developed in [5]
which in particular applies to OP computation at the output of

GSC combined with MRC receivers over the Nakagami fading
channel. Further order statistics results in the Nakagami fading
model are in [2], [6].

In the general case and apart from the exponential and
Gamma RVs, closed-form expressions of the CDF of partial
sums of ordered RVs are out of reach for many challeng-
ing distributions and still constitute open problems. This is
for instance the case of the Log-normal RV which models
shadowing [7] and weak-to-moderate turbulence channels in
free space optical communication systems [8]. The Weibull
variate, which has also received an increasing interest and
has been shown to fit realistic propagation channels [9], is
another example where the CDF of sums of order statistics is
not known to admit a closed-form expression.

The use of naive Monte Carlo (MC) method can constitute
a good alternative to estimate the CDF of partial sums of or-
dered RVs. However, since for typical wireless communication
systems, more attention is accorded to small OP values, i.e.
left-tail of the CDF of the sum of ordered RVs, naive MC
method is known to require a substantial amount of samples
to yield an accurate estimate of the left-tail of the CDF. This
motivates our work where we propose a universal importance
sampling (IS) estimator that yields a very precise estimate
of the CDF with small computing cost [10]. We show that
this estimator possesses the bounded relative error property, a
relevant criterion in the context of rare event simulation, under
a mild assumption that is shown to hold for many challenging
distributions. A non exhaustive list includes for instance the
Generalized Gamma (and in particular the Gamma and the
Weibull distributions), and the κ − µ distributions (which
includes the Rice distribution as a particular case). While this
universal estimator has the feature of being applicable to a
wide range of distributions, its efficiency can be significantly
improved for a particular choice of distribution. This statement
is validated by proposing two improvements for two particular
scenarios: the Pareto and the Weibull distributions. Due to page
limitation, we are not including in the current version all de-
tails. However, all proofs are available in our extended journal
version [11] . Moreover, another approach has been developed
in [11] and is compared against the current approach.

The rest of the paper is organized as follows. In Section II,
we describe the problem setting and define the main concepts.
The universal IS estimator is presented in Section III. In the
same section, we present an improvement of this estimator for
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the Pareto and the Weibull scenarios. Finally, some selected
numerical results are shown in Section IV to compare the
performances of the proposed estimators.

II. PROBLEM SETTING

We consider a sequence of i.i.d RVs X1, X2, · · · , XN

with common probability density function (PDF) f(·). Our
objective is to propose efficient MC methods to evaluate the
following quantity

` = P

(
L∑
k=1

X(k) ≤ γth

)
, (1)

where γth is the threshold value, X(k) represents the kth order
statistic such that X(1) ≥ X(2) ≥ · · · ≥ X(N), and L is
an integer satisfying 1 ≤ L ≤ N . The above expression of
` is a useful metric in the performance analysis of wireless
communication systems, operating over fading channels. We
consider transmissions between a single-antenna transmitter
and an N -antennas receiver. Then, the quantity

∑L
k=1X

(k)

corresponds to the total SNR when the receiver selects the L
best individual SNR reaching each of the diversity branches.
Therefore, the quantity ` corresponds to the OP at the output
of GSC combined with MRC receivers.

Unfortunately, a closed-form expression of ` is generally
out of reach for many challenging distributions including,
for instance, the Log-normal and the Generalized Gamma.
Moreover, for small values of `, naive MC simulations is not
practical since it requires a substantial number of simulations
to ensure a precise estimate. Alternatively, IS techniques can
deliver a reliable estimate of ` with fewer number of runs
compared to naive MC simulations. Before delving into the
core of our paper, it is important to define some performance
metrics that serve to measure the efficiency of an unbiased
estimator [10], [12]. Let ˆ̀ be an estimator of ` with E[ˆ̀] = `,
we say that ˆ̀ has bounded relative error when

lim sup
γth→0

var
[
ˆ̀
]

`2
<∞. (2)

Such a property implies that the number of samples needed to
achieve a given accuracy remains bounded regardless of how
small ` is. A stronger criterion is the asymptotically vanishing
relative error property:

lim sup
γth→0

var
[
ˆ̀
]

`2
= 0. (3)

When this criterion holds, the number of simulation runs to
meet an accuracy requirement gets smaller as ` decreases.

III. IMPORTANCE SAMPLING ESTIMATOR

Let X = (X1, · · · , XN )′ and S = {x = (x1, · · · , xN )′ :∑L
k=1 x

(k) ≤ γth} and consider another set S1 that includes
S with the assumption that P (X ∈ S1) is known in closed
form. Then, the probability ` is re-written as

` = P (X ∈ S) = P (X ∈ S1)P (X ∈ S|X ∈ S1) . (4)

Hence, we express the rare event probability ` as the product
of a known approximate term P (X ∈ S1) and a non-rare
event probability P (X ∈ S|X ∈ S1) that can be efficiently
estimated through naive MC simulations. More specifically,
from the above expression, we may write ` as

` = Eg
[
`11(X∈S)

]
, Eg

[
ˆ̀
IS

]
, (5)

where g(·) is the PDF under which X is distributed accord-
ing to its original PDF truncated over S1, `1 is equal to
P (X ∈ S1), and 1(·) is the indicator function. Therefore, ˆ̀IS
is an importance sampling estimator with biasing PDF g(·).

Now, we discuss how the set S1 is selected in order to
achieve a substantial amount of variance reduction. Intuitively,
the set S1 has to be selected such that `1 is close to `. In fact,
the variance of ˆ̀

IS is given by

varg

[
ˆ̀
IS

]
= `1`− `2. (6)

Thus, we clearly point out that the closer `1 to `, the smaller
the variance of ˆ̀

IS is, and hence the more efficient is the
estimator ˆ̀

IS . In particular, the estimator ˆ̀
IS has bounded

relative error when `1/` is asymptotically bounded as γth goes
to 0, and has asymptotically vanishing relative error in the case
where `1/` approaches 1 as γth goes to 0.

In the next subsection, we propose the simplest choice of
S1 that has the feature of being applicable to any distribution
and prove that the bounded relative error holds under a mild
assumption that holds for most of the challenging distributions.

A. Universal IS Estimator

The simplest choice of the set S1 is as follows

S1 = {x = (x1, · · · , xN )′ : x(1) ≤ γth}. (7)

The probability `1 is therefore given by

`1 = (P (X1 ≤ γth))N (8)

The efficiency of this IS estimator is given in the following
proposition
Proposition 1. For distributions satisfying
P (X1 < γth) /P (X1 ≤ γth/L) = O(1) as γth → 0,
we have

lim sup
γth→0

`1
`
<∞ (9)

Hence, the bounded relative error property holds.

Proof. The proof is given in details in [11].

The assumption P (X1 < γth) /P (X1 ≤ γth/L) = O(1)
is not restrictive since it is satisfied by many challenging dis-
tributions such that the Generalized Gamma (which includes
in particular the Gamma and the Weibull distributions), the
Rice, and the κ − µ distributions, see [13]. Moreover, in
the independent and not identically distributed scenario, the
bounded relative error property holds when the assumption
of Propostion 1 is satisfied for each Xi, i = 1, · · · , N . In
particular when L = N , this IS estimator, with the assumption
in Propostion 1, is the first to achieve the bounded relative error
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property in the independent and not identically distributed case
since, to the best of the authors’ knowledge, this property has
been only achieved in the i.i.d setting [14].

Despite its general scope of applicability, the efficiency of
this universal IS estimator can be further improved if we
settle for a particular distribution. This is the aim of the two
following subsections where we propose other choices of S1

in the Pareto and Weibull cases that improve the efficiency of
the universal IS estimator.

B. Pareto Case
1) The Approach: The PDF f(·) of Xi, i = 1, · · · , N , is

given as

f(x) = α (1 + x)
−(1+α)

, x ≥ 0, (10)

with α > 0. It is easy to observe that if we define Yi =
α log (1 +Xi), i = 1, · · · , N , then Yi has an exponential
distribution with mean 1. Using this transformation, ` is re-
written as follows

` = P

(
L∑
k=1

exp
(
Y (k)/α

)
≤ γth + L

)
. (11)

Now, we will take advantage of the convexity of the ex-
ponential function to construct the set S1. Let λi > 0,
i = 1, 2, · · · , L, such that

∑L
i=1 λi = 1, then we get

L∑
k=1

λk exp
(
Y (k)/α− log (λk)

)
≥ exp

(
L∑
k=1

λk

(
Y (k)/α− log (λk)

))
. (12)

Hence, the set S1 is selected as

S1 =
{
y = (y1, · · · , yN )′ :

L∑
k=1

λky
(k)

≤ α(log(γth + L) +

L∑
k=1

λk log(λk))
}
. (13)

We focus now in finding a closed-form expression of `1.
By denoting γ1 = α

(
log(γth + L) +

∑L
k=1 λk log(λk)

)
and

exploiting the following representation of the order statistics
Y (1), · · · , Y (L), see [10]

Y (k) =

N−k+1∑
j=1

Zj
N − j + 1

, (14)

where Z1, · · · , ZN are i.i.d exponential RVs with mean 1, it
follows that `1 is given by

`1 = P

(
N∑
i=1

βiZi ≤ γ1

)
, (15)

where

βi =


L∑
j=1

λj/(N − i+ 1) i = 1 = 1, · · · , N − L+ 1,

N+1−i∑
j=1

λj/(N − i+ 1) i = N − L+ 2, · · · , N.

(16)

Hence, `1 is simply the CDF of the sum of independent
exponential RVs. More specifically, a closed-form expression
of `1 is as follows, see [15],

`1 = 1− (1, 0, · · · , 0) exp (γ1A) (1, 1, · · · , 1)′, (17)

with exp (γ1A) being the matrix exponential of γ1A and

A =


−1/β1 1/β1 0 · · · 0

0 −1/β2 1/β2 · · · 0
...

...
. . . . . .

...
0 · · · 0 −1/βN−1 1/βN−1
0 · · · 0 0 −1/βN


(18)

2) Efficiency: We investigate in this part the efficiency of
the proposed IS scheme. The main result is in the following
proposition.
Proposition 2. Let λk = 1/L for all k ∈ {1, · · · , L}. Then,
we have

lim sup
γth→0

`1
`
<∞. (19)

Thus, the bounded relative error property holds.

Proof. The proof is given in details in [11].

C. Weibull Case

1) The Approach: we consider the case where X1, · · · , XN

are i.i.d Weibull variates with PDF

f(x) =
α

η

(
x

η

)α−1
exp

(
−
(
x

η

)α)
, x > 0, (20)

where η is the scale parameter, α is the shape parameter which
is assumed, in this part, to satisfy 0 < α < 1. Consider now
the RVs Yi = (Xi/η)

α, i = 1, · · · , N . Then, it easy to show
that Yi, i = 1, · · · , N are i.i.d exponential RVs with mean 1.
Hence, ` is re-expressed as

` = P

(
L∑
k=1

(
Y (k)

)1/α
≤ γth/η

)
. (21)

Let λi > 0, i = 1, · · · , L, such that
∑L
i=1 λi = 1. Then, using

the convexity of y → y1/α for 0 < α < 1, we get{
L∑
k=1

λk

(
Y (k)/λαk

)1/α
≤ γth/η

}

⊆


(

L∑
k=1

λ1−αk Y (k)

)1/α

≤ γth/η

 . (22)

Therefore, S1 is selected as

S1 =

{
y = (y1, · · · , yN )′ :

L∑
k=1

λ1−αk Y (k) ≤ (γth/η)
α

}
.

(23)

Using the same idea as in the Pareto case, the value of `1 is
written as

`1 = P

(
N∑
i=1

νiZi ≤ (γth/η)
α

)
, (24)
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with

νi =


L∑
j=1

λ1−αj /(N − i+ 1) i = 1 = 1, · · · , N − L+ 1,

N+1−i∑
j=1

λ1−αj /(N − i+ 1) i = N − L+ 2, · · · , N.

(25)

Thus, a closed-form formula for `1 is given as

`1 = 1− (1, 0, · · · , 0) exp (γ2A) (1, 1, · · · , 1)′, (26)

with γ2 = (γth/η)
α.

2) Efficiency: The main result is provided as follows:
Proposition 3. For 0 < α < 1 and arbitrary values of λk,
k = 1, · · · , L, we have

lim sup
γth→0

`1
`
<∞. (27)

Hence, the bounded relative error property holds.

Proof. The proof is given in [11].

Note that, in contrast to the Pareto case where the bounded
relative error property holds only for equal values of λk, k =
1, · · · , L, the bounded relative error holds in the Weibull case
for arbitrarily values of λk satisfying λk > 0 and

∑L
k=1 λk =

1. Thus, the values of λk may be optimized in order to achieve
the largest amount of variance reduction. In other words, we
may select the values of λk that minimize the value `1 and
hence minimize the variance of the estimator ˆ̀

IS .

IV. NUMERICAL RESULTS AND CONCLUDING REMARKS

We provide in this section some selected simulations in
order to validate the theoretical results and compare the
efficiency of the proposed estimators. We define the relative
error, i.e.. the coefficient of variation using M replicants, of
an estimator ˆ̀ as

RE(ˆ̀) =

√
var
[
ˆ̀
]

`
√
M

. (28)

The simulations are performed for two cases: the Pareto, the
Weibull. Note that the universal IS estimator described in
section III-A is denoted by ˆ̀

IS,u whereas the IS estimators
presented in section III-B and III-C are denoted by ˆ̀

IS

A. Pareto Case

The sequence X1, · · · , XN are i.i.d Pareto RVs with param-
eter α = 1. We aim to estimate the CDF of the sum of L = 4
first order statistics with N = 8 and using the estimators ˆ̀

IS

and ˆ̀
IS,u. The corresponding results are given in Table I

TABLE I
CDF OF THE SUM OF ORDER STATISTICS FOR PARETO CASE WITH N = 8,

L = 4, α = 1 AND M = 5× 105 .
IS estimator Universal IS estimator

γth
ˆ̀
IS RE(ˆ̀IS)% ˆ̀

IS,u RE(ˆ̀IS,u)%

1.5 2.21 × 10−4 6.06 × 10−2 2.19 × 10−4 1.23

1 2.06 × 10−5 5.18 × 10−2 2.11 × 10−5 1.92

0.5 2.13 × 10−7 3.85 × 10−2 2.09 × 10−7 3.82

0.1 1.29 × 10−12 1.79 × 10−2 1.29 × 10−12 8.51

Numerical results show that the quantity RE(ˆ̀IS) is de-
creasing as we decrease the threshold value γth. Hence, ˆ̀

IS

achieves numerically the asymptotically vanishing relative
error property which is stronger than the theoretical result
of bounded relative error proven in Proposition 2. Moreover,
ˆ̀
IS is much more efficient than ˆ̀

IS,u, which only achieves
the bounded relative error as proved in Proposition 1, and
the superior performance is improving as we decrease the
threshold values. Thus, while ˆ̀

IS,u has the feature of being
applicable to a wide range of distributions, its efficiency can be
significantly improved for a particular choice of distribution.

B. Weibull Case

The sequence X1, · · · , XN are i.i.d Weibull RVs with
parameter η and α. Note that we set λk = 1/L, k = 1, · · · , L.
The system parameters are L = 4 , N = 8, α = 0.5, and
η = 1. The corresponding results are given in Table II. From
the values of the relative error, we deduce that both estimators
yield very accurate estimates of the unknown probability `.
Moreover, we validate that they have bounded relative error
which is in accordance with the theoretical results. Further-
more, the above results show that ˆ̀

IS outperforms ˆ̀
IS,u.

TABLE II
CDF OF THE SUM OF ORDER STATISTICS FOR WEIBULL CASE WITH

N = 8, L = 4, α = 0.5, η = 1 AND M = 5× 105 .
IS estimator Universal IS estimator

γth
ˆ̀
IS RE(ˆ̀IS)% ˆ̀

IS,u RE(ˆ̀IS,u)%

1 0.0029 9.96 × 10−2 0.0029 0.4

0.5 3.37 × 10−4 0.1 3.37 × 10−4 0.49

0.1 1.27 × 10−6 0.11 1.27 × 10−6 0.66

0.05 9.79 × 10−8 0.11 9.85 × 10−8 0.71

0.01 2.06 × 10−10 0.11 2.06 × 10−10 0.8

0.005 1.38 × 10−11 0.11 1.39 × 10−11 0.81

Finally, we aim to study the impact of varying L. In fact, we
provide in Table III the results when L = 2 while maintaining
N fixed. The outperformance of the estimator ˆ̀IS compared to
ˆ̀
IS,u is again clear. Moreover, this table shows that increasing
L affects negatively the performance of ˆ̀

IS and ˆ̀
IS,u. Hence,

we deduce that both IS estimators performs better when L is
close to 1.

TABLE III
DF OF THE SUM OF ORDER STATISTICS FOR WEIBULL CASE WITH N = 8,

L = 2, α = 0.5, η = 1 AND M = 5× 105 .
IS estimator Universal IS estimator

γth
ˆ̀
IS RE(ˆ̀IS)% ˆ̀

IS,u RE(ˆ̀IS,u)%

0.355 3.38 × 10−4 4.37 × 10−2 3.37 × 10−4 0.28

0.07 1.28 × 10−6 4.41 × 10−2 1.28 × 10−6 0.34

0.0069 2.03 × 10−10 4.42 × 10−2 2.04 × 10−10 0.37

0.0035 1.44 × 10−11 4.42 × 10−2 1.45 × 10−11 0.38

V. CONCLUSION

We developed efficient importance sampling estimators to
estimate the outage probability at the output of receivers
with generalized selection combining scheme. We provided
a universal importance sampling estimator and showed that
it achieves the bounded relative error property for most of
the well-practical distributions. Second, we showed how this
approach can be improved if we settle for a particular distri-
bution. Finally, we studied via various numerical results the
performances of these estimators.
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[7] G. L. Stüber, Principles of Mobile Communication, 2nd Edition. Nor-
well, MA, USA: Kluwer Academic Publishers, 2001.

[8] S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of
free-space optical transmission with spatial diversity.” IEEE Transac-

tions on Wireless Communications, vol. 6, no. 8, pp. 2813–2819, Aug.
2007.

[9] N. Sagias and G. Karagiannidis, “Gaussian class multivariate weibull
distributions: theory and applications in fading channels,” IEEE Trans-
actions on Information Theory, vol. 51, no. 10, pp. 3608–3619, Oct.
2005.

[10] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo
methods. N.J: Wiley, 2011.

[11] N. Ben Rached, Z. I. Botev, A. Kammoun, M.-S. Alouini, and
R. Tempone, “On the sum of order statistics and applications to
wireless communication systems performances,” Submitted for journal
publication, 2017. [Online]. Available: https://arxiv.org/pdf/1711.04280.
pdf

[12] S. Asmussen and P. W. Glynn, Stochastic simulation : algorithms and
analysis, ser. Stochastic modelling and applied probability. New York:
Springer, 2007.

[13] N. Ben Rached, A. Kammoun, M.-S. Alouini, and R. Tempone, “A
unified moment-based approach for the evaluation of the outage prob-
ability with noise and interference,” IEEE Transactions on Wireless
Communications, vol. 16, no. 2, pp. 1012–1023, Feb 2017.

[14] N. Ben Rached and A. Kammoun and M.-S. Alouini and R. Tempone,
“Unified importance sampling schemes for efficient simulation of outage
capacity over generalized fading channels,” IEEE Journal of Selected
Topics in Signal Processing, vol. 10, no. 2, pp. 376–388, Mar. 2016.

[15] Z. I. Botev, P. L’Ecuyer, G. Rubino, R. Simard, and B. Tuffin, “Static
network reliability estimation via generalized splitting,” INFORMS J. on
Computing, vol. 25, no. 1, pp. 56–71, Jan. 2013.

3913


