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ABSTRACT
We investigate the max-min weighted downlink signal-
to-interference ratio (SINR) problem under uplink SINR
constraints and practical per-antenna constraints in full-
duplex systems. The successive convex approximation (SCA)
method is adopted to iteratively deal with this non-convex
problem. Within each SCA iteration, to lower the complexity,
a parallel beamforming algorithm based on alternating direc-
tion method of multipliers (ADMM) is proposed. Specifical-
ly, local variables are introduced to decompose the problem
to multiple independent subproblems with closed-form solu-
tions. Numerical results show that our proposed algorithm
can achieve the similar performance with existing algorithms,
but runs much faster especially in large-scale systems.

Index Terms— Full-duplex, ADMM, parallel algorithm

1. INTRODUCTION
With the widespread popularity of smart mobile phones and
the emerging special-purpose sensors, the wireless data traf-
fic is increasing unprecedentedly. Full-duplex (FD) has been
regarded as a potential technology to double the network
throughput, which is brought by the simultaneous informa-
tion transmission and reception [1]. However, operating in
FD mode also leads to severe self-interference (SI) from the
transmit antennas to the receive antennas. Fortunately, recent
advances in hardware and algorithm design for SI cancel-
lation (SIC) have been able to make the residual SI to the
background noise level [2]. Due to the practicality of FD,
many research works have been done in FD networks.

In [3], the transmission power minimization problem is
considered with downlink and uplink signal-to-interference
ratio (SINR) constraints. Then, the transceiver design is opti-
mized to maximize the sum of downlink rate and uplink rate
[4, 5]. In these works, second-order algorithms (i.e., interi-
or point method) are adopted and beamforming designs are
all implemented in a centralized way. This would result in
an unacceptable high complexity when the number of anten-
nas or associated users becomes large. To tackle this issue,
some distributed low-complexity algorithms need to be de-
signed for large-scale networks [6, 7, 8, 9].
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In this paper, we propose a low-complexity parallel beam-
forming algorithm in FD systems, which is based on alternat-
ing direction method of multipliers (ADMM). To achieve a
better trade-off between user requirement and user fairness,
the minimum weighted downlink SINR is maximized subject
to uplink SINR constraints and per-antenna constraints, which
is more practical than the sum power constraint in [10]. We
adopt the successive convex approximation (SCA) method to
iteratively deal with this non-convex problem. Within each
SCA iteration, a low-complexity ADMM-based parallel al-
gorithm is proposed. In specific, some local variables are in-
troduced as copies of coupled beamforming vectors, which
makes the original coupled problem decomposable. Each of
the decomposed subproblem has a closed-form solution and
can be updated concurrently. Numerical results show that our
proposed algorithm can scale well to large-size problem and
runs much faster than state-of-the-art algorithms.

2. SYSTEM MODEL
We consider a FD wireless communication network, where
a FD base station (FD-BS) simultaneously serves Kd down-
link users and Ku uplink users. FD-BS is equipped with
N = Nt+Nr antennas with Nt antennas for downlink trans-
mission and Nr antennas for uplink reception. Each user has
a single antenna and works in the half-duplex mode. Besides,
we assume that Nt ≥ Ku + Kd, which is practical when
massive antennas are employed at FD-BS. All channels are
assumed to be frequency flat slow fading and remain constant
within a time slot but vary from one to another.

Suppose that, sdm ∈ C with E[|sdm |2] = 1 denotes the
desired message for the m-th downlink user, and then the
downlink signal transmitted by FD-BS is expressed as xd =∑Kd

m=1 wdmsdm
, where wdm ∈ CNt×1 is the beamforming

vector for downlink user Udm . Let sun ∈ C with E[|sun |
2
] =

1 represent the data symbol sent by the n-th uplink user and
pun denote its corresponding transmission power, the uplink
signal transmitted by the n-th uplink user is xun =

√
punsun .

The received signal at downlink user Udm is given by

ydm =hH
dmwdmsdm +

∑Kd

i=1,i ̸=m
hH
dmwdisdi

+
∑Ku

n=1

√
pun

gdmn
sun + ndm , (1)
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where hdm ∈ CNt×1 and gdmn ∈ C are channel coeffi-
cients from FD-BS to downlink user Udm and from uplink
user Uun to downlink user Udm , respectively; ndm is the addi-
tive white Gaussian noise (AWGN) at user Udm with ndm ∼
CN (0, σ2

dm
), where σ2

dm
is the noise power. Note that the

third term in this expression is the co-channel interference (C-
CI). Hence, the received SINR at m-th downlink user is

γdm=

∣∣hH
dm

wdm

∣∣2∑Kd

i=1,i ̸=m

∣∣hH
dm

wdi

∣∣2+∑Ku

n=1pun

∣∣gdmn

∣∣2+σ2
dm

. (2)

For the uplink, the received signal at FD-BS is

yu=
∑Ku

n=1

√
pungun

sun+
∑Kd

m=1
HSIwdmsdm+nu, (3)

where gun ∈ CNr×1 is channel vector from uplink user Uun

to FD-BS, nu ∼ CN (0, σ2
uINr ) is the AWGN noise at us-

er Uun . HSI ∈ CNr×Nt is the residual SI channel from the
transmit antennas to receive antennas at FD-BS, whose val-
ue depends on the capability of the SIC technique, and the
second term in (3) is the residual SI after SIC.

The zero-forcing (ZF) receiver vector is adopted in this
paper, since when the system is interference-limited [11]
or the number of antennas is large [12], the ZF receiver
can cancel the inter-user interference and approximately
obtain the performance of optimal minimum square error
(MMSE) receiver. That is, wun =

(
vunG

†
u

)H
, where

vun ∈ {0, 1}1×Ku is a zero vector except that the n-th ele-
ment is 1, G†

u =
(
GH

u Gu

)−1
GH

u and Gu = [gu1 , ...,guKu
].

By applying ZF receiver, wun , the received SINR for uplink
user Uun can be expressed as

γun =
pun

∣∣wH
un

gun

∣∣2∑Kd

m=1 |hSInwdm |2 + σ2
u

∥∥wun

∥∥2 , (4)

where hSIn = HH
SIwun . Clearly, the inter-user interference,∑Ku

i=1,i̸=n

√
puigui

sui , can be cancelled, and thus the residu-
al SI becomes the dominant interference.

In this paper, we focus on the downlink beamforming de-
sign at FD-BS to maximize the minimum weighted downlink
SINR subject to the uplink SINR constraints and the down-
link per-antenna power constraints. The formulated problem
can be casted as

max
{wdm}

min
m=1,...,Kd

γdm

Γdm

(5a)

s. t. γun ≥ Γun , ∀n, (5b)∑Kd

m=1
wH

dm
Riwdm

≤ PBS
i , i = 1, ..., Nt, (5c)

where Γdm and Γun are the desired SINRs of downlink user
Udm and uplink user Uun , respectively; Ri ∈ {0, 1}Nt×Nt is
a zero matrix except that the i-th diagonal element is 1; PBS

i

is the allowed maximum per-antenna transmission power for
the downlink. Different from the commonly seen sum pow-
er constraint of BS, we consider the per-antenna constraint
(5c) here, owing to the fact that the per-antenna power is al-
ways limited in practical systems. With the reciprocal of each

downlink user’s desired SINR, 1
Γdm

, as weighting factor, our
considered max-min problem can achieve a better trade-off
between the user requirement and the fairness.

3. PARALLEL BEAMFORMING DESIGN
Obviously, the formulated max-min fairness (MMF) problem
is non-convex. An non-negative parameter, t, can be intro-
duced to equivalently rewrite problem (5) as

T : max
{wdm},t

t (6a)

s. t. γdm ≥ tΓdm , ∀m, and (5b), (5c). (6b)
Define γ = [Γd1 , ...,ΓdKd

] as the desired downlink SINR
vector and p = [PBS

1 , ..., PBS
Nt

] as the maximum power vec-
tor of downlink transmission, the optimal value of problem T
can be regarded as t∗ = T (γ,p).

To effectively handle this kind of MMF problems, qual-
ity of service (QoS) dual problem is exploited in downlink
scenario with per-antenna power constraints in [13]. In this
paper, we further extend this dual theory to our FD scenario.
The QoS dual problem here can be formulated as

R : min
{wdm},r

r (7a)

s. t. γdm ≥ Γdm ,∀m, γun ≥ Γun , ∀n, (7b)
1

PBS
i

∑Kd

m=1
wH

dm
Riwdm

≤ r, i = 1, ..., Nt, (7c)

where r is an introduced variable. Similar to problem T , The
value of problem R can also be seen as r∗ = R(γ,p).

Proposition 1: With Nt ≥ Ku + Kd, the relations be-
tween problem T and problem R are
1 = R(T (γ,p) · γ,p), and t = T (γ,R(t · γ,p) · p). (8)

The proof is similar to [13] and thus omits here. Accord-
ing to proposition 1, we can deal with problem T by itera-
tively solving problem R. In specific, with given t, problem
R(t·γ,p) is first solved to obtain the achieved objective value
r∗. Then, the optimal t can be found by the bisection method.
If r∗ < 1, t should be increased and otherwise be decreased.

In the following, we put our effort on solving problem
R. To tackle this non-convex problem, the SCA method is
adopted [14]. Toward this end, we first reformulate downlink
SINR constraints (7b) as

Γdm

(∑Kd

i=1,i̸=m

∣∣∣hH
dmwdi

∣∣∣2 +∑Ku

n=1
pun

|gdmn
|2 + σ2

dm

)
≤

∣∣∣hH
dmwdm

∣∣∣2, ∀m, (9)

which is non-convex due to the right side. Fortunately,∣∣hH
dm

wdm

∣∣2 is convex and can be approximated by its first-
order Tayor expansion iteratively. Suppose that, at the j+1-th
iteration, w(j)

dm
is given and thus the approximated problem

can be casted as
min

{wdm},r
r s. t. (10a)

Γdm

(∑Kd

i=1,i ̸=m

∣∣hH
dm

wdi

∣∣2 +∑Ku

n=1
pun

∣∣gdmn

∣∣2 + σ2
dm

)
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≤ 2Re{(w(j)
dm

)
H
hdm

hH
dm

wdm} − |hH
dm

w
(j)
dm

|2, ∀m, (10b)

Γun

(∑Kd

m=1
|hSInwdm |2 + σ2

u

∥∥wun

∥∥2)
≤ pun

∣∣wH
un

gun

∣∣2, ∀n, and (7c), (10c)
which is convex [15], and can be solved by CVX solver, such
as SDPT3 [16]. However, the complexity of interior point
method is very high when the number of antennas or users is
large. To lower the complexity, inspired by [17], we propose
a ADMM-based parallel algorithm to solve problem (10).

Observed that variable r is coupled in per-antenna power
constraints (7c) and variables {wdm} are coupled in all con-
straints. To decouple these variables and parallelize problem
(10), a set of local variables need to be introduced. That is,

am,i = hH
dmwdi , ∀m, i ∈ {1, ...,Kd}, (11)

bn,m=hH
SInwdm , ∀n ∈ {1, ...,Ku}, ∀m ∈ {1, ...,Kd}, (12)

vdm=wdm , ∀m∈{1,...,Kd}, αd
i =r,∀i∈{1, ..., NT }. (13)

Instead of copying {wd} for each SINR constraint, the intro-
duced {am,i} and {bn,m} can reduce the dimension of local
variables. Then, problem (10) can be reformulated as

min
wd,r,a,b,vd,αd

r s. t. (14a)

Γdm

(∑Kd

i=1,i ̸=m
|am,i|2 +

∑Ku

n=1
pun

∣∣gdmn

∣∣2 + σ2
dm

)
≤ 2Re{(w(j)

dm
)
H
hdm

am,m} − |hH
dm

w
(j)
dm

|2,∀m, (14b)

Γun

( Kd∑
m=1

|bn,m|2+σ2
u

∥∥wun

∥∥2) ≤ pun

∣∣wH
un

gun

∣∣2, ∀n, (14c)

1

PBS
i

∑Kd

m=1
vH
dm

Rivdm
≤ αd

i , i = 1, ..., Nt, (14d)

(11)− (13), (14e)
where wd is the aggregated beamforming vector wdm , other
variables are defined in the same manner. By making (14b)-
(14d) implicit in the objective, problem (14) is equivalent to

min
wd,r,a,b,vd,αd

r+ gc1(a)+gc2(b)+gc3(vd,α
d) s. t. (14e) (15)

where gci is the indicator function of the feasible region for i-
th constraint ci in problem (14). For instance, if a is within the
feasible region of (14b), i.e., c1, gc1 = 0, otherwise gc1 = ∞.
Note that the objective is separable across the global variable
set {wd, r} and the local variable set {a,b,vd,α

d}, and the
constraints are linear equations. Thus, ADMM can be applied
to update these two variable sets alternatively. Since problem
(15) is convex and only two variable sets are optimized alter-
natively, the ADMM can converge to the optimal point [17].

Define λd,λu,µ,ηd respectively are the multipliers of
constraints (11)-(13) and ρ is the penalty parameter. Accord-
ing to [17], the scaled form of augmented Lagrangian for
problem (15) can be expressed as
Lρ({wd, r}, {a,b,vd,α

d};λd,λu,µ,ηd) = r + gc1(a)+

gc2(b)+gc3(v,α
d)+

ρ

2

Kd∑
m=1

Kd∑
i=1

∣∣am,i−hH
dm

wdi+λd
m,i

∣∣2

+
ρ

2

Kd∑
m=1

Ku∑
n=1

|bn,m−hH
SInwdm+λu

m,n|2+
ρ

2

Nt∑
i=1

∣∣αd
i−r+ηdi

∣∣2
+

ρ

2

∑Kd

m=1
∥vdm −wdm + µm∥2. (16)

By applying ADMM, with given dual variables {λd,λu,µ,ηd},
primal variables {wd, r} and {a,b,vd,α

d} can be updated
alternatively by minimizing lagrangian function (16). In the
sequel, we will show that both of these two variable sets can
be optimized in parallel.

For the local variable set update, Lagrangian function
minimization problem can be decomposed into the following
three independent problems with given global variable set:

min
a

Kd∑
m=1

Kd∑
i=1

∣∣am,i − hH
dm

wdi + λd
m,i

∣∣2 s. t. (14b), (17)

min
b

Kd∑
m=1

Ku∑
n=1

∣∣bn,m − hH
SInwdm + λu

m,n

∣∣2 s. t. (14c), (18)

min
αd,vd

NT∑
i=1

∣∣αd
i − r + ηdi

∣∣2+ Kd∑
m=1

∥vdm−wdm+µm∥2 (19a)

s. t. (14d). (19b)
Note that problem (17) can further be decomposed into

Kd independent subproblems, one for each Udm :

min
{am,i}

Kd
i=1

∑Kd

i=1

∣∣am,i − hH
dm

wdi + λd
m,i

∣∣2 s.t. (20a)

Γdm

(∑Kd

i=1,i ̸=m
|am,i|2 +

∑Ku

n=1
pun

∣∣gdmn

∣∣2 + σ2
dm

)
≤ 2Re{(w(j)

dm
)
H
hdm

am,m} − |hH
dm

w
(j)
dm

|2, (20b)
which is a convex quadratically constrained quadratic pro-
gramming with one constraint (QCQP-1). The optimal
closed-form solution can be achieved by the lagrangian d-
ual decomposition method. Please refer to [6] for the details.

Similar to problem (17), problem (18) can also be decom-
posed into Ku independent subproblems, and one for each
n-th uplink user. The details are omitted here.

Observe that problem (19) can be decomposed into Nt

independent subproblems, one for each antenna i:

min
ṽdi

,αd
i

∣∣αd
i − r + ηdi

∣∣2 + ∥ṽdi − w̃di + µ̃i∥
2 (21a)

s. t. ∥ṽdi∥
2 ≤ αd

iP
BS
i , (21b)

where w̃di = [wdi,1 , ..., wdi,Kd
]T ∈ CKd is a vector includ-

ing all beamformings transmitted from the i-th antenna, and
wdi,m is the i-th entry of wdm . ṽdi and µ̃i are defined in
the similar way. This is also a QCQP-1 problem, and can be
optimally solved by Lagrangian dual decomposition method.

Next, we focus on the global variables update with given
local variables, which can be decomposed into the following
two independent problems:

min
wd

∑Kd

m=1

∑Kd

i=1

∣∣am,i − hH
dm

wdi + λd
m,i

∣∣2+ (22)
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Kd∑
m=1

Ku∑
n=1

∣∣bn,m−hH
SInwdm+λu

m,n

∣∣2+ Kd∑
m=1

∥vdm−wdm+µm∥2,

min
r

r+
ρ

2

∑Nt

i=1

∣∣αd
i − r + ηdi

∣∣2. (23)

For wd update, problem (22) can be decomposed into Kd

independent subproblems, one for each m-th downlink user:

min
wdm

∑Kd

i=1

∣∣am,i − hH
dm

wdi + λd
m,i

∣∣2+ (24)∑Ku

n=1

∣∣bn,m−hH
SInwdm

+λu
m,n

∣∣2+∥vdm
−wdm+µm∥2,

which is an unconstrained quadratic programming problem
and the optimal closed-form solution is

wdm =
(∑Kd

i=1
hdi

hH
di
+
∑Ku

n=1
hSInh

H
SIn + I

)−1

× (25)(∑Kd

i=1
(ai,m+λ

d
i,m)hdi

+
∑Ku

n=1
(bn,m+λu

m,n)h
H
SIn+vdm+µm

)
.

To update r, the optimal solution to problem (23) is

r=
(
ρ
∑Nt

i=1
(αd

i + ηdi )− 1
)/

(ρNt) . (26)

To summarize, the proposed iterative algorithm consists
of two steps. i), with given t, SCA method is adopted to tackle
problem R iteratively; at each iteration, the ADMM-based
parallel Algorithm 1 is proposed to solve problem (10); ii)
the bisection method is applied to obtain the optimal t.

Algorithm 1 ADMM-based beamforming for problem (10)

1: Initialize global variables {wd, r} and dual variables
{λd, λu, µ, ηd}; set penalty factor ρ;

2: while the convergence condition is not met do
3: Update local variables {a,b,vd,α

d} by solving
(17)−(19);

4: Update global variables {wd, r} by solving (22), (23);
5: Update dual variables {λd,λu,µ,ηd} :

λd
m,i = λd

m,i+am,i−hH
dm

wdi , λ
u
n,m = λu

n,m+bn,m−
hH
SIn

wdm , µm = µm+vdm −wdm , ηdi = αd
i −r+ηdi ;

6: end while

4. SIMULATION RESULTS
In this section, performance evaluation of our proposed paral-
lel beamforming scheme is provided. All users are randomly
distributed within a circle around the FD-BS, whose radius is
250 m. For simplicity, we assume Nt = Nr and Kd = Ku.
Besides, uplink SINR requirement of each uplink user, Γun , is
set to be equal and the weighted factor for each downlink user,

1
Γdm

, is assumed to be 1. Except for the residual SI channel,
all remaining channels are modeled as the large-scale pathloss
and small-scale Rayleigh fading. The large-scale pathloss is
PL = 103.8+20.9log(d) in dB, where d is in kilometer. The
residual SI channel is modeled as HSI ∼ CN (0, σ2

SI), where
σ2
SI = −60 dB represents for the SIC capability. All noise

power is assumed to be −74 dB.

-20 -15 -10 -5 0 5 10 15 20

Desired uplink SINR, Γ
u
, (dB)

2

4

6

8

10

12

14

16

18

A
ch

ie
ve

d 
m

in
im

um
 d

ow
nl

in
k 

S
IN

R
 (

dB
)

SCA-ADMM
SCA-SDPT3
SCA-SCS

 N
t
=50,K

d
+K

u
=50 N

t
=10, K

d
+K

u
=10

Fig. 1. Achievable downlink SINR vs uplink SINR requirement.

10 15 20 25 30 35 40 45 50

The  number of downlink and uplink users, K
d
+K

u

0

100

200

300

400

500

600

700

800

S
im

ul
at

io
n 

tim
e 

(s
ec

on
ds

)

SCA-ADMM
SCA-SDPT3
SCA-SCS

Fig. 2. Simulation time vs the number of users with Nt = 50, Nr = 50.

As mentioned in section 3, the convex QCQP problem
(10) can be directly solved by the CVX solver. In the sim-
ulation, we compare our proposed parallel beamforming al-
gorithm, labelled as ’SCA-ADMM’, with two off-the-shelf
CVX solvers, i.e., a second-order solver, SDPT3 and a first-
order solver, SCS [16]. These two baseline schemes are re-
spectively named as ’SCA-SDPT3’ and ’SCA-SCS’.

In Fig. 1, the performance of our proposed scheme and
two baseline schemes are shown. For the small-size system
setup, we set Nt = Nr = 10, Kd = Ku = 5, PBS

i = 1
W and pun = 0.5 W. For the large-size system setup, we set
Nt = Nr = 50, Kd = Ku = 25, PBS

i = 2 W and pun = 1
W. From Fig. 1, we can see that our proposed ’SCA-ADMM’
scheme can obtain the similar performance with two baseline
schemes for both small-size and large-size systems.

Fig. 2 gives the running time of different algorithms
as the number of users increases. It is observed that pro-
posed low-complexity parallel ’SCA-ADMM’ scheme runs 4
times faster than ’SCA-SCS’ scheme and 17 times faster than
’SCA-SDPT3’ scheme when Nt = 50. Thus, our proposed
scheme can significantly reduce the computational complexi-
ty and is very suitable for large-scale systems.

5. CONCLUSIONS
This paper proposes a low-complexity parallel beamforming
algorithm to maximize the minimum weighted downlink SIN-
R with uplink SINR constraints and per-antenna constraints in
FD systems. The SCA method and ADMM are utilized. Nu-
merical results show that our proposed algorithm runs much
faster than CVX solvers (SDPT3 and SCS) and can scale well
to large-scale systems. For future work, we will design the
distributed transceiver scheme in multiple FD-BSs networks.
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