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ABSTRACT

This paper presents the formulation and analysis of a novel
distributed maximum likelihood algorithm that utilizes a first-
order optimization scheme. The proposed approach utilizes a
static average consensus algorithm to reach agreement on the
initial condition to the iterative optimization scheme and a dy-
namic average consensus algorithm to reach agreement on the
gradient direction. The current distributed algorithm is guar-
anteed to exponentially recover the performance of the cen-
tralized algorithm. Though the current formulation focuses
on maximum likelihood algorithm built on first-order meth-
ods, it can be easily extended to higher order methods. Nu-
merical simulations validate the theoretical contributions of
the paper.

Index Terms— Distributed maximum likelihood, sensor
network, dynamic average consensus, first-order methods

1. INTRODUCTION

The advent of sensor network for a broad range of surveil-
lance and reconnaissance applications has highlighted the
utility of scalable algorithms which can be implemented in a
distributed fashion. Several distributed maximum likelihood
algorithms have been proposed to tackle the parameter esti-
mation problem in sensor network [1–4]. These algorithms
typically utilize an existing distributed optimization scheme
and are not focused on recovering the centralized estimator
trajectory.

Maximum likelihood problems can be cast as optimiza-
tion problems, and more specifically, in the context of sensor
network, as distributed optimization problems. Early ap-
proaches to distributed optimization involve the Distributed
Subgradient Methods (DSMs) [5], where the non-smooth
function optimization is performed by means of subgradient-
based descent or ascent approaches. Typical approaches to
DSMs involve primal subgradient methods [6–8] that yield
sublinear convergence rates. While DSMs have the advan-
tage of being easily distributed, have limited computational
requirements, and are inherently asynchronous [9–11], they
suffer from a low convergence rate since they require the
update step size to decrease to zero as k → ∞ (k being the
iteration step). Examples of distributed maximum likelihood

algorithms using DSM can be found in [12–14].
Among the distributed optimization methods, the most

widely known algorithm is Alternating Direction Method of
Multipliers (ADMM) [15], whose roots can be traced back to
[16]. Recent advancements in ADMM for asynchronous and
distributed implementations can be found in [17–20]. Though
it is efficient in several practical scenarios [21], ADMM often
requires the agents to reach consensus on the design variable
at each iteration of the optimization step and does not offer
the robustness necessary for sensor network. Examples of
ADMM based distributed maximum likelihood methods in-
clude [3] and [4].

Recently, several alternative approaches to ADMM and
DSM have appeared. For example, in [8, 22] the authors con-
struct contraction mappings by means of cyclic projections of
the estimate of the optimum onto the constraints. Other meth-
ods include the F-Lipschitz methods [23]; the distributed ran-
domized Kaczmarz method [24]; Zero Gradient Sum (ZGS)
algorithms [25]; exact first-order algorithm (EXTRA) [2]; and
distributed dual subgradient methods [26].

While the above approaches focus on developing new dis-
tributed optimization algorithms, here we develop a frame-
work for the distributed implementation of existing optimiza-
tion algorithms for maximum likelihood estimation. Though
we focus on firs-order methods, the proposed approach can
be easily utilized for the implementation of maximum like-
lihood estimation using higher-order methods. Current ap-
proach utilizes a dynamic average consensus1 (DAC) algo-
rithm [27, 28] to reach agreement on the gradient direction in
finite time. Unlike most of the existing distributed algorithms
that only focus on asymptotically recovering the centralized
steady-state solution, the proposed approach guarantees ex-
ponential convergence of the distributed estimator trajectories
to the centralized estimator trajectories.

The rest of this paper is organized as follows. Mathemat-
ical preliminaries and detailed problem formulation are given
in Sections 2 and 3, respectively. Main results of the paper
are given in Section 4. Section 5 provides the results obtained
from numerical simulations. Conclusions and future work are
discussed in Section 6.

1The problem of reaching consensus on the average of a set of local time-
varying signals in a distributed fashion is typically referred to as the dynamic
average consensus.
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2. PRELIMINARIES

2.1. Notation

Let Rn×m denote the set of n × m real matrices. An
n × n identity matrix is denoted as In and 1n denotes an n-
dimensional vector of all ones. Let Rn

1
denote the set of all n-

dimensional vectors of the form κ1n, where κ ∈ R. The ab-
solute value of a vector is given as |x| = [|x1| . . . |xn|

]T .
Let sgn{·} denote the signum function, defined as

sgn{x} �

⎧⎨
⎩

+1, if x > 0;
0, if x = 0;
−1, if x < 0,

and ∀x ∈ R
n, sgn{x} �

[
sgn{x1} . . . sgn{xn}

]T . For
p ∈ [1, ∞], the p-norm of a vector x is denoted as ‖x‖p. For
matrices A ∈ R

m×n and B ∈ R
p×q , A ⊗ B ∈ R

mp×nq

denotes their Kronecker product.

2.2. Network Model

For a connected undirected graph G (V , E) of order n,
V � {v1, . . . , vn} represents the agents or nodes. The com-
munication links between the agents are represented as E �

{e1, . . . , e�} ⊆ V × V . Here each undirected edge is consid-
ered as two distinct directed edges and the edges are labeled
such that they are grouped into incoming links to nodes v1 to
vn. Let I denote the index set {1, . . . , n} and ∀i ∈ I; let
Ni � {vj ∈ V : (vi, vj) ∈ E} denote the set of neighbors of
node vi. Let A � [aij ] ∈ {0, 1}n×n be the adjacency matrix
with entries aij = 1 if (vi, vj) ∈ E and zero otherwise. De-
fine Δ � diag (A1n) as the degree matrix associated with the
graph and L � Δ−A as the graph Laplacian. The incidence
matrix of the graph is defined as B = [bij ] ∈ {−1, 0, 1}n×�,
where bij = −1 if edge ej leaves node vi, bij = 1 if edge ej
enters node vi, and bij = 0 otherwise.

For the connected undirected graph G (V , E), L = 1
2BBT

and L is a positive semi-definite matrix with one eigenvalue
at 0 corresponding to the eigenvector 1n. Furthermore, we

have M �

(
In − 1

n
1n1

T
n

)
= L (L)+ = BBT

(BBT
)+

=

B (BTB)+ BT , where (·)+ denotes the generalized inverse.

Remark 1. For all x ∈ R
n, such that 1T

nx = 0, we have
xTL (L)+ x = xTx > 0.

3. PROBLEM FORMULATION

Consider a network of sensors, represented as a con-
nected, undirected network G (V , E) of order n, where the
nodes represents the sensors and the edges represent the com-
munication links between the sensors. Sensors vi and vj are
(one-hop) neighbors if (vi, vj) ∈ E . We will assume that
all sensor are synchronized with a common clock and each

sensor can only communicate with its neighboring sensors.
For all i ∈ I, the individual sensor measurements are given
as

zi = hi (θ) +wi, (1)

where θ ∈ R
r is the latent variable to be estimated and wi ∈

R
m is the measurement noise associated with the ith-sensor.

Noise is assumed to be zero-mean, independent, Gaussian
noise with known variance, i.e., wi ∼ N(0, Ri). The non-
linear mapping hi (·) : Rr 
→ R

m is locally known to each
sensors.

Under the current setup, the optimal solution to θ is the
maximum likelihood estimate, θ̂ML, which can be obtained
by minimizing the negative log-likelihood function, i.e.,

θ̂ML � min
θ

n∑
i=1

fi (θ) (2)

where fi (θ) �
1

2
(zi − hi (θ))

T
R−1

i (zi − hi (θ)). The ob-
jective is to solve (2) using only local interactions dictated
by the network topology, i.e., each agent recovers the global
minimizer θ̂ML by only assuming access to local information
fi(·) and communication to one-hop neighbors.

4. MAIN RESULTS

Assuming hi’s are continuously differentiable, a first-
order algorithm of the following form can be utilized to solve
(2) in a centralized manner:

θ̂k+1 = θ̂k − α

n∑
i=1

∇fi

(
θ̂k

)
, (3)

where ∇fi

(
θ̂k

)
=

(
Hk

i

)T
R−1

i

(
hi

(
θ̂k

)
− zi

)
denotes

the gradient, α > 0 is the step size, and Hk
i =

∂hi

∂θ
(θ̂k). Dis-

tributed implementation of the algorithm in (3) requires each
agent to first reach consensus on an initial value θ̂0 and cal-
culate the global sum

∑n

i=1 ∇fi

(
θ̂k

)
via local interactions.

Here we propose distributed optimization algorithm that uti-
lizes a static average consensus algorithm to asymptotically
reach consensus on the initial value and a DAC algorithm to
reach consensus on the descent direction in finite-time.

4.1. Dynamic Average Consensus

In continuous-time formulation, (3) can be written as

˙̂
θ(t) = −α

n∑
i=1

∇fi

(
θ̂(t)

)
, θ̂(t0) = θ̂0. (4)

Let φi(t) = ∇fi

(
θ̂i(t)

)
∈ R

r, where θ̂i(t)’s are the local

estimates of θ̂ML. If all the agents have the same initial condi-
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tion, and they are able to reach consensus on
n∑

i=1

φi(t), then

the optimization iteration can be implemented distributedly
with each local estimates tracking the “optimal” central esti-
mate trajectory. In this subsection we propose a robust DAC
algorithm that would allow the agents to reach consensus on

the average φ̄(t) =
1

n

n∑
i=1

φi(t).

Let xi(t) ∈ R
r denote node i’s estimate of φ̄(t). Here we

propose the following DAC algorithm:

ż(t) = u(t), z(t0) = z0, (5a)
x(t) = (B ⊗ Ir) z(t) + φ(t), (5b)

where φ(t) �
[
φT
1 (t) . . . φT

n (t)
]T ∈ R

nr, x(t) �[
xT
1 (t) . . . xT

n (t)
]T ∈ R

nr, z(t) ∈ R
r� is the internal

state of the entire network, and u(t) is the input that needs to
be designed.

The following Theorem illustrate how to select the inputs
u(t) such that the DAC-error x̃(t) � x(t) − 1n ⊗ φ̄(t) con-
verges to zero in finite time.

Theorem 1. For any connected undirected network, given
supt∈[t0,∞) ‖φ̇(t)‖∞ < ∞, the robust DAC algorithm (5)
guarantees that the average consensus error, x̃(t), converges
to zero in finite time for any initial condition z0, if the estima-
tor input u(t) is selected as

u(t) = −βsgn
{(BT ⊗ Ir

)
x(t)

}
, (6)

where β is the input gain. More specifically, we have x̃(t) = 0
for all t ≥ t∗, where

t∗ =
‖x̃(t0)‖2√

λ2(L)
. (7)

Proof. Note x̃(t) = (B ⊗ Ir) z(t) + (M ⊗ Ir)φ(t). Thus,
˙̃x(t) = (B ⊗ Ir) ż(t) + (M ⊗ Ir) φ̇(t). Consider a nonnega-
tive function of the form V = 1

2 x̃
T (t)x̃(t). Therefore,

V̇ = x̃T (t) (B ⊗ Ir)u(t) + x̃T (t) (B ⊗ Ir)

×
(
BT

(BBT
)+ ⊗ Ir

)
φ̇(t),

≤ x̃T (t) (B ⊗ Ir)u(t) + ‖x̃T (t) (B ⊗ Ir) ‖1
× ‖

(
BT

(BBT
)+ ⊗ Ir

)
‖∞‖φ̇(t)‖∞

≤ x̃T (t) (B ⊗ Ir)u(t) + ‖x̃T (t) (B ⊗ Ir) ‖1
× ‖ (BT ⊗ Ir

) ‖∞‖
((BBT

)+ ⊗ Ir

)
‖∞‖φ̇(t)‖∞.

Substituting (6) yields

V̇ ≤ −β‖x̃T (t) (B ⊗ Ir) ‖1 + ‖x̃T (t) (B ⊗ Ir) ‖1
× ‖ (BT ⊗ Ir

) ‖∞‖
((BBT

)+ ⊗ Ir

)
‖∞‖φ̇(t)‖∞.

Note ‖ (BT ⊗ Ir
) ‖∞ = ‖BT‖∞ ≤ 2n and ‖ (BBT

)+ ‖∞
≤

√
n

2λ2(L) , where λ2 (L) denotes the algebraic connectivity.

Thus, if β is selected such that

β ≥ n
√
n

λ2 (L) φ̇max + 1,

where φ̇max ≥ supt∈[t0,∞) ‖φ̇(t)‖∞, then we have

V̇ ≤ −‖ (BT ⊗ Ir
)
x̃(t)‖1 ≤ −

√
‖ (BT ⊗ Ir) x̃(t)‖22

≤ −
√
x̃T (t) (B ⊗ Ir) (BT ⊗ Ir) x̃(t)

= −
√
2x̃T (t) (L ⊗ Ir) x̃(t) ≤ −√

2
√
λ2(L)

√
V .

Thus we have 1
2
√
V
V̇ ≤ − 1

2

√
2λ2(L). Now based on

the Comparison Lemma (Lemma 3.4 of [29]),
√
V (t) ≤√

V (t0) − 1
2

√
2λ2(L) t. Since V̇ (t) is negative definite and

V (t) is positive definite, we have x̃(t) = 0 for all t ≥ t∗,
where t∗ = ‖x̃(t0)‖2√

λ2(L)
. This concludes the proof.

4.2. Distributed Algorithm

Based on the results obtained from the previous subsec-
tion, we propose the following distributed algorithm to solve
the optimization problem given in (2):

Θ̇(t) = −γ (L ⊗ Ir) Θ(t)− α̂x(t), Θ(t0) (8a)

ż(t) = −βsgn
{(BT ⊗ Ir

)
x(t)

}
, z(t0) = z0, (8b)

x(t) = (B ⊗ Ir) z(t) + φ(t), (8c)

where γ is the static average consensus gain, α̂ is the step size,
Θ(t) �

[
θ̂T
1 (t), . . . , θ̂

T
n (t)

]T ∈ R
nr is the concatenated vec-

tor of all local estimates of θ̂ML. Before we present the main
result of the paper, we first provide the following Lemma re-
garding the exponential convergence of static average consen-
sus algorithm.

Lemma 1. Let the vector of the values of all the nodes y(t) ∈
R

n be the solution of the following differential equation:

ẏ(t) = −Ly(t), y(t0) = y0 (9)

Then, all the nodes of the graph globally, asymptotically
reach an average consensus value ȳ = 1

n
1T
ny0 with an expo-

nential rate of κ = λ2(L), i.e.,

‖ δ(t) ‖≤‖ δ(t0) ‖ exp(−κt), (10)

where δ(t) = y(t) − ȳ1n.

Proof. The proof follows from noticing that the solution
to (9) can be written as y(t) = exp {−Lt}y0, and lim

t→∞
exp {−Lt} = 1

n
1n1

T
n .

Note that the consensus protocol given in (9) is same as
the gradient-descent algorithm for minimizing the Laplacian
potential ΨG(y) = 1

2y
TLy and the exponential convergence

rate of the protocol can be arbitrarily increased by simply
multiplying the Laplacian matrix by a positive constant γ >
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Fig. 1. Simulation scenario and mean-square errors obtained from 103 Monte Carlo runs.

1. The local implementation of (8a) for all i ∈ I can be writ-
ten as

˙̂
θi(t) = −γ

∑
j:vj∈Ni

(
θ̂i(t)− θ̂j(t)

)
− α̂ xi(t). (11)

The main objective here is to make sure that the trajectories
of (11) track the trajectories of (4) as close as possible to en-
sure that the individual local solutions to (2) asymptotically
recovers the centralized performance. Now we present the
main contribution of the paper which combines the results
from Lemma 1 and Theorem 1.

Theorem 2. For any connected undirected network, the dis-
tributed algorithm in (8) converges to the centralized solution
trajectories of (4) exponentially fast for all t ≥ t∗, where t∗

is given in (7).

Proof. Based on the finite time convergence results of Theo-
rem 1, for t ≥ t∗, (11) can be written as

˙̂
θi(t) = γ

∑
j

(θ̂j(t)− θ̂i(t))− α̂

n

n∑
l=1

∇fl

(
θ̂l(t)

)
. (12)

Note that between the two terms present in the above equa-
tion, only the diffusion-term, i.e., γ

∑
j

(
θ̂i(t)− θ̂j(t)

)
, dif-

ferer from agent to agent. Since the gradient-term is iden-
tical for all agents, based on Lemma 1, one can conclude
that each θ̂i(t) converges to 1

n

∑n

i=1 θ̂i(t) and therefore (12)
converges to the trajectories of (4) exponentially fast, given
θ̂0 = 1

n

∑n

i=1 θ̂i(t0) and α̂ = nα.

5. NUMERICAL RESULTS

For numerical simulations, we consider the problem of
distributed event localization using acoustic sensor network 2.
Each sensor consist of an array of microphones that can ob-
tain the direction of arrival of the acoustic signal. Thus the
measurement model is given as

zi = arctan

(
Ty − S

y
i

Tx − Sx
i

)
+ wi,

where (Tx, Ty) denotes the unknown event location and the
(locally) known two-dimensional, sensor locations are given

2Typical applications include gunfire detection and shooter localization,
see [30, 31] for more details.

as (Sx
i , S

y
i ).

Here θ = [Tx, Ty]
T

= [200,−300]
T , n = 7, and

Ri = 10−2, ∀i ∈ {1, . . . , 7}. The sensor locations and
the network topology are given in Fig. 1(a). In Fig. 1(a),
blue circles denote the sensor locations, the solid (black)
lines between the sensors indicate communication links,
and the true event location is marked using a red star. We
conducted 103 Monte Carlo simulations to evaluate the per-
formance of the proposed distributed algorithm. Figure 1(b)
contains the mean-square estimation error (MSEE) for the
centralized estimator3 given in (4) (denoted as Cent.) and
distributed estimator4 given in (8) (denoted as Dist.). The
mean-square tracking error (MSTE(t)) given in Fig. 1(c)
is the difference between the centralized solution trajectory
and the distributed solution trajectories, i.e., MSTEi(t) =

1
103

∑103

l=1

(
θ̂(t)− θ̂i(t)

)T (
θ̂(t)− θ̂i(t)

)
. Finally Fig. 1(d)

contains the mean-square consensus error5 (MSCE(t)) ob-
tained from the Monte Carlo runs. Results given in Figs. 1(c)
and 1(d) confirms the exponential convergence of the tracking
error and the finite-time convergence of the consensus error.

6. CONCLUSION

This paper presents a distributed maximum likelihood
scheme that utilizes a DAC algorithm to reach agreement on
the gradient direction. The proposed distributed algorithm
recovers the centralized performance accuracy exponentially
fast. Though the current formulation focuses on first-order
optimization algorithm, it can be easily applied to higher
order schemes by utilizing the DAC algorithm for reaching
consensus on the higher-order derivatives of the local ob-
jective function. The proposed continuous-time formulation
can be extended to discrete-time scenarios after replacing
the signum function with an appropriate continuous approx-
imation such as a saturation function. Future research in-
clude extending the current approach to accelerated gradient
methods and considering privacy preserving event-triggered
communication schemes.

3MSEE(t) = 1

103

∑
10

3

l=1

(
θ − θ̂(t)

)T (
θ − θ̂(t)

)

4MSEE(t) = 1

103

∑
10

3

l=1

1

7

∑
7

i=1

(
θ − θ̂i(t)

)T (
θ − θ̂i(t)

)

5MSCEi(t) =
1

103

∑
10

3

l=1

1

7

∑
7

i=1

(
xi(t) − φ̄(t)

)
T
(
xi(t) − φ̄(t)

)
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