
AN ADAPTIVE COMBINATION RULE FOR DIFFUSION LMS
BASED ON CONSENSUS PROPAGATION

Ayano Nakai

Graduate School of Informatics,
Kyoto University

Sakyo-ku, Kyoto 606-8501, Japan

Kazunori Hayashi

Graduate School of Engineering,
Osaka City University

Sumiyoshi-ku, Osaka 558-8585, Japan

ABSTRACT
Diffusion least-mean-square (LMS) algorithm is a method
that estimates an unknown global vector from its linear mea-
surements obtained at multiple nodes in a network in a dis-
tributed manner. This paper proposes a novel combination
rule in the algorithm used to integrate the local estimates
at each node by using the idea of consensus propagation,
which is known to be a fast algorithm to achieve the average
consensus. Moreover, we optimize constants involved in the
proposed combination rule in terms of the steady state mean-
square-deviation (MSD) and show an adaptive combination
rule, along with an adaptive implementation. Simulation
results demonstrate that the proposed combination scheme
achieves better MSD performance than conventional combi-
nation schemes.

Index Terms— Diffusion LMS, in-network signal pro-
cessing, consensus propagation, average consensus, combi-
nation weights

1. INTRODUCTION AND RELATED WORK

In-network signal processing, which is a framework of dis-
tributed signal processing in networks, has gained much at-
tention recently [1]. When each node in the network needs to
track an unknown parameter in real-time, one of the effective
methods is diffusion least-mean-square (LMS) algorithm [2]–
[6], where each node in the network iteratively updates the es-
timate by LMS algorithm using its noisy measurements and
also by the weighted average of its neighbors’ estimates ob-
tained via communications, and finally all nodes in the net-
work obtain the same estimate.

It is known that the choice of the weights used in the com-
bine step of neighbors’ estimates has a great impact on the
convergence performance of the diffusion LMS. Thus, sev-
eral combination rules have been proposed in the literature,
such as uniform rule [7], maximum degree rule [8], Metropo-
lis rule [9], and relative degree rule [5]. More sophisticated
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static rules are considered in [5], [10]–[12], which are de-
rived by solving some optimization problems. In particular, a
closed-form solution that minimizes the steady state error has
been derived in [10] and [11], which is referred to as relative-
variance rule. Since the relative-variance rule requires pa-
rameters including network statistics such as noise variances
at all nodes, which are not available at each node in general,
adaptive estimation methods of the parameters have been also
proposed in [10] and [11].

In this paper, we propose a novel combination rule by
using the idea of consensus propagation [13], which can be
viewed as a special case of belief propagation [14]. If the net-
work has a tree structure, all nodes in the network can obtain
exact average only with the same number of iterations as the
diameter of the tree by using consensus propagation. Based
on this fact, we have proposed a diffusion LMS using consen-
sus propagation for the network with the tree structure in [15]
in our previous work. In this paper, we extend the method to
general networks, which possibly have loops. Since the up-
date rule of consensus propagation in the network with loops
involves constants to be determined that control the conver-
gence property, which are known to be difficult to optimize
in general, we select values of constants in consensus prop-
agation by minimizing steady state mean-squared-deviation
(MSD) of the diffusion LMS as in [10], [11]. Moreover, we
further extend the proposed combination rule to an adaptive
version, which can be implemented in a fully distributed man-
ner. Simulation results show that the proposed combination
scheme achieves better performance with the lower sensitiv-
ity to the initial values of adaptation than the conventional
combination rules.

2. DIFFUSION STRATEGY

2.1. System Model

Consider a network with N nodes, where each node k can
communicate with its neighbors and aims to estimate an un-
known deterministic vector of interest wo ∈ CM×1 through
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linear measurements of the form [2]–[6]:

d
(i)
k = u

(i)H
k wo + v

(i)
k , (1)

where (·)H denotes the Hermitian transpose, i (≥ 0) is a time
index, d(i)k is a scalar measurement, u(i)

k ∈ CM×1 is a random
measurement vector, and v

(i)
k is a zero-mean additive white

Gaussian noise with variance of σ2
k. The stochastic processes

{d(i)k ,u
(i)
k } are assumed to be jointly wide-sense stationary

and zero-mean. For simplicity, we assume that all commu-
nications between neighbor nodes are perfect, i.e., we do not
consider any communication error.

2.2. Diffusion LMS Algorithm

All nodes in the network estimatewo by solving the following
optimization problem [2]–[6]:

ŵo = argmin
w

N∑
k=1

E[|d(i)k − u(i)H
k w|2], (2)

where E[·] stands for the expectation operator. Diffusion LMS
algorithm [3]–[5] is the iterative method to solve this global
problem in a distributed manner. Especially, by using ψ(i)

k

and ϕ(i)
k that denote the estimates of wo at node k at time

i, the Adapt-then-Combine (ATC) version of diffusion LMS
update can be described as [5]

ψ
(i)
k = ϕ

(i−1)
k + µku

(i)
k (d

(i)
k − u(i)H

k ϕ
(i−1)
k ), (3)

ϕ
(i)
k =

∑
l∈Nk

alkψ
(i)
l , (4)

where ψ(i)
k is an immediate estimate obtained by LMS up-

date, ϕ(i)
k is obtained by the weighted average of its neigh-

bors’ estimates with ϕ(−1)
k = 0, µk is the step-size parameter,

Nk is the set of neighbors of node k including k itself, and alk
is a nonnegative combination weight, which is the (l, k) ele-
ment of an N ×N matrixA that satisfies 1TA = 1T, where
1 denotes a vector whose elements are all 1. Possible choices
of the combination weights alk will be uniform rule [7]

alk =
1

|Nk|
, (5)

Metropolis rule [9], relative degree rule [5], and so on. Note
that the choice of the combination rule has a great impact on
the convergence performance of the diffusion LMS [12].

3. PROPOSED DIFFUSION STRATEGY

Here, we propose a novel combination rule inspired by the
fast message passing algorithm to achieve average consensus,
namely consensus propagation (CP) [13], in order to improve
the convergence performance of the diffusion LMS.

3.1. Consensus Propagation

Assume that, in a network composed of N nodes, each node k
has an initial state value xk ∈ C. The goal of CP is that each
node obtains the average 1

N

∑N
k=1 xk, which is called average

consensus. CP consists of two types updates, message update
between neighbor nodes and state update at each node, to cal-
culate the approximate average using locally available infor-
mation only. The updates of CP at the j-th iteration are given
as follows:

K
[j]
(k→l) =

1 +
∑

u∈Nk\l,k K
[j−1]
(u→k)

1 + 1
βk

(1 +
∑

u∈Nk\l,k K
[j−1]
(u→k))

, (6)

θ
[j]
(k→l) =

xk +
∑

u∈Nk\l,k K
[j−1]
(u→k)θ

[j−1]
(u→k)

1 +
∑

u∈Nk\l,k K
[j−1]
(u→k)

, (7)

x
[j]
k =

xk +
∑

u∈Nk\k K
[j]
(u→k)θ

[j]
(u→k)

1 +
∑

u∈Nk\k K
[j]
(u→k)

, (8)

where K
[0]
(k→l) = 0 and βk is a positive constant. By iterat-

ing (6)–(8), x[j]
k will converge to 1

N

∑N
k=1 xk.

Note that CP achieves exact average consensus with the
same number of iterations as the diameter of the graph when
the network has tree structure and βk = +∞. If the network
has loops, however, the convergence behavior has not been
fully understood yet because the messages and state values at
any iterations cannot be described. Although it is known that
βk in (6) plays an important role to ensure the convergence for
the case with loops, to the best of our knowledge, the optimal
value of βk has not been derived.

3.2. Diffusion LMS based on CP

We propose a novel combination rule by applying the first
iteration of CP to the combine step of the diffusion LMS al-
gorithm (4). By substituting ψ(i)

k in (4) to xk, we have

K
[1]
(u→k) =

βk

1 + βk
, θ

[1]
(u→k) = xk = ψ

(i)
k , (9)

and substituting ϕ(i)
k in (4) to x

[1]
k and (9) to (8), then we have

ϕ
(i)
k =

1 + βk

1 + |Nk|βk
ψ

(i)
k +

βk

1 + |Nk|βk

∑
u∈Nk\k

ψ(i)
u . (10)

This can be regarded as a novel combination rule summarized
as

alk =


βk

1+|Nk|βk
if l ∈ Nk and l ̸= k

1+βk

1+|Nk|βk
if k = l

0 otherwise,

(11)

which satisfies 1TA = 1T.
Note that the proposed combination rule approaches to the

uniform rule (5) as βk increases.
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4. WEIGHT OPTIMIZATION

4.1. Optimal Combination Weight

As mentioned in Sect. 3.1, how to select βk has been an open
issue [13]. In this section, we consider to choose βk that
minimizes mean-square-deviation (MSD) in the steady state
of diffusion LMS algorithm, i.e., limi→∞

1
N

∑N
k=1 E[∥wo −

ϕ
(i)
k ∥2]. Assuming that step-sizes {µk} are sufficiently small

and that all measurement vectors {u(i)
k } are temporally and

spatially independent, it can be shown that the upper bound
of the steady state MSD is proportional to [6], [10], [11]

N∑
k=1

N∑
l=1

γ2
l a

2
lk, (12)

where γ2
l = µ2

l σ
2
l Tr(Rul

), Tr(·) denotes the trace operator,
andRul

= E[u
(i)
l u

(i)H
l ].

The steady state MSD in (12) has been used to determine
{alk} in (4) in the existing works [6], [10], [11] as

{aoptlk }Nk=1 = argmin
{alk}N

k=1

N∑
l=1

γ2
l a

2
lk, (13)

s.t.
N∑
l=1

alk = 1, alk = 0 if l /∈ Nk.

The solution results in the relative-variance rule [11] given by

aoptlk =

{
[γ2

l ]
−1∑

m∈Nk
[γ2

m]−1 if l ∈ Nk

0 otherwise.
(14)

For the proposed combination rule, the optimization prob-
lem to decide {βk} is written as

{βopt
k }Nk=1 = argmin

{βk}N
k=1

N∑
l=1

γ2
l a

2
lk, s.t. (11). (15)

The shape of the cost function in (15) largely depends on
Ak =

∑
l∈Nk

γ2
l − |Nk|γ2

k ̸= 0. When Ak > 0, the func-
tion has a global minimum in βk > 0 and the optimal value is
obtained as

βmin
k =

(|Nk| − 1)γ2
k

Ak
. (16)

On the other hand, it becomes monotonically decreasing func-
tion when Ak < 0. Thus, in summary, the optimum βk is
given by

βopt
k =

{
βmin
k if Ak > 0

+∞ otherwise.
(17)

Algorithm 1 Diffusion LMS with weight adaptation in [10]

1: Initialization: ϕ(−1)
k = 0

2: for each time i ≥ 0 and each node k do
3: ψ

(i)
k = ϕ

(i−1)
k + µku

(i)
k (d

(i)
k − u(i)H

k ϕ
(i−1)
k )

4: γ
2,(i)
lk = (1− νk)γ

2,(i−1)
lk + νk∥ψ(i)

l − ϕ(i−1)
k ∥2

5: a
(i)
lk =

[γ
2,(i)
lk ]−1∑

m∈Nk
[γ

2,(i)
mk ]−1

6: ϕ
(i)
k =

∑
l∈Nk

a
(i)
lk ψ

(i)
l

7: end for

Algorithm 2 Diffusion LMS with proposed weight adapta-
tion

1: Initialization: ϕ(−1)
k = 0

2: for each time i ≥ 0 and each node k do
3: ψ

(i)
k = ϕ

(i−1)
k + µku

(i)
k (d

(i)
k − u(i)H

k ϕ
(i−1)
k )

4: γ
2,(i)
lk = (1− νk)γ

2,(i−1)
lk + νk∥ψ(i)

l − ϕ(i−1)
k ∥2

5: if
∑

l∈Nk
γ
2,(i)
lk − γ

2,(i)
kk |Nk| > 0 then

6: β
(i)
k =

(|Nk|−1)γ
2,(i)
kk∑

l∈Nk
γ
2,(i)
lk −γ

2,(i)
kk |Nk|

7: else
8: β

(i)
k = +∞ (large positive constant)

9: end if
10: a

(i)
lk =

β
(i)
k

1+β
(i)
k |Nk|

(l ∈ Nk \ k), 1+β
(i)
k

1+β
(i)
k |Nk|

(l = k)

11: ϕ
(i)
k =

∑
l∈Nk

a
(i)
lk ψ

(i)
l

12: end for

4.2. Adaptive Combination Weight

The optimal values of {aoptlk } for the conventional methods
in (14) and {βopt

k } for the proposed scheme in (17) require
the knowledge of γ2

l , which depends on locally unavailable
network statistics such as the measurement vectors and the
measurement noise profile. Thus, in [6], [10], [11], the esti-
mation method of γ2

l at each node is proposed as

γ
2,(i)
lk = (1− νk)γ

2,(i−1)
lk + νk∥ψ(i)

l − ϕ(i−1)
k ∥2, (18)

where νk is a forgetting factor (0 < νk < 1) and γ
2,(i)
lk is the

estimate of γ2
l at node k and time i. By using this estimate,

the adaptive version of (14) is proposed in [10] as

a
(i)
lk =


[γ

2,(i)
lk ]−1∑

m∈Nk
[γ

2,(i)
mk ]−1

if l ∈ Nk

0 otherwise.
(19)
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In the same way, the adaptive version of the proposed combi-
nation rule is given by

β
(i)
k =

{
(|Nk|−1)γ

2,(i)
kk

A
(i)
k

if A
(i)
k > 0

+∞ otherwise,
(20)

a
(i)
lk =


β
(i)
k

1+|Nk|β(i)
k

if l ∈ Nk and l ̸= k

1+β
(i)
k

1+|Nk|β(i)
k

if k = l

0 otherwise,

(21)

where A
(i)
k =

∑
l∈Nk

γ
2,(i)
lk − |Nk|γ2,(i)

kk . The algorithms
of diffusion LMS at node k using the conventional adaptive
combination rule in (19) and the proposed rule in (21) are
shown in Algorithm 1 and Algorithm 2, respectively. The
computational complexity of Algorithm 1 and Algorithm 2
are almost the same because the complexity of the proposed
rule (21) becomes comparable to that of the conventional
rule (19) by directly substituting (20) to (21).

5. SIMULATION RESULTS

In this section, we compare the MSD performance of the pro-
posed scheme with that of the conventional methods by com-
puter simulations. We assume that the measurement vectors
u
(i)
k are zero-mean white circular Gaussian random vectors

according to [3] and [5]. The background noise power at
each node is randomly determined by uniform distribution of
[10−3, 10−1]. The unknown vector is set to be wo = 1√

M
1

with M = 5. The step-sizes at all node are set to be µk =
0.03 and νk = 0.05. Simulation results are obtained by aver-
aging over 100 independent trials.

We have generated a random network for the diffusion
LMS with N = 50 and the average degree of 6 as shown in
Fig. 1. Fig. 2 shows the learning curves for the diffusion LMS
using the uniform rule (5), the conventional adaptive combi-
nation rule (19), and the proposed rule (21) in terms of the
network MSD, which is defined as the average squared errors
of estimates at all nodes, 1

N

∑N
k=1 ∥wo − ϕ(i)

k ∥2. In the con-
ventional adaptive rule and the proposed rule, we show the
cases where the initial values are γ

(0)
lk = 104 and 0.1. In the

figure, we see that the proposed adaptive combination rule
outperforms the other rules. We also observe that, in the con-
ventional scheme (19), the performance largely depends on
the initial value γ

(0)
lk , while the performance of the proposed

rule is less sensitive to γ
(0)
lk .

6. CONCLUSIONS

In this paper, we have proposed a novel combination rule
for diffusion LMS algorithm by using the idea of consensus
propagation and developed it to an adaptive form. Simula-
tion results show that the proposed adaptive rule outperforms

Fig. 1: Network with N = 50
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Fig. 2: Network MSD learning curves

the conventional rules in terms of network MSD performance
with the lower sensitivity to the initial values of adaptation.

Future work includes the extension to more flexible
weight control using asymmetric updates in consensus prop-
agation, i.e., using different constants at each node depending
on the direction of the messages.
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