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ABSTRACT
We consider downlink multicast beamforming in a massive MIMO
multi-cell network. Aiming at maximizing the minimum SINR
among users, for both non-cooperative and cooperative multi-
casting, we propose a multicast beamforming scheme based on
weighted maximum ratio transmission (MRT), and transform the
beamforming optimization problem into a weight optimization
problem that is solved via the semi-definite relaxation (SDR) ap-
proach. The proposed method has a low computational complexity
which does not grow with the number of antennas, and thus is
suitable for massive MIMO systems. Simulation shows that our
proposed multicast beamforming solution yields comparable or
better performance than existing approaches but with significantly
lower complexity for practical systems with a large but finite
number of antennas.

Index Terms— Multicast beamforming, massive MIMO, multi-
cell coordination, base station cooperation

1. INTRODUCTION

With the fast development of wireless applications and net-
works, wireless services that delivers common contents to multiple
users have becoming increasingly popular. Examples include video
streaming, information or media sharing, and mobile application
downloads. Wireless multicasting is the underlying technology to
enable these services. With massive MIMO emerged as a promising
key technology for the 5th generation wireless systems [1], [2],
multicast beamforming for downlink content delivery in a massive
MIMO cellular system is expected to a promising transmission
techniques.

Multicast beamforming design was initially considered for a
single cell serving a single user group [3]–[5] and multiple user
groups [6], [7]. The resulting beamforming optimization problems
are NP-hard in general. The focus in the literature has been on
developing signal processing techniques or numerical algorithms to
obtain suboptimal beamforming solutions. Among existing meth-
ods, semi-definite relaxation (SDR) is a prevailing approach to find
a good suboptimal solution [3]–[8]. However, the computational
complexity of the SDR approach becomes very high as the problem
size grows, making the approach inefficient for large-scale antenna
systems. For multi-group multicast beamforming, several recent
works have proposed low-complexity or fast algorithms to obtain
beamforming vectors [9]–[11].

In a multi-cell network, multicast beamforming needs to consider
inter-cell interference. For non-cooperative multicasting, coordi-
nated multicast beamforming, where beamforming vectors among
multiple cells were designed jointly to reduce inter-cell interference,
was considered in [12], [13] for maximizing the minimum signal-
to-interference-and-noise ratio (SINR) among users. Clustering

base stations (BSs) for cooperative multicast beamforming was
recently considered jointly with caching to minimize network
cost in [14]. In these works, conventional finite number of BS
antennas was assumed, and the SDR approach was adopted to find
the beamforming vectors. Very few works have studied multicast
beamforming design for a massive MIMO multi-cell network. In
[15], coordinated multicast beamforming was studied, where it is
shown that, the inter-cell interference vanishes as the number of
BS antennas goes to infinity, and the asymptotically optimal beam-
forming solution is obtained in closed-form as a linear combination
of the channel vectors. However, both existing studies [16] and our
study show that the multicast inter-cell interference vanishes at a
rather slow rate as the number of BS antennas increases, and the
asymptotically optimal beamformer is rather suboptimal and may
not be a good choice for practical systems with a large but finite
number of antennas. On the other hand, the direct SDR approach
suffers from high computational complexity when the number of
antennas is large, making it impractical to obtain a beamforming
solution. Thus, our goal is to design a low-complexity multicast
beamforming solution for a massive MIMO system.

In this work, we design downlink multicast beamforming in
a massive MIMO multi-cell network, aiming at maximizing the
minimum SINR among users. Both non-cooperative and coopera-
tive multicast beamforming scenarios are considered. We propose
a multicast beamforming structure using the weighted maximum
ratio transmission (MRT) beamforming, and transform the multicast
beamforming optimization problem into a weight optimization
problem which is solved via the SDR approach. The complexity
of our proposed solution does not grow with the number of BS
antennas and is suitable for massive MIMO systems. Simulation
shows that our proposed solution delivers comparable performance
to the traditional direct SDR approach but with significantly lower
complexity for the large-scale antenna systems, and substantially
outperforms the asymptotically optimal beamforming solution.

2. SYSTEM MODEL

We consider downlink multicasting in a cellular network con-
sisting of N cells and K users per cell, as shown in Fig. 1. The
base station (BS) in each cell is equipped with M antennas, where
M � 1 for a massive MIMO system. Each user is equipped with
single antenna. We assume that all BSs and users are perfectly
synchronized in time and use the same spectrum for transmission.
With multiple BSs, we design multicast beamforming for two
types of multicast transmissions: non-cooperative multicasting and
cooperative multicasting.

2.1. Non-cooperative Multicasting

We consider coordinated multicasting in a multi-cell scenario,
each BS multicasts information to K users in its own cell, and the
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Inter-cell interference

Fig. 1. A multi-cellular downlink non-cooperative multicast beamform-
ing scenario.

beamforming vectors among BSs are jointly determined. Define
N , {1, ∙ ∙ ∙ , N}, K , {1, ∙ ∙ ∙ , K}. Let hnjk denote the M × 1
channel vector from BS n to user k in cell j, for n, j ∈ N and
k ∈ K. Let sn denote the multicast information symbol from BS n
with E[|sn|2] = 1. Let wn denote the M×1 multicast beamforming
vector at BS n. The received signal at user k in cell n is given by

ynk =wH
n hnnksn +

N∑

i 6=n

wH
i hinksi + nnk, k ∈ K, n ∈ N (1)

where nnk is the received additive Gaussian noise at user k in cell n
with zero mean and variance σ2. The first term in (1) is the desired
signal to user k and the second term is the interference from BSs
of neighboring cells. The transmit power at BS n is limited by its
maximum power Ptot, and we have ‖wn‖2 ≤ Ptot, for n ∈ N . We
assume that all the channel state information (CSI) are perfectly
known at BSs.

From (1), the received SINR at user k in cell n is given by

SINRnk =
|hH

nnkwn|2
∑N

i 6=n |hH
inkwi|2 + σ2

. (2)

For multicasting, the performance at each cell is characterized by
the minimum SINR among all users in the cell. Our objective is
to design the beamforming vectors {wn} of all BSs to maximize
the minimum SINR of the network, under the transmit power
constraint. The optimization problem is formulated by

PNC : max
{wn}

min
k∈K,n∈N

|hH
nnkwn|2

∑N
i 6=n |hH

inkwi|2 + σ2

s.t. ‖wn‖
2 ≤ Ptot, n ∈ N . (3)

2.2. Cooperative Multicasting

In the cooperative multicasting case, multiple BSs form a cluster
to cooperatively multicast data to a user group. We consider the
general case where users are divided into groups, with J users per
group. Each user group is served by its serving BS cluster. This
setup includes the scenario where users in multiple cells request
the same content, and they can be formed into the same group
and served by the BS cluster. Cooperative multicasting may be
especially beneficial in this scenario.

Assume there are C clusters, where C ≤ N . Assuming each
BS cluster serves one user group, we use the same index for the
user group and its serving BS cluster. Denote C = {1, ∙ ∙ ∙ , C}
and J = {1, ∙ ∙ ∙ , J}. Let Qc denote the set of BS indices for BS
cluster c, where Qc ⊆ N , for c ∈ C. Note that a BS may be in
multiple BS clusters to serve multiple user groups simultaneously.

Thus, sets {Qc}C
c=1 may overlap with each other. Let Bn denote

the set of cluster indices that BS n belongs to. Let w̃nc denote
the beamforming vector at BS n for cluster c. Let h̃ncj denote the
channel vector from BS n to the user j in group c. The received
signal at user j in group c, for j ∈ J , c ∈ C, is given by

ycj =
∑

n∈Qc

w̃H
nch̃ncjsc +

C∑

i 6=c

∑

n∈Qi

w̃H
nih̃ncjsi + ncj (4)

where sc is the common multicast symbol from BS cluster c,
and ncj is the received Gaussian additive noise at user j in
group c. The transmit power constraint at BS n is expressed by∑

c∈Bn
‖w̃nc‖2 ≤ Ptot.

Based on (4), the SINR at user j in group c under the cooperative
multicasting is given by

SINRcj =
|
∑

n∈Qc
h̃H

ncjw̃nc|2
∑C

i 6=c |
∑

n∈Qi
h̃H

ncjw̃ni|2 + σ2
. (5)

To maximize the minimum SINR among all users, the problem is
give by

PCP : max
{w̃nc}

min
j∈J,c∈C

|
∑

n∈Qc
h̃H

ncjw̃nc|2
∑C

i 6=c |
∑

n∈Qi
h̃H

ncjw̃ni|2 + σ2

s.t.
∑

c∈Bn

‖w̃nc‖
2 ≤ Ptot, n ∈ N . (6)

3. WEIGHTED MRT MUTICAST BEAMFORMING

Both the optimization problems PNC and PC are non-convex and
NP-hard problems, and the optimal solutions typically cannot be
obtained. To find a good sub-optimal solution, a typical approach
is to apply the SDR approach to find sub-optimal wn. However,
the complexity of the SDR approach grows with the size of the
problem which is determined by M . For massive MIMO, as M �
1, the SDR approach incurs very high computational complexity,
thus directly obtaining wn through SDR is not suitable for the
large-scale antenna systems. Below, we propose a low-complexity
algorithm via a special mutlicast beamforming structure to find a
sub-optimal solution {wn} whose complexity does not grow with
the number of antennas.

3.1. Non-cooperative Multicasting

Instead of directly finding {wn} for problem PNC, we propose
the structure of wn at each BS n as a weighted sum of the channel
vectors between BS n and its each serving users, given by

wn ,
K∑

k=1

ankhnnk, n ∈ N . (7)

where ank is the complex weight for the channel between BS n and
user k. We name this as the weighted MRT multicast beamforming.

Define Hn , [hnn1, ∙ ∙ ∙ ,hnnK ] as the M × K channel
matrix between BS n and its serving user group. Define an ,
[an1, ∙ ∙ ∙ , anK ]T as the K × 1 weight vector associated with
beamforming vector wn at BS n. Based on wn in (7), SINR
expression in (2) can now be rewritten as

SINRnk =
|hH

nnkHnan|2
∑N

i 6=n |hH
inkHiai|2 + σ2

=
aH

n Annkan
∑N

i 6=n(aH
i Ainkai) + σ2
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where Aink , HH
i hinkh

H
inkHi, i, n ∈ N . The transmitting power

of BS n can be written as

‖wn‖
2 = ‖Hnan‖

2 = aH
n Bnan (8)

where Bn , HH
n Hn.

The optimization problem PNC is now transformed into the
optimization of weight vectors {an} for the same objective. The
max-min SINR optimization problem PNC can now be rewritten as

PNC2 : max
{an}

min
k∈K,n∈N

aH
n Annkan

∑N
i 6=n(aH

i Ainkai) + σ2

s.t. aH
n Bnan ≤ Ptot, n ∈ N .

Note that the problem size of PNC2 is NK based on the opti-
mization variables in {an}, as opposed to NM for PNC, and has
the same number of constraints. The size of the new problem is
independent of the number of BS antennas M , making the approach
especially attractive for BSs with massive MIMO. Problem PNC2

can be transformed to the following

PNC3 : min
{an}

t

s.t.
aH

n Annkan
∑N

i 6=n(aH
i Ainkai) + σ2

≥
1

t
, k ∈ K, n ∈ N

aH
n Bnan ≤ Ptot, n ∈ N , t > 0.

To solve PNC3, we apply the SDR approach. Define Xn ,
anaH

n , n ∈ N , and drop the rank constrain Rank(Xn) = 1, we
transform PNC3 to the following problem

PNC4 : min
{Xn},t

t

s.t. tr
[
tAnnkXn −

N∑

i 6=n

AinkXi

]
≥ σ2, k ∈ K, n ∈ N

tr
[
BnXn

]
≤ Ptot, n ∈ N , Xn � 0, t > 0.

Although PNC4 is not jointly convex w.r.t. Xn and t, when t is
fixed, it is convex w.r.t. Xn. Thus, we are able to find Xn by
applying the bi-section search over t, along with a feasibility test
problem given by

Find {Xn}

s.t. tr[tAnnkXn −
N∑

i 6=n

AinkXi] ≥ σ2, k ∈ K, n ∈ N

tr[BnXn] ≤ Ptot, n ∈ N .

The above problem is a semi-definite programming (SDP) which
can be solved efficiently with standard SDP solvers by applying
interior point methods. If the optimal solution Xo

n is rank one,
the weight vector an for BS n can be directly recovered from
Xo

n = anaH
n . Otherwise, the Gaussian randomization method [5]

can be applied to find a suboptimal rank-one solution.

3.2. Cooperative Multicasting

Similar to the non-cooperative case, we consider weighted MRT
multicast beamforming, where we construct w̃nc as a weighted sum
of the channel vectors between BS n and user group c, given by

w̃nc ,
J∑

j=1

bncjh̃ncj , n ∈ Qc, c ∈ C (9)

where bncj is the complex weight for the channel vector between
BS n and user j in group c.

Again, define H̃nc , [h̃nc1, ∙ ∙ ∙ , h̃ncJ ] as the channel matrix
between BS n and user group c. Define bnc , [bnc1, ∙ ∙ ∙ , bncJ ]T

as the weight vector for beamforming vector of BS n to group c.
The SINR of user j in group c in (5) can now be rewritten as

SINRcj =
|
∑

n∈Qc
h̃H

ncjH̃ncbnc|2
∑C

i 6=c |
∑

n∈Qi
h̃H

ncjH̃nibni|2 + σ2
. (10)

To facilitate the notations, let Qc = |Qc|, and we describe the
BS indices in BS cluster set Qc = {n1, ∙ ∙ ∙ , nQc}, where nk is
the BS index for kth BS in BS cluster c, for k = 1, ∙ ∙ ∙ , Qc. We
further define bc , vec([bn1c, ∙ ∙ ∙ ,bnQc c]) as the weight vector
associate with the beamforming vectors for BS cluster c. Define
gicj , vec([H̃H

n1ih̃n1cj , ∙ ∙ ∙ , H̃H
nQc ih̃nQc cj ]). Note that vector

gccj contains the correlation of the channel vector from each BS
in cluster c to its user j and channel vectors from that BS to all
other users in group c. Using bc and gicj , SINRcj expression in
(10) can be further rewritten as

SINRcj =
bH

c Gccjbc
∑C

i 6=c bH
i Gicjbi + σ2

(11)

where Gicj , gicjg
H
icj . Similarly, the transmit power at BS n can

be rewritten as
∑

c∈Bn

‖w̃nc‖
2 =

∑

c∈Bn

bH
ncH̃

H
ncH̃ncbnc =

∑

c∈Bn

bH
c Dncbc (12)

where Dnc , bldg(0, ∙ ∙ ∙ ,0, H̃H
ncH̃nc,0, ∙ ∙ ∙0) is a block diago-

nal matrix consisting of Qc diagonal blocks of size J × J each;
matrix H̃H

ncH̃nc is located at the kth diagonal block, where k is
determined by the inverse mapping from BS index n to the kth
element in Qc = {n1, ∙ ∙ ∙ , nQc}, where nk = n. The rest diagonal
blocks are J × J zero matrices.

Using (11) and (12), optimization problem PCP for the cooper-
ative multicasting case is now transformed to

PCP2 : min
{bc}

t

s.t.
bH

c Gccjbc
∑C

i 6=c(b
H
i Gicjbi) + σ2

≥
1

t
, j ∈ J , c ∈ C

∑

c∈Bn

bH
c Dncbc ≤ Ptot, n ∈ N , t > 0.

Comparing with the original problem PCP, the transformed problem
PCP2 is of size J

∑C
c=1 Qc based on the optimization variables

{bc}, which only depends on N and J and is independent of the
number of BS antennas M , which makes the approach particularly
suitable for a large-scale antenna systems.

Now PCP2 has a very similar structure as PNCP3 in the non-
cooperative case. Likewise, we define Yc , bcb

H
c , c ∈ C, and

use the SDR approach to find a solution for PCP2 as

PCP3 : min
{Yc},t

t

s.t. tr
[
tGccjYc −

C∑

i 6=c

GicjYi

]
≥ σ2, j ∈ J , c ∈ C

tr
[ ∑

c∈Bn

DncYc

]
≤ Ptot, n ∈ N , Yn � 0, t > 0.

The optimal solution Yo
c can be obtained by solving the SDP

feasibility problem along with 1-D bi-section search on t. Again,
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Non-cooperative Cooperative
M Weighted

MRT (s)
Direct
SDR (s)

Weighted
MRT (s)

Direct
SDR (s)

5 12.68 12.49 12.38 22.48
10 13.42 16.31 12.73 105.78
20 14.61 42.52 13.46 799.51
40 15.84 266.0 14.08 6710
50 16.33 533.8 14.68 12435
100 15.79 4405 14.97 N/A
200 16.68 35042 15.84 N/A
500 17.86 N/A 16.82 N/A

Table I. Comparison of Average Computation Time (N = 3).

the solution bc can be extracted from Yo
c , either directly as the

optimal solution to PCP2 if Yo
c is rank one, or through the Gaussian

randomization approach as a sub-optimal solution to PCP2.

4. SIMULATION RESULTS

For simulation study, we generate i.i.d. channel vectors hnik ∼
CN (0, βnkI) between each BS and each user, where channel vari-
ance βnk is using the large-scale pathloss model as βnk = Kod

−κ
nk ,

with dnk being the distances between BS n and user k, and κ being
the path loss exponent set to κ = 3.5. We set Ptot/σ2 = 10dB.

1) Noncooperative Case: We first consider a single cell setup
without inter-cell interference with K = 3. For comparison, we
consider i) directly obtaining {wn} by solving the original problem
PNC using the SDR approach (direct SDR); ii) Asymptotically
optimal solution for the non-cooperative case (asymptotic BF) [15]
obtained by letting M → ∞. In Fig. 2, we plot the minimum SINR
performance versus M , where we see that all three methods provide
very close performance to each other. However, their computational
complexity are substantially different which is discussed next.

Fig. 3 shows the performance of different methods in a multi-
cell scenario with N = 3 and K = 3. Besides the direct
SDR method for coordinated beamforming PNC, we also consider
the direct SDR method for non-coordinated beamforming (i.e.,
single-cell) for comparison. The SDR upper bound is plotted as
a benchmark. We see that the proposed weighted MRT method
results in a small loss (∼ 0.5 dB) as compared with the direct
SDR method (coordinated) for M ≤ 200, while using the latter
for M > 200 becomes computationally prohibitive. The asymptotic
BF and direct SDR (non-coordinated) methods have very similar
performance, and our proposed method significantly outperforms
the two methods by about 3 dB. The reason is that the inter-
cell interference reduces at a very slow rate as M increases, and
the asymptotic solution (assuming inter-cell interference vanishes)
is considerably sub-optimal for practical large value of M . The
average computation time for the weighted MRT and the direct
SDR methods are shown Table. I. The weighted MRT complexity is
low and is almost unchanged as M increases, while the direct SDR
complexity increases significantly with M and becomes impractical
for finite but large M .

2) Cooperative Case: For the cooperative case, we consider
N = 3 and set C = 3 clusters, where each cluster includes
all 3 BSs, and each cluster is serving a different user group
with J = 3 users per group. For comparison, we consider the
direct SDR approach to obtain {w̃nc} in PCP. In Fig.4, the gap
between the weighted MRT and direct SDR is larger than that
in the non-cooperative case. Similar to the non-cooperative case,
we can derive the cooperative asymptotically optimal beamforming
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Fig. 2. Minimum SINR vs. M for the single cell case.
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Fig. 3. Minimum SINR vs. M for the non-cooperative case (N = 3,
K = 3).
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Fig. 4. Minimum SINR vs. M for the cooperative case (N = 3, J = 3).

solution, whose performance shown in Fig.4 is significantly worse
than the weighted MRT, as well as the asymptotical BF solution in
the non-cooperative case. This is due to the increased interference
when a BS participates multiple clusters, which decreases very
slowly with M and cannot be captured in the asymptotic solution
for finite but large M . Comparing the performance of the weighted
MRT in the non-cooperative and cooperative cases, we observe
about 1.5dB gain due to cooperation among 3 BSs. From Table. I,
we see that the processing time by weight MRT remains nearly
unchanged across M as well as compared with that in the non-
cooperative case, while the processing time by the direct SDR
method increases significantly in the cooperative case and with M .

5. CONCLUSION

In this work, we considered the non-cooperative and cooperative
multicast beamforming designs in a massive MIMO multi-cell
network. Aiming to maximize the minimum SINR among users,
we proposed a weighted MRT beamforming structure which can
be optimized through a weight optimization problem via the SDR
approach with a low complexity independent of the number of
BS antennas. Simulation shows the performance of our proposed
solution is comparable to the solution using direct SDR approach
but with much lower complexity. Our proposed solution is also
significantly better than the asymptotic solution in a practical
system with large M .
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