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ABSTRACT

This paper investigates semi-blind channel estimation in
massive multiple-input multiple-output (MIMO) systems us-
ing different priors on data symbols. We derive two tractable
expectation-maximization (EM) based channel estimation al-
gorithms; one based on a Gaussian prior and the other one
based on a Gaussian mixture model (GMM) for the unknown
data symbols. The numerical results show that the semi-
blind estimation schemes provide better channel estimates
compared with the estimation based on training sequences
only. The EM algorithm with a Gaussian prior provides
superior channel estimates compared to the EM algorithm
with a GMM prior in low signal-to-noise ratio (SNR) regime.
However, the latter one outperforms the EM algorithm with
Gaussian prior as the SNR or as the number antennas at the
base station (BS) increases. Furthermore, the performance of
the semi-blind estimators become closer to the genie-aided
maximum likelihood estimator based on known data symbols
as the number of antennas at the BS increases.

Index Terms— Massive MIMO, channel Estimation, EM
Algorithm, prior distribution

1. INTRODUCTION

Channel state information is an important factor in achieving
the expected high capacity gains in multiple-input multiple-
output (MIMO) systems, which in practical systems is deter-
mined by the accuracy of the channel estimates. Using train-
ing pilot sequences is a simple method to estimate the channel
coefficients [1]. However, large number of training symbols
are required to obtain a reliable channel estimate with this
method, which reduces the achievable throughput of the sys-
tem. One can improve the channel estimation quality by using
the information in the unknown data symbols instead of only
using the pilot sequences [2–6]. This approach provides more
accurate channel estimates or results in utilizing smaller num-
ber of training pilots to estimate the channel coefficients with
the same accuracy.
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In time-division duplex (TDD) systems, where uplink and
downlink physical channels are assumed to be reciprocal [7],
better channel estimation not only leads to better uplink de-
tection but it also helps the base station (BS) to form more
accurate downlink precoders. Massive MIMO systems, in
which the emphasis in transmission protocol is mostly on
TDD rather than frequency-division duplex (FDD) (see [8]
and [9]), the benefit from semi-blind channel estimation ac-
crues in both uplink and downlink transmissions. This makes
semi-blind estimation more attractive for the next generation
wireless systems and motivates our re-examination of semi-
blind channel estimation with an eye towards massive MIMO
systems.

Semi-blind channel estimation has been investigated in
several papers, e.g., [2–5] and references therein. In [2], the
authors study the conditions under which the channel and
the data signals are blindly and semi-blindly identifiable and
obtain blind and semi-blind channel estimates based on an
expectation-maximization (EM) algorithm in the frequency
domain and utilize a discrete random variable model for the
unknown data. In [3], two iterative channel estimators based
on the EM algorithm are proposed. In [5], a semi-blind es-
timation technique for MIMO systems is introduced, which
uses an iterative two-level optimization loop to jointly esti-
mate channel coefficients and data symbols.

In our previous work [10], in contrast to other works, we
considered a Gaussian distribution for the unknown data sym-
bols in the EM algorithm, which enabled us to derive a closed
form solution for the E-step of the EM algorithm. We fur-
ther derived deterministic and stochastic Cramer-Rao bounds
(CRBs) for semi-blind channel estimation and studied their
behavior in massive MIMO systems with unlimited number
of antennas at the BS. In this paper, in order to improve the
performance of estimation for the case when data symbols are
drawn from a discrete constellation such as quadrature phase-
shift keying data (QPSK), we first consider a heuristic algo-
rithm by demapping the conditional mean of the data sym-
bols to the nearest constellation point in the EM algorithm.
Numerical results illustrate that in the high signal-to-noise ra-
tio (SNR) regime, this heuristic algorithm considerably out-
performs the EM algorithm with Gaussian prior. Motivated
by this observation, to provide support for the procedure, we
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pursue deriving an analytically rigorous EM algorithm as-
suming a Gaussian mixture model (GMM) for data symbols
which achieves a performance similar to the heuristic algo-
rithm. Numerical results indicate that the semi-blind estima-
tion schemes provide better channel estimates compared with
channel estimation based on training sequences only. Further-
more, as the number of antennas in the massive MIMO sys-
tems increases, the mean squared error (MSE) of semi-blind
schemes becomes closer to the genie-aided estimation when
all data symbols are assumed to be known at the BS.

The paper is organized as follows. In section 2, we de-
scribe the system model and two ML estimators. In section
3, three semi-blind channel estimation schemes based on the
EM algorithm are derived. We present numerical results in
section 4 and conclude the paper in section 5.

Throughout the paper, we use superscriptH to denote con-
jugate transpose, uppercase symbols to denote matrices, and
bold symbols to denote vectors. E(.) and Cov(.) indicate the
expectation and covariance matrix operators respectively.

2. SYSTEM MODEL

We use the same system model as in [10]. However, we recall
it here for the sake of completeness. We consider a single cell
with a BS equipped with M antennas and randomly located
K single antenna users, where M ≥ K. We study uplink
transmission in a communication system with TDD protocol.
However, similar estimation techniques can also be applied to
a system with FDD protocol. We use a flat fading channel
model for each orthogonal frequency-division multiplexing
(OFDM) subcarrier. The OFDM subcarrier index is omitted
for simplicity. The channel matrix between the BS and users
is given by

G = HB1/2, (1)

where H ∈ CM×K is a matrix representing small scale fad-
ing and B ∈ RK×K is a diagonal matrix with β1, · · · , βK
on its diagonal, where βk is the large scale fading coefficient
between BS and user k that accounts for the path loss and
shadow fading. We assume columns of H are independent
from B and are i.i.d circularly-symmetric complex normal
vectors hk ∼ CN (0, IM ) that stay constant during a block
of N symbols and change to independent values at the next
coherence block.

In uplink, transmitting users send L known pilot se-
quences followed by (N − L) unknown data symbols. The
uplink signal received by BS at time n is given by

y[n] = Gs[n] + v[n], n = 0, · · · , N − 1, (2)

where s[n] ∈ CK×1 for n = 0, · · · , L − 1 are known pilot
sequences and s[n] ∈ CK×1 for n = L, · · · , N − 1 are the
unknown data symbols with unit power E

(
s[n]s[n]H

)
= IK

and v[n] ∼ CN (0, σ2
vIM ) is additive Gaussian noise. Let

Sp = [s[0], · · · , s[L− 1]] and Sd = [s[L], · · · , s[N − 1]] de-
note, respectively, the known pilot sequences and data sym-
bols in a channel coherence time. Similarly, let Yp and Yd rep-
resent the row stacked received training output and received
data signals respectively. The complete transmit and received
symbols are given by S = [Sp Sd] and Y = [Yp Yd] respec-
tively.

Based on [4, Lemma 1], as the MSE of channel matrix
becomes closer to the trace of CRB, then the error covariance
matrix approaches the CRB. Thus, we will use MSE, i.e., trace
of the error covariance matrix, in the numerical results to il-
lustrate the accuracy of the channel estimates.

2.1. ML Estimators

2.1.1. Training Pilot Sequences

A simple channel estimation method is with the aid of known
training sequences. The ML estimate of the channel matrixG
based on the pilot sequences (Sp) is given by

Ĝtr
ML =

(
YpS

H
p

) (
SpS

H
p

)−1
. (3)

The training sequences that minimize the MSE subject to
the total transmit power are orthogonal sequences, i.e.,
SpS

H
p = LIK , and the corresponding MSE is equal to

E(‖G− Ĝtr
ML‖2F ) = MKσ2

v/L [11].

2.1.2. Genie-Aided

The genie-aided channel estimation when all data symbols are
known at the BS provides an upper bound on the performance
of semi-blind channel estimation and is given by

Ĝfull
ML =

(
Y SH

) (
SSH

)−1
. (4)

This is an estimator that the semi-blind procedure aspires to
imitate.

3. SEMI-BLIND CHANNEL ESTIMATION

The ML estimate of channel coefficients based on both re-
ceived training and unknown data signals is given by

ĜML = argmax
G

log p (Y |G) , (5)

for which obtaining a closed form solution is known to be
hard [12]. Iterative algorithms have been proposed to solve
the problem, e.g., see [4], [5].

3.1. EM Algorithm with Gaussian Prior

The problem in (5) can be solved using the EM algorithm,
by iterating between an expectation evaluation (E-step) and a
maximization (M-step) procedure [13].
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The channel estimate in the EM algorithm (Ĝ`+1) is up-
dated based on the old estimate (Ĝ`) in the following manner:

Ĝ`+1 = argmax
G

Ep(Sd|Y,Ĝ`)
(log p (Y, Sd|G)) , (6)

where (Y, Sd) is the complete data. By carrying out the max-
imization (M-step), one can show that the channel estimate at
the (`+ 1)th iteration is given by [2]

Ĝ`+1 =

(
YpS

H
p +

N−1∑
n=L

y[n](µ`n)H

)

×

(
SpS

H
p +

N−1∑
n=L

(
µ`n(µ`n)H + Σ`

))−1
. (7a)

where µ`n , E(s[n]|Ĝ`, Y ), and Σ`n , Cov(s[n]|Ĝ`, Y ).
The details of the expectation computation needed to com-
plete the E-step of the algorithm has not been mentioned ex-
plicitly in [2]. Using a discrete random variable model such
as QPSK modulation for data symbols leads to an excessively
complex E-step which grows exponentially withK. Thus, for
tractability of the problem, we assume that the data symbols
are Gaussian, i.e., s[n] ∼ CN (0, IK) , n = L, · · · , N − 1.
Given G, Sd and Y are jointly Gaussian. Thus, µ`n and Σ`n
in (7a), can be computed from the conditional density of cir-
cularly symmetric Gaussian random vectors [14]. The E-step
based on the estimates at the `th iteration is given by

µ`n =
(
ĜH` Ĝ` + σ2

vIK

)−1
ĜH` y[n],

Σ` = σ2
v

(
ĜH` Ĝ` + σ2

vIK

)−1
. (7b)

Derivation of the E- and M-steps and the computational com-
plexity of (7) are presented in [10].

3.2. Heuristic Semi-Blind Algorithm

Since data symbols s[n], n = L, · · · , N − 1, are drawn
from a discrete constellation, we now modify the EM algo-
rithm to improve the estimation performance. A heuristic
approach is to assign the conditional mean of data symbols
E(s[n]|Y, Ĝ`), n = L, · · · , N − 1, to the closest constella-
tion point, which results in the following E-step:

µ`n = F

((
ĜH` Ĝ` + σ2

vIK

)−1
ĜH` y[n]

)
,

Σ` = σ2
v

(
ĜH` Ĝ` + σ2

vIK

)−1
, (8)

where F (.) is the element-wise constellation demmaping
function. Note that the M-step remains the same as (7a).

3.3. EM Algorithm with GMM Prior

Numerical results in Section 4 suggest that this modification
of the EM algorithm improves the estimation performance for

discrete constellations. To provide analytical support for this
heuristic approach, we derive a mathematically rigorous al-
gorithm in the following by assuming a GMM distribution
for data symbols which has a similar flavor. This algorithm
is also based on the EM algorithm and hence its convergence
to a local maximum is assured. Suppose data symbols have
GMM distribution, i.e.,

s[n] ∼ CN
(
cn, σ

2
sIK

)
, n = L, · · · , N − 1, (9)

where c[n] is the transmitted constellation vector at time n
that will be treated as the unknown parameter in the EM al-
gorithm. The hyperparameter σ2

s in (9) is the variance of each
data symbol around the corresponding constellation point. As
σ2
s becomes smaller, the GMM distribution in (9) becomes

closer to the actual discrete distribution of the data symbols.
Let Θ = [G, c[L], · · · , c[N − 1]] denote the unknown

variables in the EM algorithm. Given Θ, Sd and Y are jointly
Gaussian. Similar to Section 3.1, µ`n = E(s[n]|Θ̂`, Y ) and
Σ`n , Cov(s[n]|Θ̂`, Y ) in the E-step can be computed from
the conditional density of circularly symmetric Gaussian ran-
dom vectors [14] as follows

µ`n =
(
ĜH` Ĝ` + σ2

v

(
ĉ`n(ĉ`n)H + σ2

sIK
)−1)−1

ĜH` y[n],

Σ`n = σ2
v

(
ĜH` Ĝ` + σ2

v

(
ĉ`n(ĉ`n)H + σ2

sIK
)−1)−1

. (10a)

Maximizing the log likelihood function yields in the follow-
ing M-step:

Ĝ`+1 =

(
YpS

H
p +

N−1∑
n=L

y[n](µ`n)H

)

×

(
SpS

H
p +

N−1∑
n=L

(
µ`n(µ`n)H + Σ`n

))−1
,

ĉ`+1
n = F

(
µ`n
)
, (10b)

where F (.) is the element-wise constellation demmaping
function. Due to lack of space, the detailed derivation of the
EM algorithm is omitted.

4. NUMERICAL RESULTS

We consider a BS located at the center of a single cell of
radius 500m and uniformly distributed users. We use the
same model as in [10] for the large scale fading coefficients.
Signal-to-noise ratio is defined as SNR = E(βk)

σ2
v

. A QPSK
constellation is used for pilot sequences (Sp) and data sym-
bols (Sd). Pilot sequences are chosen to be orthogonal, i.e.,
SpS

H
p = LIK . We initialize all semi-blind algorithms using

the ML training-based estimate in (3). In the EM algorithm
with GMM prior, we set σs = 0.001.
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Experiment 1: This experiment shows that more accurate
channel estimates can be obtained using the semi-blind es-
timation schemes. Figure 1 illustrates the scaled MSE, i.e.,
E(‖G − Ĝ‖2F )/E(βk), of the channel estimates versus SNR
for the ML estimators in Subsection 2.1 and the semi-blind
algorithms given in (7), (8), and (10) for M = 8, K = 4,
L = 16, and N = 512. One can observe that all semi-blind
algorithms provide better channel estimates compared with
the ML training-based estimation. In low SNRs, EM algo-
rithm with Gaussian prior outperforms the other semi-blind
schemes. However, as SNR increases, the heuristic semi-
blind estimation and EM algorithm with GMM prior provide
better channel estimates and become closer to the genie-aided
ML estimator. To explain this behavior, we point out that
the constellation demapping in the heuristic algorithm and the
EM algorithm with GMM prior adds to the estimation error
when the estimates of µn are uncertain in low SNRs. This
phenomenon works in favor of these two algorithms in the
high SNR regime by mapping µn to its true value.

In Figure 2, we plot the scaled MSE of the semi-blind
algorithms versus number of iterations for M = 64, K =
8, L = 16, N = 512, and SNR= 20dB. One can see that
all semi-blind algorithms converge after a few iterations and
that the heuristic semi-blind algorithm and the EM algorithm
with GMM prior show faster convergence compared to the
EM algorithm with Gaussian prior.

Experiment 2: In this experiment, the effect of increas-
ing the number of antennas at the BS is studied for K = 8,
L = 16, N = 512, and SNR = 25dB. Figure 3 shows the
scaled MSE of the ML estimators described in Subsection
2.1 and the semi-blind algorithms versus number of anten-
nas (M ). As the number of antennas increases, the perfor-
mance of the semi-blind algorithms become closer to that of
the genie-aided ML estimator. This property makes semi-
blind channel estimation an attractive approach to alleviate
the pilot contamination problem in massive MIMO systems,
which originates from non-orthogonal pilot sequences or the
reuse of pilot sequences for neighboring cells, which is our
future topic of study.

5. CONCLUSION

We developed semi-blind channel estimation algorithms us-
ing Gaussian and GMM priors for data symbols and com-
pared their performances with known ML estimators. Nu-
merical results indicate that performances of the semi-blind
estimation schemes become closer to the genie-aided ML es-
timator as the number of BS antennas increases. The EM
algorithm with Gaussian prior has superior performance com-
pared with the EM algorithm with GMM prior in the low SNR
regime. However, as the SNR or as the number of antennas
at BS increases, the performance of the EM algorithm with
GMM prior improves compared to the EM algorithm with
Gaussian prior and becomes closer to the genie-aided ML es-
timator.
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