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ABSTRACT

We investigate the impact of having additional information in a form
of linear constraints in the channel identification problem. With
those constraints taken into account, the problem turns into solving a
linear system that is associated with a block matrix where each sub-
matrix is either a Gabor system matrix or a matrix prescribed by the
linear constraints. So, the identifiability hinges on whether one can
find some generating windows of the Gabor systems for which the
full linear system is solvable. We show that in single-input single-
output (SISO) settings as well as in multiple-input multiple-output
(MIMO) settings, linear constraints consisting of a single equation
are beneficial for channel identification, as there always exist win-
dows for which the corresponding full linear system is solvable.
Concerning multiple linear constraints, however, there exists a set
of linear constraints with two equations for which the full linear sys-
tem is singular for all choices of windows. In the SISO case, we
also provide some sufficient conditions on the linear side constraints
under which the full linear system is solvable.

Index Terms— Channel identification, operator sampling, op-
erator Paley–Wiener space, time-frequency analysis.

1. INTRODUCTION

The identification of time-varying channels is an important problem
in communications with a long research history. In a series of papers
[1–4] necessary and sufficient conditions for the identifiability of the
channel in terms of its spreading function were derived and suffi-
cient conditions for appropriate test signals were given. More re-
cently, ideas from compressive sampling where incorporated to iden-
tify sparsely supported channels with unknown support [5, 6] and
extensions to stochastic channel models where investigated [7, 8].

During the last decades communication systems with multiple-
input and multiple-output (MIMO) antennas gained in importance
because the channel capacity of such systems scales, in principle,
linearly with the minimum of the number of input and the number
of output antennas [9]. However, to achieve this potentially huge
gain in channel capacity the different antennas at the input and out-
put have to be uncorrelated. This requires a sufficiently large an-
tenna spacing as well as a sufficiently rich scattering environment
of the communication channel [10–12]. Apart from the increased
capacity, the deployment of a very large number (up to hundreds
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or thousands) of antennas, operating coherently and adaptively, will
help to simplify the signal processing, and to improve the energy ef-
ficiency as well as the reliability of the communication link. This
paradigm, known as massive MIMO gained much interest over the
last years [13].

With respect to the channel identification problem, a MIMO
channel is much more demanding than a SISO channel [4]. Assum-
ing a system withN inputs andM outputs, one has to identifyN ·M
individual sub-channels. Nevertheless, due to potential coupling of
antennas and due to fading correlations, these sub-channels are of-
ten not completely independent. In many cases, the relations be-
tween the different channels can be characterized analytically, e.g. in
terms of an S-parameter model [14] or due to the particular channel
model [15].

This paper investigates the channel identification problem for
SISO and MIMO channels under the assumption of known corre-
lations between the individual sub-channels. These correlations are
taken into account by linear side constraints. Our approach allows to
incorporate all kinds of linear relations between the different chan-
nels, including antenna coupling and fading correlations but also side
constraints on the spreading function which are not induced by mul-
tiple antennas but by some constraints on the spreading function of
the channel.

2. BACKGROUND AND PROBLEM FORMULATION

In the following, we shall describe the channel identification prob-
lem, introduce the operator classes of interest, and develop the nec-
essary mathematical background.

2.1. Channel identification

To identify a channel prior to using it for communication is a classi-
cal problem in electrical engineering. We formalize this as follows.

Definition 1: A class of linear operators H ⊆ L(CL1 ,CL2) is
called identifiable if there exists a vector c ∈ CL1 with the prop-
erty that the map

Φc : H −→ CL2 , H 7→ Hc

is injective. Such a vector c is called an identifier forH.

IfH is an identifiable linear space, then it is necessarily of dimension
less or equal to L2.
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2.2. Identifiability of operator Paley–Wiener spaces in finite di-
mensions

Important communication channels, such as satellite, radio, mi-
crowave, infrared and the like, can be modeled in finite dimensions
as linear combinations of discrete time-frequency shift operators
M `T k with k, ` = 0, . . . , L− 1 and where T ,M : CL → CL are
the cyclic 1 time shift and frequency shift operators defined by

Tx = (x1, . . . , xL−1, x0, ) and

Mx = (ω0x0, ω
1x1, . . . , ω

L−1xL−1) ,

respectively, where ω = e2πi/L. Since {M `T k}L−1
k,`=0 forms a basis

for L(CL,CL), every channel can be written as

H =
∑L−1
k,`=0 η(k, `)M `T k, (1)

whose characteristics are encoded in its unique coefficients η =
η(H) = {η(k, `)}L−1

k,`=0 (called the spreading coefficients of H).
Each coefficient η(k, `) can be seen as a gain factor associated to a
transmission path with time-delay k and frequency shift l caused by
the Doppler effect. Then the channel identification problem seeks a
vector c ∈ CL for which operators of the form (1) with a certain
sparsity prior on η can be uniquely recovered from the channel out-
put Hc. This amounts to a question on degrees of freedom in the
coefficients η (namely the sparsity level) and linear independence of
vectorsM `T kc that correspond to the nonzero entries of η.
Definition 2: For Λ ⊆ ZL × ZL, we define the single-input single-
output operator Paley–Wiener space2 by

OPW (Λ) = span{M `T k : (k, `) ∈ Λ}

= {H ∈ L(CL,CL) : suppη ⊆ Λ}.

Establishing identifiability of operator classes such asOPW (Λ)
is not always trivial, for example, the following result was estab-
lished for L prime ten years prior to its full resolution.
Theorem 1 ( [16, 17]): The space OPW (Λ) is identifiable if and
only if |Λ| ≤ L.

Apart from the the SISO model given by (1), we consider also
the more general model for systems with multiple inputs and mul-
tiple outputs. In the N -input M -output case, the communication
channelH consists of MN subchannels:

H =

 H1,1 ··· H1,N

...
...

HM,1 ··· HM,N

 ,
where each subchannel Hm,n is of the form (1). Then the cor-
responding channel identification problem seeks an identifier c =
(c(1), . . . , c(N)) ∈ (CL)N for which every operator can be uniquely
recovered from the output

Hc =

 H1,1 ··· H1,N

...
...

HM,1 ··· HM,N

 c(1)

...
c(N)

 =

 ∑N
n=1H1,n c

(n)

...∑N
n=1HM,n c

(n)

 .
1Cyclic time shifts are certainly not an accurate representation of time

delays that occur in communication channels. The transition from non-cyclic
to cyclic shifts is achieved by applying a cyclic prefix.

2The terminology operator Paley–Wiener space stems from the analogous
time-continuous identification problem. Here, OPW (S) denotes the space
of Hilbert–Schmidt operators on L2(R) with the property that its Kohn–
Nierenberg symbol is bandlimited to S ⊂ R2, that is, the operators spreading
function is supported on S. The results presented in this paper generalize to
results on operator identification and operator sampling for SISO and MIMO
operator Paley–Wiener spaces in the continuous setting.

We will denote by ηm,n = [ηm,n(k, `)]L−1
k,`=0 ∈ CL

2

the spreading
coefficients of the subchannelHm,n.

Definition 3: For Λ = [Λm,n]Mm=1
N
n=1 with Λm,n ⊆ ZL × ZL,

define the MIMO operator Paley–Wiener space OPW (Λ) by

OPW (Λ) = [OPW (Λm,n) ]Mm=1
N
n=1.

By definition, the operator space OPW (Λ) is identifiable if there
exists a c = (c(1), . . . , c(N)) ∈ (CL)N such that the linear map
H 7→ Hc is injective on OPW (Λ), i.e., H ∈ OPW (Λ) and
Hc = 0 implyH = 0.

Theorem 2 ( [4, 18]): The space OPW (Λ) is identifiable if and
only if

∑N
n=1 |Λm,n| ≤ L for all m = 1, . . . ,M .

The identifiability results presented above depend highly on the
invertibility of submatrices of Gabor system matrices.

2.3. Gabor system matrices

Given a window c ∈ CL, the full Gabor system matrix G(c) is the
L×L2 matrix whose columns are the time-frequency shiftsM `T kc
where k, ` = 0, . . . , L− 1. That is

G(c) = [ D0WL D1WL · · · DL−1WL ] ,

wherein Dk = diag(T kc) = diag(ck, . . . , cL−1, c0, . . . , ck−1)

andWL = (e2πinm/L)L−1
n,m=0 is the L× L Fourier matrix. For any

Λ ⊂ ZL×ZL, we denote byG(c)|Λ the submatrix ofG(c) formed
with columns indexed by Λ, i.e.,G(c)|Λ = [M `T kc](k,`)∈Λ.

The spark of a matrix A ∈ Cm×N with m < N is the size of
the smallest linearly dependent subset of columns, i.e., spark(A) =
min{‖z‖0 : Az = 0, z 6= 0}. We say that the matrix A has full
spark if spark(A) = m+1. Here and in the following, ‖z‖0 counts
the number of nonzero entries in a vector z.

Theorem 1 is equivalent to the existence of Gabor matrices with
full spark [16, 17], while Theorem 2 is equivalent to the following
result.

Proposition 3 ( [18, 19]): For every L,N ∈ N there exists a dense,
open subset SN ⊂ (CL)N of full measure such that the block

matrix
[
G(c(1)) G(c(2)) · · · G(c(N))

]
has full spark for all

(c(1), c(2), . . . , c(N)) ∈ SN .

3. CHANNEL IDENTIFICATION WITH SIDE
CONSTRAINTS

In this paper, we aim to recover operatorsOPW (Λ) even in the case
where

∑N
n=1 |Λm,n| > L for somem. This requires to consider ad-

ditional a priori information on the operator that we aim to identify.
To motivate our choice of linear side constraints, we give two simple
examples.

Example 1: In the two-input single-output case (N = 2, M = 1),
Theorem 2 states the necessary condition |Λ1,1| + |Λ1,2| ≤ L for
OPW (Λ) to be identifiable. However, if some components of the
subchannelsH1,1 andH1,2 are known to be identical, for example,
if (0, 0) ∈ Λ1,1 ∩ Λ1,2 and η1,1(0, 0) = η1,2(0, 0), then we may
expect thatOPW (Λ) is identifiable even if |Λ1,1|+ |Λ1,2| = L+1
by counting the degrees of freedom. Below we shall show that this
is indeed true, leading to identifiability of the corresponding space
OPW (Λ) with the prescribed constraints.
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Example 2: In the single-input two-output case (N = 1, M = 2),
Theorem 2 gives the necessary condition |Λ1,1| ≤ L and |Λ2,1| ≤ L
for OPW (Λ) to be identifiable. However, if the subchannels H1,1

and H2,1 are known to be partially identical, say, η1,1|S = η2,1|S
for some S ⊂ Λ1,1∩Λ2,1, then it turns out thatOPW (Λ) is identi-
fiable if max{|Λ1,1\S|, |Λ2,1|} ≤ L, or max{|Λ1,1|, |Λ2,1\S|} ≤
L, or max{|Λ1,1\S| + |Λ2,1\S|, |S|} ≤ L. This allows the iden-
tification of OPW (Λ) even in the case S = Λ1,1 ⊂ Λ2,1 with
|Λ1,1| = L and |Λ2,1| = 2L, where the classical requirements are
clearly violated.

These two examples demonstrate that a priori knowledge on
correlations of subchannels can contribute to the channel identifi-
cation.

3.1. Problem formulation

In the SISO case, we have for a fixed c ∈ CL

y = Hc =

L−1∑
k,`=0

η(k, `)M `T kc = G(c)η, (2)

and we formulate the linear side constraints as b = Aη. Combining
these equations, one obtains the linear system[

y
b

]
=

[
G(c)
A

]
η.

In the MIMO case, rewriting eachHm,nc
(n) as in (2) yields that[ y1

...
yM

]
= Hc =

 ∑N
n=1H1,n c

(n)

...∑N
n=1HM,n c

(n)



=

 ∑N
n=1G(c(n))η1,n

...∑N
n=1G(c(n))ηM,n

 =

 G̃ 0 ··· 0
0 G̃ ··· 0

...
...

. . .
...

0 0 ··· G̃


 η1
η2

...
ηM

 ,
where G̃ = [G(c(1)) | · · · |G(c(N))] ∈ CL×NL

2

and ηm =

{ηm,n}Nn=1 ∈ (CL
2

)N . Similarly, we formulate the linear side
constraints as b =

∑M
m=1Amηm, where ηm = {ηm,n}Nn=1 ∈

(CL
2

)N . Combining all these equations, we have
y1

y2

...
yM

b

 =


G̃ 0 ··· 0
0 G̃ ··· 0

...
...

. . .
...

0 0 ··· G̃

A1 A2 ··· AM



η1

η2

...
ηM

 .

These observations immediately lead to the following result.
Theorem 4: (a) The SISO operator Paley–Wiener space OPW (Λ)
with side constraints b = Aη is identifiable if and only if there exists
c ∈ CL for which the matrix

[
G(c)|Λ
A|Λ

]
is injective.

(b) The MIMO operator Paley–Wiener space OPW (Λ) with side
constraints b =

∑M
m=1Amηm is identifiable if and only if there

exists c = (c(1), . . . , c(N)) ∈ (CL)N for which the matrix
G̃|Λ1

0 ··· 0

0 G̃|Λ2
··· 0

...
...

. . .
...

0 0 ··· G̃|ΛM

A1|Λ1
A2|Λ2

··· AM |ΛM

 , (3)

where G̃ = [G(c(1)) | · · · |G(c(N))] ∈ CL×NL
2

and Λm =
{Λm,n}Nn=1 ∈ (ZL × ZL)N , is injective.

Clearly, this theorem leads us to investigate matrices of the form[
G(c)|Λ
A|Λ

]
in the SISO case, and matrices of the form (3) in the

MIMO case.

4. IDENTIFIABILITY RESULTS FOR SISO

We first consider the case of SISO channels. Let us begin with an
example of a matrix A ∈ CL×L

2

such that the matrix
[
G(c)|Λ
A|Λ

]
is

not injective for all c ∈ CL and with Λ ⊂ ZL × ZL of size 2L.

Example 3: For

A = [IL |M−1 | · · · |M−(L−1)] ∈ CL×L
2

,

the 2L×L2 matrix
[
G(c)
A

]
is rank deficient for all c ∈ CL. Indeed,

the sum of all rows of G(c) is
∑L−1
`=0 (

∑L−1
k=0 ω

k`ck)v`, where v`
denotes the `th row vector ofA (ordered from top to bottom), there-
fore, the rows of

[
G(c)
A

]
are linearly dependent.

In the simplest case where the matrixA consists of a single row
vector, we show below that given any set Λ ⊂ ZL × ZL of size
L + 1 there exists a c ∈ CL such that

[
G(c)|Λ
A|Λ

]
is injective. This

fact indicates that linear constraints consisting of a single nontrivial
equation always contribute to the SISO channel identification.

In the following, we denote by S the set of all c ∈ CL for which
G(c) has full spark.

Theorem 5: Let Λ ⊂ ZL × ZL with L+ 1 ≤ |Λ| ≤ 2L. Then

span
{

kerG(c)|Λ : c ∈ S
}

= CΛ.

Corollary 6: For any Λ ⊂ ZL × ZL with |Λ| = L + 1 and a ∈
CΛ\{0} there exists a c ∈ CL for which the (L + 1) × (L + 1)

matrix
[
G(c)|Λ
a∗

]
is invertible.

We give a proof for this result but skip the more involved derivation
of Theorem 5.

Proof: Suppose that for some subset Λ ⊂ ZL × ZL of size L + 1
and some a ∈ CΛ\{0} there exists no such c ∈ CL. Then for

any c ∈ S the matrix
[
G(c)|Λ
a∗

]
is not invertible, which means that

a∗ is in the row space of G(c)|Λ as the rows of G(c)Λ are linearly
independent for c ∈ S. The fundamental theorem of linear algebra
and Theorem 5 imply

a ∈
⋂
c∈S

ranG(c)|∗Λ =
⋂
c∈S

kerG(c)|⊥Λ = {0},

which is a contradiction.

Unfortunately, Theorem 5 does not allow us to draw conclusions
concerning multiple linear constraints. Below we give an example of
Λ ⊂ ZL×ZL with sizeL+2 and linear constraints of two equations
for which the matrix

[
G(c)|Λ
A

]
is always singular. This clarifies that

the statement of Corollary 6 cannot be extended to multiple linear
constraints.
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Example 4: LetL = 5 and Λ = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)}.
The matrix

[
G(c)|Λ
A

]
=


c0 c0 c0 c1 c1
c1 ωc1 ω2c1 c2 ωc2
c2 ω2c2 ω4c2 c0 ω2c0
1 1 1 0 0
0 0 0 1 1


is singular for all c = (c0, c1, c2)T ∈ C3; indeed, the first row is
always linearly dependent with the fourth and the fifth row.

Note that increasing the ratio of the size of Λ with the number of
constraints may help to keep the intersection of the row space of A
and the row space ofG(c)|Λ trivial. However, Example 3 shows that
there exists an L-dimensional row space that intersects nontrivially
with the row space ofG(c) for every c ∈ S.

4.1. Sufficient conditions

Although it is impossible to extend Corollary 6 to multiple linear
constraints (Example 4), it is still possible that for some Λ ⊂ ZL ×
ZL andA exists c such that

[
G(c)|Λ
A

]
is injective. In the following,

we present some conditions on Λ ⊂ ZL × ZL andA that guarantee
the existence of such c.
Theorem 7: Let A = [A0 |A1 | · · · |AL−1] ∈ CL×L

2

, where
each Ak is an L × L matrix. If detAk 6= (−1)L−1 · detAk+1

for some k, then the 2L × L2 matrix
[
G(c)
A

]
has full rank for

a.e. c ∈ CL. Further, if L is a prime, it is sufficient that detAk 6=
(−1)L−1 detA` for some distinct k and `.

For the matrixA given in Example 3, the 2L×L2 matrix
[
G(c)
A

]
is rank deficient for all c ∈ CL. Note that since det(M−k) =

(−1)k(L−1) for k = 0, . . . , L− 1, the conditions of Theorem 7 are
not satisfied. However, as soon as one of the submatrices of A is
scaled by a non-unit constant, e.g., if

A = [2IL |M−1 | · · · |M−(L−1)] ∈ CL×L
2

,

it follows from Theorem 7 that the matrix
[
G(c)
A

]
has full rank for

almost every c ∈ CL.
To state our next result, we need the following definitions.

Definition 4: To each Λ ⊂ ZL × ZL, we associate an L-tuple
τ(Λ) = τ = (τ0, τ1, . . . , τL−1), where τk = τk(Λ) := |Λ ∩
({k} × ZL)| is the number of elements of the form (k, `), ` ∈ ZL
contained in Λ.

It is clear that for every Λ ⊂ ZL × ZL, the associated L-tuple
τ = τ(Λ) satisfies τ ∈ (ZL)L and ‖τ‖1 = |Λ| (referred to as the
size of τ ). We also define a partial order on the set of all L-tuples:
τ = (τ0, τ1, . . . , τL−1) � τ ′ = (τ ′0, τ

′
1, . . . , τ

′
L−1) if and only if

τj ≤ τ ′j for all j. To each L-tuple of size L, we associate an integer-
valued index number defined up to modulo L.
Definition 5: For any τ = (τ0, τ1, . . . , τL−1) ∈ (ZL)L with
‖τ‖1 = L, the index number of τ is defined as ind(τ ) =

L(L− 1)/2 +
∑L−1
j=0 j · τj modulo L.

Theorem 8: Let Λ̃ ⊂ ZL × ZL be of size R (> L). Assume that
there exists a subset Λ ⊂ Λ̃ of size L with

(i) τj(Λ) = τj(Λ̃) whenever τj(Λ) 6= 0;

(ii) ind(τ ′) 6= ind(τ(Λ)) for every L-tuple τ ′ � τ(Λ̃) of size L
different from τ(Λ).

Given any full spark matrix A of size (R − L) × R, the vectors

c ∈ CL for which theR×R matrix
[
G(c)|

Λ̃
A

]
is invertible constitute

a dense open subset of CL with full Lebesgue measure.

To support the result, we give some examples.

Example 5: (a) Let L = 5 and Λ̃ = {(0, 0), (0, 1), (0, 2), (0, 3),

(0, 4), (1, 0), (1, 1), (1, 2), (1, 3)}. Then τ(Λ̃) = (5, 4, 0, 0, 0) and
the matrixG(c)|Λ̃ is given by


c0 c0 c0 c0 c0 c1 c1 c1 c1

c1 ωc1 ω2c1 ω3c1 ω4c1 c2 ωc2 ω2c2 ω3c2

c2 ω2c2 ω4c2 ω6c2 ω8c2 c3 ω2c3 ω4c3 ω6c3

c3 ω3c3 ω6c3 ω9c3 ω12c3 c4 ω3c4 ω6c4 ω9c4

c4 ω4c4 ω8c4 ω12c4 ω16c4 c0 ω4c0 ω8c0 ω12c0

 .

It is easy to see that the set Λ = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)}
satisfies the conditions of Theorem 8. Therefore, given any full spark
matrix A of size 4 × 9, the 9 × 9 matrix

[
G(c)|

Λ̃
A

]
is invertible for

almost every choice of c in C5.
(b) Let L = 3 and Λ̃ = {(0, 0), (0, 1), (1, 0), (2, 0)}. Then τ(Λ̃) =
(2, 1, 1) and

G(c)|Λ̃ =

 c0 c0 c1 c2
c1 ωc1 c2 c0
c2 ω2c2 c0 c1

 .
It is easily seen that the set Λ = {(0, 0), (0, 1), (1, 0)} fulfills the
conditions of Theorem 8. Consequently, given any vector a ∈ C4

with no zero entries, the 4 × 4 matrix
[
G(c)|

Λ̃
a∗

]
is invertible for

almost every choice of c in C3.

5. IDENTIFIABILITY RESULTS FOR MIMO

Now we consider the identification of MIMO channels. Thereby, we
focus on MISO channels, because the identification of an N -input
M -output channel is equivalent to the identification of M MISO
channels. So the respective results generalize to the MIMO setting.
As in the SISO setting, it turns out that linear constraints consisting
of a single nontrivial equation can always contribute to the MISO
channel identification. This is shown by the following statements,
which generalize Theorem 5 and Corollary 6 to the MISO case.

Theorem 9: Let Λ1,Λ2, . . . ,ΛN ⊂ ZL × ZL with L + 1 ≤∑N
n=1 |Λn| < 2L, where L ≥ 2 and N ≥ 1. Then

span
{

ker
[
G(c(1))|Λ1 · · · G(c(N))|ΛN

]
: c ∈ SN

}
= CΛ,

where SN is the set of all (c(1), c(2), . . . , c(N)) ∈ (CL)N for which
[G(c(1))|Λ1 · · · G(c(N))|ΛN ] has full spark (cf. Proposition 3).

Corollary 10: Let L ≥ 2 and N ≥ 1. For any Λ1,Λ2, . . . ,ΛN ⊂
ZL×ZL with

∑N
n=1 |Λn| = L+1 and a ∈ CL+1\{0}, there exists

(c(1), c(2), . . . , c(N)) ∈ (CL)N for which the (L + 1) × (L + 1)

matrix
[
G(c(1))|Λ1

··· G(c(N))|ΛN
a∗

]
is invertible.

Concerning multiple constraints, the SISO case (Example 4) al-
ready shows that the statement of Corollary 10 cannot be extended
to linear side constraints of two equations.
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