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ABSTRACT

We consider the problem of blind channel estimation with
minimal pilot signaling in multi-cell multi-user MIMO sys-
tems with very large antenna arrays at the base station. We
develop a least-squares (LS)-type algorithm that iteratively
extracts channel and data estimates in short-data record multi-
cell massive MIMO environments with no prior channel state
information. The proposed algorithm utilizes a novel initial-
ization step that is based on auxiliary-vector (AV) subspace
decomposition. Simulation studies show that for pilot signal-
ing of about 4%, information data extraction can be achieved
with lower probability of error than eigendecomposition-
based initialization techniques, while for observation records
of sufficient length it nearly attains the error rate performance
achieved with complete knowledge of the channels.

Index Terms— Massive MIMO, channel estimation,
small-sample support

1. INTRODUCTION

Massive multiple-input multiple-output (MIMO) has emerged
as a potential technology candidate for the development and
deployment of next-generation spectrally and energy efficient
wireless networks [1]. Under “favorable” propagation condi-
tions, the channel vectors for different (intra-/inter-cell) users
are considered to become asymptotically orthogonal as the
number of antennas at the base station (BS) grows infinitely
large. As a result, simple signal filtering and detection tech-
niques such as matched filtering (MF) can be utilized to sup-
press multi-user interference under the assumption of accu-
rate knowledge of the channels. In practice, however, perfect
channel-state information (CSI) is not available.

In uplink time-division duplex (TDD) massive MIMO
multi-cell systems, pilot signaling in the form of training se-
quences is used to acquire CSI within the channel coherence
time, therefore, the number of training sequences is equal
to the number of users. Assuming that the number of or-
thogonal pilot sequences is limited by the channel coherence

time interval, the same training sequences must be re-used
in neighboring cells. Interference between pilot sequences
of neighboring cells, also known as the pilot contamination
effect [2], may lead to poor channel estimates, and thus affect
significantly the achievable rate of massive MIMO systems
that rely on linear signal processing [3].

Both blind and supervised channel estimation techniques
[4], [5] have been considered in the literature as potential
means to address pilot contamination and increase spectral
efficiency. Under the assumption of sufficiently large sam-
ple support, blind channel estimation methods [6] that are
based on subspace partitioning of the received samples can
achieve near maximum-likelihood (ML) performance. Blind
channel estimation schemes proposed in [7] and [8] utilize
prior channel information and consider separable uplink sig-
nal and interference subspaces to apply principal component
analysis (PCA) to the uplink data and estimate the channel
vectors up to a scalar ambiguity. A semi-blind technique that
offers unique channel estimates up to a unitary rotation in the
interference-free case is proposed in [9]. The unitary ambigu-
ity is then resolved with minimal pilot signaling. Finally, [10]
offers a maximum a-posteriori (MAP) problem formulation
and proposes a heuristic semi-blind estimation technique that
is not robust in the case of inaccurate subspace information.

In this paper, we develop a light-weight least-squares
(LS)-type algorithm that iteratively extracts channel and
data estimates in multi-cell multi-user massive MIMO sys-
tems. We observe that arbitrary initialization of iterative
least-squares (ILS) techniques may result in poor channel
and data estimates in possibly dense multi-user massive
MIMO systems. We propose to utilize a novel initialization
scheme based on auxiliary-vector (AV) subspace decomposi-
tion [11–13]. The proposed algorithm does not require prior
channel information and offers fast convergence under small
records of data observations. Simulation studies show that the
proposed channel estimation method demonstrates superior
bit-error rate (BER) performance than pilot-based techniques
and ILS methods based on eigendecomposition.
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2. SYSTEM MODEL

We consider a cellular network with L cells, each contain-
ing an M -antenna base-station and K single-antenna users.
We consider equal-power, simultaneous uplink symbol trans-
missions (drawn from a complex constellation A) from all K
users to their respective base-stations in each cell. The down-
converted and pulse-matched filtered received signal vector at
the l-th base-station is given by:

yl[n] =
√
pu

L∑
i=1

Hixi[n] + nl[n] ∈ CM×1 (1)

where pu denotes the average transmit power of each user
at the l-th base-station in the i-th cell, xi[n] ∈ AK×1, n =
1, . . . , N contains the n-th transmitted symbol by all K users
in the i-th cell, and Hi = [hi,1, . . . ,hi,K ] ∈ CM×K models
the channel matrix between the l-th base-station and the K
users in the i-th cell. Finally, nl ∈ CM×1 accounts for ad-
ditive zero-mean and unit-variance white noise. The channel
vector from the k-th user to the l-th base station at the i-th cell
is given by:

hi,k = ai,k

√
βi,k ∈ CM×1 (2)

where ai,k are i.i.d. complex Gaussian, i.e. ai,k ∼ CN (0, IM )
describe the fast fading channel coefficients, and the scaling
factor βi,k describes the quasi-static shadow fading and path-
loss (slow fading). Consequently, the channel matrix Hi can
be written as:

Hi = AiB
1
2
i (3)

where Ai = [ai,1, . . . ,ai,K ] is the M × K matrix of fast-
fading coefficients, and Bi = diag (βi,1, . . . , βi,K) ∈ RK×K

is a diagonal matrix that contains the slow-fading coefficients.
We assume block flat-fading channels, where channel

statistics remain constant over a certain coherence time in-
terval T that is divided into Tul time slots for up-link data
transmissions, and Ttr ≥ K slots for transmission of up-link
pilot/training sequences. The remaining time slots are used
for down-link data transmission. Assuming sample support
of N ≤ Tul symbols, the received up-link signal is written
as:

Yl =
√
pu

L∑
i=1

HiXi + Nl ∈ CM×N (4)

where Xi ∈ AK×N is the up-link data transmitted to the l-th
base station in the i-th cell, and Nl is additive noise with zero-
mean and unit-variance entries. For notational convenience
we rewrite the received signal as:

Yl =
√
puH1X1 +

√
puH̃X̃ + Nl ∈ CM×N (5)

where H̃ = [H2, . . . ,HL] and X̃ = [X2, . . . ,XL], denote
the channel and uplink data matrices of the L− 1 interfering
cells.

The autocorrelation matrix of Yl is given by:

RY , E
{
YlY

H
l

}
= pu

L∑
i=1

AiBiA
H
i + IM (6)

where channel statistics are assumed to remain constant over
a certain coherence time interval T = Tul + Ttr. In practice,
however, the autocorrelation matrix is unavailable. Instead
RY is sample-average estimated over N ≤ Tul snapshots,
say yl[1], . . . ,yl[N ] by:

R̂Y ,
1

N

N∑
n=1

yl[n]y
H
l [n]. (7)

3. CHANNEL ESTIMATION

We first consider the signal model in (5) where the channel
matrix H1 for the cell of interest is unknown. Clearly, H1 can
be estimated in a supervised fashion by utilizing a unit-norm
training sequence of length Ntr for uplink pilot signaling in
each cell. Let Ψi ∈ AK×Ntr , i = 1, . . . , L denote the train-
ing data matrix of the l-th base-station in the i-th cell. The
received training signal is written as:

Ytr
l =

√
ptrH1Ψ1 +

√
ptrH̃Ψ̃ + Ntr ∈ CM×Ntr (8)

where ptr = puNtr, and Ψ̃ = [Ψ2, . . . ,ΨL] ∈ AK(L−1)×Ntr

contains the training sequences that are used in the interfering
cells. The least squares (LS) channel estimate for the cell of
interest is given by:

Ĥ1 = argmin
H1

∣∣∣∣∣∣∣∣ 1
√
ptr

Ytr
l −H1Ψ1

∣∣∣∣∣∣∣∣2
F

(9)

where ||·||F denotes the Frobenius norm. If we consider that
the disturbance Itrl ,

√
ptrH̃Ψ̃H+Ntr is complex Gaussian

with i.i.d. zero-mean and unit-variance entries, then Ĥ1 is the
maximum-likelihood (ML) channel estimate.

The solution to (9) is given by:

Ĥ1 =
1
√
ptr

Ytr
l Ψ†1 (10)

where the superscript (·)† denotes the pseudo-inverse. Treat-
ing the above as the true channel estimate, the minimum-
mean-squared error (MMSE) filter for the cell of interest takes
the following form:

wMMSE,1 = R−1Y Ĥ1 (11)

where RY is assumed to be the true autocorrelation matrix.
However, the columns of Ψ1 are not necessarily orthogonal
due to interference from other cells during the pilot/training
phase. Therefore, channel estimates may be dominated by
estimation errors (i.e. pilot contamination effect) [2, 14].
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Iterative LS procedure

1) d := 0; initialize Ĥ
(0)
1

2) d := d+ 1;

X̂
(d)
1 = argminX1∈AK×N

∣∣∣∣∣∣ 1√
pu

Yl − Ĥ
(d−1)
1 X1

∣∣∣∣∣∣2
F

Ĥ
(d)
1 = 1√

pu
Yl

(
X

(d)
1

)H [(
X

(d)
1

)(
X

(d)
1

)H]−1
3) Repeat Step 2 until X̂

(d)
1 = X̂

(d−1)
1

Fig. 1. Pseudocode for the iterative least-squares algorithm.

Taking the above considerations into account, we begin
by formulating the following joint data detection and channel
estimation problem with the following LS-type solution:

Ĥ1, X̂1 = arg min
X1 ∈ AK×N

H1 ∈ CM×K

∣∣∣∣∣∣∣∣ 1
√
pu

Yl −H1X1

∣∣∣∣∣∣∣∣2
F

(12)

where the last two terms in (5) are considered as disturbance.
Regretfully, the cost for calculating the optimal solution to
(12) is unacceptable, therefore we attempt to reach to a quality
approximation of the optimal solution by alternating LS-type
estimates of Ĥ1 and X̂1 in an iterative fashion. The iterative
procedure is depicted in Fig. 1.

Proper initialization affects greatly the convergence of the
LS algorithm, while convergence to the optimal solution is
not, in general, guaranteed. Although arbitrary initialization
proves to work well, mainly in single user systems, it results
in poor channel and data estimates in possibly dense multi-
user massive MIMO systems. A common initialization strat-
egy in non-linear optimization with mixed variables is to uti-
lize the solution of the continuous problem as an estimate for
the mixed problem. Therefore, a possible initialization point
could be to select the K columns of Ĥ

(0)
1 as the K eigenvec-

tors corresponding to the K largest eigenvalues of the esti-
mated autocorrelation matrix R̂Y. However, in practice, au-
tocorrelation matrix estimates are imperfect, since the matrix
dimensions grow with the number of antennas and channel
statistics change over time. Sample-average estimates of R̂Y

are acquired over a finite number of data observations that
should be at least the same order as the number of antennas at
the BS. Consequently, eigendecomposition-based approaches
may result in high-variance eigenvector estimates for cases
that R̂Y is estimated from a short data record.

4. SMALL-SAMPLE SUPPORT ALGORITHM

We propose to use a non-eigenvector basis for the design of
an iterative LS-type algorithm that exhibits lower computa-
tional complexity and superior BER performance in small-
sample support environments from its eigendecomposition-

Fig. 2. Bit error probability versus SNR for BPSK modula-
tion, M = 100 BS antennas, and pu = SNR/M.

based counterpart. The proposed algorithm is motivated by
current state-of-the-art in adaptive linear filtering theory [11,
12] and avoids any form of explicit or implicit autocorre-
lation matrix inversion, decomposition, or diagonalization.
More specifically, we utilize the AV-type subspace decom-
position to determine an effective initialization point for the
iterative LS-type algorithm presented in Fig. 1. The AV algo-
rithm utilizes sample-average estimated input data statistics,
and provides a sequence of estimates of the ideal MMSE or
minimum-variance-distortionless-response (MVDR) filter for
the given signal processing design application [11, 12].

For any given autocorrelation matrix RY, the initial vec-
tor in our basis calculations, v0 is defined as:

v0 ,
RYh0

‖RYh0‖
(13)

where h0 ∈ CM×1 can be either chosen arbitrarily or ob-
tained from minimal pilot signaling from (10).

After forming the first vector of the basis, we search for
the “auxiliary” vector g1 that maximizes the magnitude of the
statistical cross-correlation between yH

l v0 and yH
l g1 subject

to an orthonormality constraint with respect to v0:

g1 =

(
IM − v0v

H
0

)
RYv0∥∥(IM − v0vH

0

)
RYv0

∥∥ (14)

The proposed basis set is then filled with the intermediate vec-
tor that is defined as:

w1 , v0 − µ1g1 (15)

where the scalar µ1 minimizes the output variance of w1 pro-
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Fig. 3. Bit error probability versus data record size N for
BPSK modulation,M = 100 BS antennas, and SNR = 5 dB.

cessed data E
[∥∥wH

1 Yl

∥∥2], and is given by:

µ1 =
gH
1 RYv0

gH
1 RYg1

(16)

For the rest of K − 1 users at the l-th base station, the
basis is optimized recursively, for n = 2, . . . ,K as:

gn =

(
IM − v0v

H
0 −

∑n−1
i=1 gig

H
i

)
RYwn−1∥∥∥(IM − v0vH

0 −
∑n−1

i=1 gigH
i

)
RYwn−1

∥∥∥ , (17)

µn =
gH
n RYwn−1

gH
n RYgn

, (18)

wn = wn−1 − µngn. (19)

We note that:

span {v0,g1, . . . ,gK−1} = span {h1,1, . . . ,h1,K} (20)

and the vectors {v0,g1, . . . ,gK−1} form an orthonormal ba-
sis of the true signal subspace. Therefore, the iterative LS-
type procedure in Fig. 1 can be initialized to:

Ĥ
(0)
1 = [v0,g1, . . .gK−1] . (21)

5. SIMULATION STUDIES AND CONCLUSIONS

We consider a massive MIMO system with L = 3 cells
and K = 3 single-antenna users per cell. We simulate
the BER performance of BPSK transmissions for user 1
in cell of interest 1. The slow-fading coefficients for the
cell of interest in our simulations are selected as B1 =
diag (0.98, 0.36, 0.47), B2 = diag (0.36, 0.29, 0.05), and
B3 = diag (0.32, 0.14, 0.11). BER performance of the
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Fig. 4. Bit error probability versus number of BS antennas for
SNR = 20 dB, data record N = 50, and dmax = 5 iterations
for the ILS procedure.

proposed iterative LS-type small-sample support (ILS-SSS)
algorithm, that uses 4% of pilot signaling for initialization of
v0 in (13), is compared to (i) an iterative LS-type method,
that is initialized using eigendecomposition and uses a single
training symbol for sign/phase ambiguity resolution, and (ii)
a pilot-based method that uses 10% of pilot signaling.

Figure 2 evaluates the BER achieved by each channel es-
timation method as a function of the common signal-to-noise
ratio (SNR) of all users in all cells. We consider M = 100
BS antennas and the average transmit power of each user is
proportional to 1/M . BER is evaluated for two data records
of N = 50 and N = 150. We observe that the proposed al-
gorithm outperforms both the iterative LS scheme based on
eigedecomposition and the pilot-based method. As expected,
the effectiveness of all methods increases when data record
N increases. Figure 3 depicts the dependence of error prob-
ability on the size of data observations. The user’s SNR is
fixed at 5 dB and the number of BS antennas is M = 100. In-
terestingly, the proposed algorithm is the only one approach-
ing the performance of MF and MMSE (that use the true H1

and RY) for large sample support. Figure 4 demonstrates the
BER performance of the proposed channel estimation algo-
rithm for varying number of BS antennas. The SNR of all
users is set at 20 dB and the maximum number for iterations
in the ILS algorithm is fixed at dmax = 5. The proposed al-
gorithm significantly outperforms both eigendecomposition-
based ILS and pilot-based methods as M increases.

In conclusion, in this work, we propose an iterative LS-
type channel estimation algorithm for massive MIMO sys-
tems that utilizes a novel initialization step based on a non-
eigenvector basis. The proposed algorithm demonstrates su-
perior BER performance in small-sample support environ-
ments with about 4% of pilot signaling.
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