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ABSTRACT

In this paper, we consider how to maintain the communication quali-
ty for high-speed users in array transmission. Due to high user speed,
the array transmission angle changes quickly. As a consequence, the
phase shifters (beamformers) of traditional phase arrays need to be
updated frequently to aim at the user, thus yielding high implementa-
tion cost. To alleviate this, we propose a novel frequency diverse ar-
ray (FDA) approach, which intentionally introduces some frequency
offsets across the array antennas to activate an angle-range-time de-
pendent beampattern; i.e., the FDA beampattern peak automatically
moves in space. This motivates us to carefully design FDA parame-
ters such that the beampattern peak accompanies the quickly-moving
users. To this end, we maximize the average beampattern gain along
some given user trace by optimizing the frequency offsets. The block
successive upper-bound minimization (BSUM) method is applied to
obtain a stationary solution to this non-convex problem. Compared
with phase array beamforming, the FDA approach maintains service
quality for high-speed users by updating frequency offsets less fre-
quently, thus reducing the implementation cost remarkably.

Index Terms— Frequency diverse array (FDA), high-speed us-
er, accompanying beampattern peak, frequency offset, block succes-
sive upper-bound maximization (BSUM).

1. INTRODUCTION

With the rapid development of bullet train and high-speed rail tech-
nologies, a travelling speed as high as 350km/h is already available
at present [1]. This has greatly facilitated people’s life. Meanwhile,
a challenging problem arises — how to maintain the communication
quality for high-speed users?

Array processing techniques have been widely utilized in mod-
ern communication systems to enhance service quality. For instance,
in traditional phase diverse array (PDA), phase shifters (beamform-
ers) can be used to tune the array to aim at the user to improve signal
integrity [2, 3]. However, due to the fixed phase lags among anten-
nas, the angle-dependent PDA beampattern does not vary with time,
as shown in Fig. 1(a). In high-speed user scenarios, the array trans-
mission angle changes quickly. As a consequence, the phase shifters
must be frequently updated to maintain service quality, thus render-
ing high implementation cost for PDA approaches.

To tackle this, we propose a novel frequency diverse array (FDA)
approach in this paper. As shown in Fig. 1(b), FDA introduces small
frequency offsets across the array antennas, and hence the phase lags
among different antennas accumulate as the radio wave propagates
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in space; finally, an angle-range-time-dependent beampattern will be
generated [4, 5]. Different from the static PDA beampattern, the “S-
shape” FDA beampattern is time-varying, and the beampattern peak
moves in space automatically during signal propagation. The beam-
pattern peak trace of FDA is related to the instantaneous phase lags
among antennas, which is essentially determined by the frequency
offsets. This motivates us to judiciously design the FDA frequency
offsets such that the resultant peak trace of FDA beampattern coin-
cides with the user trace within a specific time period; namely, let the
beampattern peak accompany the quickly-moving users. Compared
with the traditional PDA approaches, the proposed method maintain-
s service quality for high-speed users by updating frequency offsets
less frequently, thus reducing the implementation cost remarkably.

To the best of our knowledge, so far no related research has been
reported. Current studies on FDA mainly consider its application in
radar and navigation systems [6–10]. In addition, there are several
studies addressing the FDA-based secure communication problems
[11–14]. Departing from these works, we study an FDA beampattern
peak trace fitting problem in this paper. To this end, we maximize the
average beampattern gain along some given user trace by optimizing
the frequency offsets. This is a difficult non-convex problem. Hence,
we are driven to pursue some suboptimal solution with manageable
complexity. Specifically, we apply the block successive upper-bound
minimization (BSUM) method [15] to iteratively find a solution with
stationary convergence guarantee. Each step of BSUM has a simple
closed-form solution, thus giving the algorithm very low complexity.

2. DATA MODEL AND PROBLEM STATEMENT

As shown in Fig. 1(b), we consider a uniform linear transmit array
consisting of M antennas, which forwards information to a single-
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antenna high-speed user. As opposed to the conventional PDA, FDA
employs small frequency offsets across the array antennas. Specifi-
cally, the radiation frequency of themth antenna is fm = fc+∆fm
for m = 1, 2, . . . ,M , with fc and ∆fm being the carrier frequency
and the frequency offsets, respectively. We assume |∆fm| ≤ ∆F
and ∆F � fc here. Let d denote the uniform antenna spacing of
the transmit array, which is set as d = c/[2(fc + ∆F )] ' c/(2fc)
to avoid aliasing effects with c being the speed of light.

Without loss of generality, we set the first antenna as the origin
of the (range, angle) coordinate system. For the user at (r, θ), the
directional channel1 with the mth antenna is defined as [6, 11, 12]

hm(fm, r, θ, t) = a(r)e
−j2π(fc+∆fm)

[
t− r−(m−1)d sin θ

c

]
, (1)

where a(r) is the signal attenuation factor at the range of r. Then,
we compute the FDA beampattern gain at (r, θ) as

|B(f , r, θ, t)| =
∣∣∣∑M

m=1
hm(fm, r, θ, t)

∣∣∣
=a(r)

∣∣∣∣∑M

m=1
e
−j2π

{
fc

(m−1)d sin θ
c

+∆fm

[
t− r−(m−1)d sin θ

c

]}∣∣∣∣
=a(r)

∣∣∣∑M

m=1
ej[Φ0,m(θ)+Φ1,m(∆fm,r,θ,t)]

∣∣∣ (2)

where f = [f1, f2, . . . , fM ]T ; Φ0,m(θ) = −2πfc
(m−1)d sin θ

c
, and

Φ1,m(∆fm, r, θ, t) = −2π∆fm[t− r−(m−1)d sin θ
c

], ∀m.
In the case of ∆fm = 0, we have Φ1,m(∆fm, r, θ, t) = 0 for

m = 1, 2, . . . ,M , and FDA reduces to the conventional PDA. Thus,
the beampattern gain depends on θ only and does not vary with time.
As a contrast, nonzero Φ1,m(∆fm, r, θ, t) will be activated in FDA
as ∆fm 6= 0 form = 1, 2, . . . ,M , thus yielding distinct accumulat-
ing phase lags among array antennas. Consequently, the beampattern
of FDA depends on the frequency offsets {∆fm}Mm=1, the range r,
the angle θ, and the time t. This explains why the FDA beampattern
peak can move in space even with fixed frequency offsets.

Although the FDA beampattern peak moves automatically, there
is no guarantee that the peak trace will coincide with the user trace
using some randomly chosen frequency offsets. Define r(t) and θ(t)
as the user traces in range and angle dimensions. To let the beam-
pattern peak accompany the user within the time period [T1, T2], we
optimize the frequency offsets to maximize the average beampattern
gain along the user trace (r(t), θ(t)),∀ t ∈ [T1, T2], i.e.,

max
f

1

T2 − T1

∫ T2

T1

|B(f , r(t), θ(t), t)|2 dt (P1)

s.t. fc −∆F ≤ fm ≤ fc + ∆F, ∀m. (3)

In brief, our target is to appropriately select the frequency offsets
within the range [−∆F,∆F ], such that the FDA beampattern peak
trace maximally fits the user trace. As a consequence, in time period
[T1, T2], high service quality can be maintained for quickly-moving
users without changing the frequency offsets.

Remark 1. For long user trace or complicated user trace, we can
split it into multiple segments, and design different frequency offsets
for distinct segments. Hence, high service quality can be maintained
by updating the frequency offsets with low frequency. Due to space
limitation, we address the trace fitting problem in only one segment
here, and the multi-segment trace fitting problem will be considered
in the journal version.

1We have ignored the very few multi-path components (MPCs) here. This
is acceptable since in many high-frequency (e.g., millimeter-wave (mmWave)
bands) transmission systems, the MPCs were found to be attenuated by 20dB
compared to the direct component [16].

3. ALGORITHM FOR FREQUENCY OFFSETS DESIGN

Obviously, (P1) is a difficult non-convex problem. We are thus driv-
en to pursue some suboptimal solution with manageable complexity.

To avoid directly handling the integral, we first approximate the
objective by the average of K samples of beampattern gain, i.e.,

1

T2 − T1

∫ T2

T1

|B(f , r(t), θ(t), t)|2 dt

' 1

K

∑K

k=1
|B(f , r(tk), θ(tk), tk)|2, (4)

where T1 ≤ tk ≤ T2 for k = 1, 2, . . . ,K.
For notational simplicity, we use rk and θk to denote r(tk) and

θ(tk), and define τm,k , tk − rk−(m−1)d sin θk
c

, ∀ m, k. Then, we
have

|B(f , rk, θk, tk)|2 = a2(rk)
∣∣∣∑M

m=1
e−j2πfmτm,k

∣∣∣2
=a2(rk)

M +

M∑
m=1

M∑
n=1
n 6=m

cos [2π(fmτm,k − fnτn,k)]

 , (5)

and (P1) can be handled by solving the following problem

max
f

K∑
k=1

a2(rk)

M∑
m=1

M∑
n=1
n6=m

cos [2π(fmτm,k − fnτn,k)] (P2)

s.t. fc −∆F ≤ fm ≤ fc + ∆F, ∀m.

To solve (P2), we resort to the block successive upper-bound
minimization (BSUM) method [15], which is a very general frame-
work to handle a general non-convex non-smooth problem with mul-
tiple block variables. Since our algorithm relies heavily on BSUM,
let us first give a brief review of the BSUM method.

3.1. A Brief Review of the BSUM Method

Consider the following minimization problem,

min
x

y(x1, x2, ..., xI)

s.t. xi ∈ Xi, i = 1, 2, ..., I,

where x = [x1, x2, ..., xI ]
T ∈ RI×1; Xi ⊆ R is a closed convex

set; y(·) :
∏I
i=1 Xi = X → R is a continuous function. One pop-

ular approach for the above problem is the block coordinate descent
(BCD) method [17]. At each iteration of BCD, the function is min-
imized with respect to a single block while the rest blocks are held
fixed. More specifically, in the sth iteration, we update x as follows{

xsi = argminxi∈Xi yi(xi;x
s−1
−i )

xsl = xs−1
l , ∀ l 6= i,

where xs−1
−i , [xs−1

1 , ..., xs−1
i−1 , x

s−1
i+1 , ..., x

s−1
I ]T ∈ R(I−1)×1 is the

remaining subvector of xs−1 after removing xs−1
i , and yi(xi;xs−1

−i )

, y(xs−1
1 , ..., xs−1

i−1 , xi, x
s−1
i+1 , ..., x

s−1
I ).

However, solving the subproblem may not be easy in the case of
non-convex yi(xi;xs−1

−i ). To circumvent this difficulty, the BSUM
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method proposes to approximate yi(xi;xs−1
−i ) by ui(xi;xs−1) ,

ui(xi;x
s−1
1 , xs−1

2 , ..., xs−1
I ), which satisfies

ui(x
s−1
i ;xs−1) = yi(x

s−1
i ;xs−1

−i ),

u′i(x
s−1
i ;xs−1) = y′i(x

s−1
i ;xs−1

−i ),

ui(xi;x
s−1) ≥ yi(xi;xs−1

−i ),

ui(xi;x
s−1) is continuous,

(6)

and then updates xi as{
xsi = argminxi∈Xi ui(xi;x

s−1),

xsl = xs−1
l , ∀ l 6= i.

The convergence of BSUM is summarized below.

Theorem 1 ([15, Theorem 2]). Suppose that: (i) the BSUM assump-
tion (6) holds; (ii) the function ui(xi;xs−1) is quasi-convex in xi;
(iii) the subproblem in each iteration has a unique solution for any
xs−1 ∈ X ; (iv) the function y(·) is regular at every point in the s-
tationary points set. Then, every limit point of the iterates generated
by the BSUM algorithm is a stationary point.

3.2. The BSUM Algorithm for Frequency Offsets Design

Without loss of generality, let us consider the update of fm in the sth
iteration by solving the following problem,

max
fm

K∑
k=1

a2(rk)

M∑
n=1
n 6=m

cos[2π(fmτm,k − fs−1
n τn,k)] (P3)

s.t. fc −∆F ≤ fm ≤ fc + ∆F. (7)

Following BSUM framework, we propose to approximate the
non-concave objective of (P3) by some concave quadratic function.
For ease of exposition, let us first define the objective of (P3) as

ym(fm; fs−1
−m ) ,

K∑
k=1

a2(rk)

M∑
n=1

ỹm,n,k(fm; fs−1
n ) (8)

ỹm,n,k(fm; fs−1
n ) ,

{
cos[2π(fmτm,k − fs−1

n τn,k)], n 6= m,

0, n = m,

(9)

and then approximate ym(fm; fs−1
−m ) with some concave quadratic

function um(fm; fs−1), i.e.,

um(fm; fs−1) ,
K∑
k=1

a2(rk)

M∑
n=1

ũm,n,k(fm; fs−1
m , fs−1

n ), (10)

ũm,n,k(fm; fs−1
m , fs−1

n ) ,


κm,n,k(fm − ζm,n,k)2 + δm,n,k,

n 6= m,

0, n = m,

(11)

where κm,n,k ∈ R−, ζm,n,k ∈ R and δm,n,k ∈ R, n 6= m, are
parameters needed to be designed; we will elaborate on this shortly.

Therefore, (P3) is replaced by

max
fm

K∑
k=1

a2(rk)

M∑
n=1

[
κm,n,k(fm − ζm,n,k)2 + δm,n,k

]
s.t. fc −∆F ≤ fm ≤ fc + ∆F.

It is easy to show that the optimal solution of the above problem is
given by

fsm =

[∑K
k=1 a

2(rk)
∑M
n=1 κm,n,kζm,n,k∑K

k=1 a
2(rk)

∑M
n=1 κm,n,k

]fc+∆F

fc−∆F

, (12)

where [ · ]fc+∆F
fc−∆F denotes the projection onto [fc −∆F, fc + ∆F ].

Algorithm 1 in Table 1 summarizes the procedure to solve (P2). The
convergence of Algorithm 1 is established as follows.

Proposition 1. Every limit point of the iterates generated by Algo-
rithm 1 is a stationary solution of (P2).

The key step of the proof is to show that the convergence condi-
tions required by BSUM (cf. Theorem 1) are satisfied by Algorithm
1. The details are omitted due to the space limitation.

Next, let us turn back to the design of the BSUM parameters of
{κm,n,k, ζm,n,k, δm,n,k} such that the BSUM assumption (6) can
be satisfied. Specifically, as shown in Fig. 2, we require that

ũm,n,k(fs−1
m ; fs−1

m , fs−1
n ) = ỹm,n,k(fs−1

m ; fs−1
n )

ũ′m,n,k(fs−1
m ; fs−1

m , fs−1
n ) = ỹ′m,n,k(fs−1

m ; fs−1
n )

ỹm,n,k(ζm,n; fs−1
n ) ≥ ỹm,n,k(fs−1

m ; fs−1
n )

ỹm,n,k(ζm,n; fs−1
n ) ∈ {1,−1}

|ζm,n − fs−1
m | < 1

2|τm,k|

(13)

and thus solve {κm,n,k, ζm,n,k, δm,n,k} based on (13) and the sign
of y′m,n,k(fm; fs−1

n ) at fs−1
m , i.e,

ỹ′m,n,k(fs−1
m ; fs−1

n ) = −2πτm,k sin[2π(fs−1
m τm,k − fs−1

n τn,k)].

More specifically, if y′m,n,k(fs−1
m ; fs−1

n ) = 0, we have
κm,n,k = −(1 + δm,n,k)π2τ2

m,k,

ζm,n,k = fs−1
m ,

δm,n,k = cos[2π(fs−1
m τm,k − fs−1

n τn,k)] ∈ {1,−1}

(14)

Otherwise, we have

κm,n,k =
−πτm,k sin[2π(fs−1

m τm,k − fs−1
n τn,k)]

fs−1
m − ζm,n,k

ζm,n,k =



d(fs−1
m τm,k − fs−1

n τn,k)e+ fs−1
n τn,k

τm,k
,

if y′m,n,k(fs−1
m ; fs−1

n ) > 0

b(fs−1
m τm,k − fs−1

n τn,k)c+ fs−1
n τn,k

τm,k
,

if y′m,n,k(fs−1
m ; fs−1

n ) < 0

δm,n,k = cos[2π(fs−1
m τm,k − fs−1

n τn,k)]

− κm,n,k(fs−1
m − ζm,n,k)2,

(15)

where b·c and d·e round the argument to the nearest integer towards
−∞ and∞, respectively.

4. NUMERICAL SIMULATIONS

We consider a transmit array operating at fc = 60GHz, and the up-
per bound of frequency offsets is set as ∆F = 10−5fc = 600kHz.
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Fig. 2. Approximate the cos(·) by a concave quadratic function.

Table 1: Algorithm 1 for frequency offsets design
Find a feasible point f0 and set s = 0;
repeat
s = s+ 1, m = (s mod M) + 1;
Design {κm,n,k, ζm,n,k, δm,n,k} by (14) and (15);

fsm =
[∑K

k=1 a
2(rk)

∑M
n=1 κm,n,kζm,n,k∑K

k=1
a2(rk)

∑M
n=1 κm,n,k

]fc+∆F

fc−∆F
;

fsn = fs−1
n , ∀ n 6= m;

until some stopping criterion is satisfied.

To focus on the FDA beampattern characteristics, we ignore the sig-
nal attenuation factor and fix a(r) = 1. We consider two typical user
traces, i.e., linear trace and spiral trace. In the linear trace setting, the
user starts from the point (r = 500m, θ = 0o) and moves in parallel
with the array, at a speed of 100m/s or 360km/h. In the spiral trace
setting, the user starts from the point (r = 100m, θ = −30o) and
moves at the range speed of 100m/s plus the angle speed of 10o/s.
In the following simulations, we define the time period as [T1 = 1s,
T2 = 10s], and compare the average beampattern gains of the P-
DA approach utilizing only one group of phase shifters and the FDA
approach utilizing only one group of frequency offsets.

Fig. 3 shows the converging behaviour of the BSUM algorithm
(cf. Table 1), with each trace starting from a randomly selected initial
point. Typically, for M = 8 antennas arrays, the BSUM algorithm
converges in about 60 iterations.

0 20 40 60 80 100
0

5

10

15

20

25

30

Iteration index  s

 ||
 f

 (
s)

 −
  f

 (
s−

1)
 ||

2

Fig. 3. Typical converging traces of the BSUM algorithm.

Next, we compare the average beampattern gains of the PDA
and FDA approaches for different antenna numbers. The results are
displayed in Fig. 4. In general, the beampattern gain increases with
M since more spatial diversity can be achieved. For the tested two
user traces, the FDA approach outperforms the conventional PDA
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Fig. 5. Average beampattern gain comparison for different ∆F .

approach clearly. This is expected since in the proposed approach,
we optimize the frequency offsets such that the beampattern peak
trace fits the user trace maximally.

We should mention that the FDA approach improves the average
beampattern gain at the expense of wider frequency band. Actually,
introducing the frequency offsets renders some transmit bandwidth
expansion. On the other hand, ∆F is required to be far less than the
carrier frequency fc in practice [18]. Therefore, we should balance
the performance improvement and the bandwidth expansion. In Fig.
5, we show how ∆F influences the FDA performance for M = 12.
As expected, increasing ∆F provides more flexibilities in frequency
offsets design, and thus improves the average beampattern gain. As
the expense, wider transmit band is needed.

5. CONCLUSIONS

We propose a novel FDA approach to achieve accompanying beam-
pattern peak for high-speed users. It differs from the PDA approach
by employing some frequency offsets across the array such that an
angle-range-time dependent beampattern is generated. In this paper,
we optimize the frequency offsets to maximize the average beampat-
tern gain along the user trace. A BSUM-based algorithm is devel-
oped to find a stationary solution. Compared with PDA approaches,
the FDA approach maintains high service quality for quickly-moving
users by updating frequency offsets less frequently, thus reducing the
implementation cost considerably. Its efficacy has been demonstrat-
ed by numerical simulations.
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