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ABSTRACT

This paper deals with semi-blind (SB) channel estimation
of Multiple-Input Multiple-Output Orthogonal Frequency-
Division Multiplexing (MIMO-OFDM) wireless communi-
cations system in the uplink transmission. Herein, we propose
a new channel estimation approach using the well known EM
technique. More precisely, we derive first the SB EM algo-
rithm in the MIMO case. Then, a parallelizable version of
this algorithm is introduced relying on the decomposition of
the MIMO system into several MISO systems. Finally, we
propose a reduced cost EM version where only the lattice
points in the neighboring of the pilot-based detected symbols
are considered.

Index Terms— MIMO-OFDM, MISO-OFDM, EM algo-
rithm, Channel estimation, Cramèr Rao bound.

1. INTRODUCTION

With advances in technology, demand for high-speed Inter-
net and mobile communications is becoming increasingly
important. A Multiple-Input Multiple-Output Orthogonal
Frequency-Division Multiplexing (MIMO-OFDM) wireless
communications system provides many advantages as the
channel capacity enhancement and the improvement of the
communication reliability. However to achieve good perfor-
mance, the receiver should have an accurate channel state
information (CSI).

Many channel estimation approaches have been devel-
oped and can be divided into three main classes: blind [1],[2],
pilot-based [3] and semi-blind methods [4]. For the latter
class, it is shown in [5] that the SB approach improves the
throughput by reducing the training sequences up to 95%.
Furthermore, in [6], semi-blind approaches are used to re-
duce the transmitted power (’green communications’).

The objective of this paper is to propose an efficient semi-
blind channel estimation for MIMO-OFDM system based on
the EM algorithm. Indeed, the latter is a widely used tech-
nique that has been already considered in the literature for
the MIMO blind channel estimation. In particular, Our EM-
based algorithm is distinct from the previous ones ([7], [8])

in term of the channel parameters to be estimated. Instead of
estimating the subcarrier channel coefficients, we estimate di-
rectly the channel taps so one can obtain a significant gain as
analyzed in [9].

Furthermore, we propose two EM-based algorithms. The
first one considers the MIMO-OFDM block as one system
to estimate one channel vector through the iterative process.
The second one, important for the case of parallel processing
machine, decomposes the MIMO-OFDM system into parallel
MISO-OFDM systems to estimate the different vector chan-
nel taps independently for each receiver. In the case of un-
derdetermined system (i.e. number of transmitters is greater
than the receivers one), where the traditional methods could
not estimate the transmit data, we succeed through the two
proposed EM-based algorithms to estimate the channel taps
and data properly.

Another originality of this work, consists of a simplified
EM-based, denoted S-EM, method that allows to reduce the
computational heaviness based on an initial estimation of the
channel and the data using the pilots.

2. DATA MODEL

We consider a MIMO system composed of Nt transmit an-
tennas and Nr receive antennas. The transmitted signal is
assumed to be an OFDM one, composed of K samples (sub-
carriers) and L Cyclic Prefix (CP) samples. The CP length
is assumed to be greater or equal to the maximum multipath
channel delay denoted N (i.e. N ≤ L). After removing the
CP and taking the K-point DFT, the received signal at the k-
th sub-carrier by the r-th receive antenna, denoted yr(k), is
given by:

yr (k) =

Nt∑
i=1

N−1∑
n=0

hri(n)wnkK di(k)+vr(k) 0 ≤ k ≤ K−1,

(1)
where di(k) is the transmitted data at subcarrier k by the
i-th transmitter. The noise v is assumed to be additive
independent white Circular Complex Gaussian satisfying
E
[
v(k)v(i)

H
]

= σ2
vIKδki; (.)H being the Hermitian op-
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erator; σ2
v the noise variance; IK the identity matrix of size

K ×K and δki the Kronecker symbol. hri(n) represents the
n-th channel coefficient between the i-th transmitter and the
r-th receiver. wnkK represents the (n, k)-th coefficient of the
K-DFT point matrix.
Equation (1) can be rewritten in the following matrix form:

yr (k) = wT (k)Hrd(k) + vr(k), (2)

where d(k) = [d1(k), · · · , dNt
(k)]

T ,

and w(k) =
[
1 wkK , · · · , w

(N−1)k
K

]T
. Hr is given by

Hr =

 hr1(0) · · · hrNt
(0)

...
. . .

...
hr1(N − 1) · · · hrNt

(N − 1)

 . (3)

When considering all the outputs in a single vector y(k) =

[y1(k), · · · , yNr
(k)]

T , the previous model can be written in
the following compact form:

y (k) = W(k)Hd(k) + v(k), (4)

where W(k) = INr
⊗wT (k) (⊗ being the Kronecker prod-

uct) and H = [HT
1 , · · · ,HT

Nr
]T

In the sequel the received OFDM symbols are assumed
to be i.i.d and arranged according to the comb-type scheme
with Kp sub-carriers dedicated to pilots corresponding (upon
appropriate permutation) to k = 0, · · · ,Kp − 1 and Kd data
sub-carriers. Also, we denote by D (respectively |D|) the
finite set of all possible realizations of the data vector d (re-
spectively its cardinal).

3. ML CHANNEL ESTIMATION

In the sequel, the unknown parameters are grouped in θ con-
taining the channel taps (vec (H) or vec (Hr)) and the noise
power σv2 (for simplicity, the signal power is assumed to be
known).

3.1. EM algorithm

The EM algorithm looks for finding the ML estimate of the
unknown parameters using the marginal likelihood of the ob-
served data y by an iterative optimization process.

Considering y as the incomplete data and d as the missing
data, the EM-algorithm is based on the two following steps:

• Expectation step (E-step):

Q
(
θ,θ[i]

)
= Ed|y,θ[i] [log p (y|d,θ)] (5)

• Maximization step (M-step):

θ[i+1] = arg max
θ

Q
(
θ,θ[i]

)
(6)

This process is proven in [10] to increase the ML value, i.e
p (y|d,θ), and hence leads to the algorithm’s convergence to
a local maximum point.

3.2. MIMO channel estimation

Under the data model assumption, the likelihood function is
expressed by:

p (y;θ) =
Kp−1

Π
k=0

p (y (k) ;θ)
K−1
Π

k=Kp

p (y (k) ;θ) , (7)

where p (y (k);θ) ∼ N
(
W(k)Hdp(k), σ2

vI
)
, for

k = 0, · · · , Kp − 1, dp(k) being the pilot vector at the k-th
sub-carrier, and

p (y (k) ;θ) =

|D|∑
ξ=1

p (y (k)|dξ;θ) p (dξ), (8)

with p (y (k)|dξ;θ) ∼ N
(
W(k)Hdξ, σ

2
vI
)

3.2.1. E-step

After some straightforward derivations, Q
(
θ,θ[i]

)
can be

written as:

Q
(
θ,θ[i]

)
=
Kp−1∑
k=0

log p (y(k)|dp(k);θ)

+
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ

(
θ[i]
)

log p (y(k)|dξ;θ),

(9)

where

αk,ξ

(
θ[i]
)

=
p
(
y (k) |dξ;θ[i]

)
p (dξ)

|D|∑
ξ′=1

p
(
y (k) |dξ′ ;θ[i]

)
p (dξ′)

. (10)

In this paper, all the realizations dξ are equi-probable and
hence the term p (dξ) can be ignored in equation (10).

3.2.2. M-step

The goal of the M-step is to find θ, i.e. the channel matrix H
and the noise power σ2

v that maximizes the auxiliary function:

θ[i+1] = arg max
θ

Q
(
θ,θ[i]

)
. (11)

By setting to zero the derivative ofQ
(
θ,θ[i]

)
in (9) w.r.t.

H, one obtains:

vec
(
H[i+1]

)
=

[
Kp−1∑
k=0

(
dp(k)

∗
dp(k)T ⊗W(k)

HW(k)
)

+
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ

(
θ[i]
)(

dξ
∗dξ

T ⊗W(k)
HW(k)

)]−1
×

[
Kp−1∑
k=0

vec
(
W(k)

H
yp (k)dp(k)

H
)

+
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ

(
θ[i]
)
vec

(
W(k)

H
y (k)dξ

H
)]

.

(12)
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Fig. 1: MIMO-OFDM system model using Nr parallel
MISO-OFDM systems.

Similarly, setting to zero the derivative of Q
(
θ,θ[i]

)
w.r.t. σv2 leads to:

{σv2}[i+1] = 1
K

(
Kp−1∑
k=0

∥∥∥yp (k)−W(k)H[i+1]dp(k)
∥∥∥2

+
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ

(
θ[i]
)∥∥∥y (k)−W(k)H[i+1]dξ

∥∥∥2) .
(13)

The algorithm can be summarized as below:

Step 1 : Initialization θ[0] =

[
vec

(
H[0]

)T
, {σ2

v}[0]
]

which

represent the standard pilot-based channel and noise es-
timates;

Step 2 : Estimate H[i+1] using H[i] and {σ2
v}[i] according to

equation (12);

Step 3 : Estimate {σ2
v}[i+1] using H[i+1], H[i] and {σ2

v}[i]
according to equation (13);

Step 4 : repeat from step 1 using θ[i+1];

Remark: In the case of blind channel estimation, either in the
MIMO or MISO approaches, one can ignore the pilot’s terms
in equations (12) and (13) and take into account only the data
OFDM symbols.

In the sequel, the MIMO system is sub-divided into Nr
parallel MISO systems, for which the EM is applied in a par-
allel scheme.

3.3. MISO channel estimation

Equations (2) and (3), allow the parallel decomposition of
the MIMO system into Nr MISO-OFDM systems, as illus-
trated in Fig. 1. The estimation of the global parameters of the
MIMO-OFDM system is done by concatenating the parame-
ters of the Nr parallel MISO-OFDM system. The parameters
of the r-th MISO-OFDM system are denoted as:

θr =
[
vec (Hr)

T
, σ2

vr

]
(14)

The computation of Hr and σ2
vr

, using the EM algorithm,
leads to the same expressions as in the MIMO case given in
the previous subsection where H and W are substituted by
Hr and w, respectively.

Parameters Specifications
Number of pilot sub-carriers Kp = 8

Number of data OFDM symbols Nd = 16
Number of data sub-carriers Kd = 56

Pilot signal power σ2
p = 13 dBm

Data signal power σ2
d = 10 dBm

Number of sub-carriers K = 64

Table 1: Simulation parameters.

3.4. Simplified EM algorithm

The computational heaviness in equations (12) and (13) is due
to the summation taking all the possible realizations of the
data vector d (i.e. |D|). In this subsection we propose a sim-
plifying method to reduce the summation set from |D| (which
growth exponentially with the numberNt) to another reduced
summation set of size |D′| proportional to Nt.

The proposed approach is summarized in Fig. 2, where
we use the Decision Feedback Equalizer technique (DFE) to
re-estimate the channel using the EM-based algorithm. The
first step consists of estimating the data d̂d using only pilots
to estimate ĥop followed by Zero Forcing Equalizer (ZF) and
hard decision. Using d̂d, the summation in equations (12) and
(13) is done on a reduced size set |D′| corresponding to the
neighborhood of d̂d defined here as the points differing from
d̂d by at most one entry.

LS 
Channel Estimation 

Equalization +
Decision

y
pd

ˆ
oph ˆ

dd Simplified EM
Algorithm

ˆ S EM
SB
−h

Fig. 2: Simplified EM algorithm.

4. SIMULATIONS RESULTS

Herein, we analyze the performance of the EM blind and
semi-blind channel estimators in terms of the normalized
Root Mean Square Error (NRMSE) for the two system
configurations presented in this paper i.e MIMO system
(hEMSB (MIMO) and hEMB (MIMO)) and parallel MISO
systems (hEMSB (MISO//) and hEMB (MISO//)).

A (2 × 2) MIMO-OFDM communications system with
BPSK data is considered. The IEEE 802.11n training se-
quence and channel model are used in this paper as pilots [11].
Simulation parameters are summarized in Table 1, where the
used IEEE 802.11n channel model is of type B with path de-
lay [0 10 20 30] µs and an average path gains of [0 -4 -8 -12]
dB.

Fig. 3 provides a comparison between the two algorithms
presented in this paper and the performance limits defined
by the Cramèr Rao bound CRB, detailed in [5] versus the
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SNR. The curves show clearly that both blind and semi-
blind channel estimation algorithms give better results than
the case where only pilots are used to estimate the channel,
i.e the least square estimator (hLSOP ). Also, the semi-blind so-
lutions show the best results (close to the CRB) with a slight
advantage in favor of the MIMO version.

Fig. 4 represents the simulation results in the case of 4×2
underdetermined MIMO system, where we can see that, even
in this configuration the EM-based algorithms perform well.

For a given SNR = 10 dB (around the operating mode
of the IEEE 802.11n), Fig. 5 presents the behavior of EM
algorithms when increasing the number of data OFDM sym-
bols (Nd). The analysis of the curve confirms that when the
number of data OFDM symbols increases, the performance
of the EM algorithm in the blind and semi-blind approaches
improves. One can see that in the MISO case one has taken
advantage of the parallel computational architecture but at the
cost of a reduced channel estimation quality as compared to
the MIMO case.

In Fig. 6, we present the effect of the used approximation
on the performance of the S-EM algorithm. We can see that
the degradation is relatively minor for a computational gain
that is significant.

5. CONCLUSION

This paper introduced the EM based blind and semi-blind
channel identification in MIMO-OFDM wireless communica-
tions system. Through the simulation results, we have shown
that the EM (blind or semi-blind) performs better than the pi-
lot based channel estimation method. The decomposition of
the MIMO system into Nr parallel MISO systems gives good
results and is suitable for parallel machine processing allow-
ing reduction of the EM execution time. The latter, is further
reduced by a simplifying method employing a first estimation
of the channel and transmitted data using the pilots.
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