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ABSTRACT

The Alternating Directions Methods of Multipliers (ADMM)
has witnessed a resurgence of interest over the past few years
fueled by the ever increasing demand for scalable optimiza-
tion techniques to tackle real-world statistical learning prob-
lems. However, despite its success in several application set-
tings the applicability of the traditional centralized ADMM
is limited by its communication requirement to a global fu-
sion center, which might not be always feasible. Its decen-
tralized variant D-CADMM, on the other hand, while it al-
leviates this need, it does so at the expense of significantly
slower convergence in cases of adverse underlying network
topologies. To address the aforementioned limitations, in this
work we consider the presence of multiple fusion centers and
we propose a unifying framework that allows leveraging the
structure of the communication network to accelerate the de-
centralized ADMM even in cases where it is not practical to
resort to its fully centralized counterpart. We prove the lin-
ear convergence rate of the proposed approach and we verify
its promising performance by carrying out numerical tests on
both real and synthetic networks.

Index Terms— Distributed optimization, ADMM, decen-
tralized learning, hybrid consensus ADMM

1. INTRODUCTION

Recent advances in Machine Learning and Data Mining have
led to the formulation of increasingly demanding optimiza-
tion problems. Thankfully, there exist certain commonly oc-
curring cases that exhibit special structural characteristics (eg.
separability, large sums of component functions, etc.) that
make these problems amenable to parallel and distributed pro-
cessing, thereby ensuring the applicability of the underlying
methods in real world settings.

A simple and particularly well-suited approach for such
optimization problems is the Alternating Direction Method
of Multipliers (ADMM) [1, 2], which adopts a multi-agent
optimization formulation where each agent iteratively updates
its own parameters based on locally acquired data as well as
information obtained from a global Fusion Center (FC). The
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convergence of ADMM has been studied extensively for long
[1, 3], but it was not until recently that the linear convergence
rate was established [4, 5].

To accommodate situations where fully decentralized
learning is preferable (for example communication to a
global FC might not be feasible due to privacy constrains
or prohibitive communication costs, etc.), one can resort
to Decentralized Concensus ADMM (D-CADMM). This
approach assumes that each agent can only exploit the in-
formation gathered from single-hop neighbors, and it has
been successfully employed in several applications in signal
processing [6, 9, 10] and machine learning [7, 8].

1.1. Motivation & Contributions

In real world scenarios, the communication between agents
in D-CADMM is restricted to abide by the topology of an
actual underlying network – a fact that can potentially im-
pose severe limitations to the convergence rate especially as
the network’s size increases. This is in part due to the in-
herent “single-hop philosophy” of D-CADMM, that does not
allow it to exploit coarse-level structural properties of the un-
derlying networks. However, large-scale networks arising in
diverse application settings are known to exhibit nontrivial
structural characteristics [11, 12, 13] as well as rich innate
hierarchical organization [14, 15]. Motivated by this, here
we try to address the following question: Is it possible to
exploit the structure of the communication network to accel-
erate D-CADMM? Towards this goal, in this paper we pro-
pose a novel distributed learning framework, called Hybrid
Consensus ADMM (H-CADMM). H-CADMM provides a
unified view of ADMM-based distributed multi-agent opti-
mization, naturally generalizing centralized CADMM and D-
CADMM. Adopting an expressive modeling approach based
on hypergraphs, H-CADMM allows for multiple FC roles,
that can be assigned judiciously leveraging information about
the communication network structure. Building on the re-
sults of Shi et al. [16] we establish linear convergence of H-
CADMM and we showcase its potential based on numerical
tests using both synthetic and real networks.
Notation. Vectors are denoted by bold lower case, and matri-
ces bold upper case. IN denotes identity matrix of sizeN×N .
1 (0) is an all-ones (all-zeros) vector of appropriate size.
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2. PRELIMINARIES

We model communication constraints as an undirected graph
G := (V, E), whose nodes correspond to agents and edges
represent communication between nodes. We use N,M to
denote the total number of nodes and edges, respectively, and
Ni := {j|(i, j) ∈ E} to denote neighbors of node i. Through-
out this paper, we will make the following assumptions about
the graph and the local objective functions.

Assumption 1 The graph is connected.

Assumption 2 Local objective function fi(·) is differentiable
and has Lipschitz continuous gradient, i.e. ,‖∇fi(x)−
fi(y)‖2 ≤ L‖x− y‖2.

Assumption 3 Local objective function fi(·) is σ-strongly
convex, i.e., for any x, y, fi(y) ≥ fi(x)+∇fi(x)>(y−
x) + σ

2 ‖x− y‖
2
2.

2.1. Centralized consensus ADMM

In the centralized formulation, every node maintains a local
estimate xi of the global variable x, and consensus is guaran-
teed by enforcing agreement of all agents on an global aux-
iliary variable. Thus, one can formulate the centralized con-
strained problem

min
{xi}

N∑
i=1

fi(xi), subject to xi = z. (1)

Applying ADMM boils down to iteratively updating primal
and dual variables as

xk+1
i = (∇fi + I)−1(cx̄k − λki ), (2)

λk+1
i = λki + c(xk+1

i − x̄k), (3)

where z = x̄ = 1
N

∑N
i=1 xi has been eliminated for simplic-

ity, and we use (2) as a shorthand for xk+1
i being the solution

of ∇fi(xk+1
i ) + xk+1

i = (cx̄k − λki ).

2.2. Decentralized consensus ADMM

In case no global FC is available, consensus can be achieved
by enforcing agreement among neighbors, provided that the
underlying graph is connected. Introducing auxiliary vari-
ables {zij}(i,j)∈E , we can reformulate (1) in decentralized
form

min
{xi}

N∑
i=1

fi(xi), s.t. xi = zij , xj = zij , (i, j) ∈ E . (4)

Following the steps described in [16], ADMM updates entail

xk+1
i = (∇fi + c|Ni|I)−1

 c

2

∑
j∈Ni

(xki + xkj )− αki

 (5)

αk+1
i = αki +

c

2

∑
j∈Ni

(xk+1
i − xk+1

j ). (6)

3. HYBRID CONSENSUS ADMM

In this paper, we are considering the case when there are no
global FCs but multiple local FCs in the network. This situ-
ation is quite common in large-scale networks since it’s not
feasible to deploy only one global FC, considering, for in-
stance, heavy communication burden of the FC. Neither of the
aforementioned methods can deal with this situation as none
of them is capable of handling hybrid constraints, i.e. the
need of some nodes to exchange information with both local
FCs and its single-hop neighbors at the same time. It turns out
hybrid constraints can be precisely captured by hypergraphs,
in which a local FC is modeled as one hyperedge containing
all its connected nodes, while a simple edge connecting only
two nodes is modeled as one hyperedge containing two nodes.

3.1. Problem formulation

Assume an ordering of the hyperedges 1, 2, . . . ,M and intro-
duce auxiliary variable zj for hyperedge j; then hybrid con-
straints can be readily reparameterized as xi = zj . Suppose
x ∈ RN and z ∈ RM are vectors collecting all local and
edge variables, and assume the total number of constraints is
T , then we can define A ∈ RT×N and B ∈ RT×M such that
when the t-th constraint is xi−zj = 0, Ati = 1 and Btj = 1;
all other elements of t-th rows are zero. With the help of the
newly defined variables, we formulate the following hybrid
constrained problem in a compact form

min
xi

N∑
i=1

fi(xi), subject to Ax−Bz = 0. (7)

Furthermore, let C ∈ RN×M be the incidence matrix of
the hypergraph, that is, Cij = 1 if node i is connected to edge
j. Let the diagonal matrix D ∈ RN×N be the node degree
matrix, i.e.,Dii denotes the degree of node i; let diagonal ma-
trix E ∈ RM×M represent the “edge degree” matrix, whose
diagonal element Ejj is the degree of hyperedge j, i.e., num-
ber of nodes connected to hyperedge j. If all the constraints
are ordered increasingly according to node labels and edge
labels, one can verify

A>A = D, B>B = E, A>B = C. (8)

3.2. Algorithm

Applying ADMM to (7) involves solving the following equa-
tions

∇f(xk+1) + A>λk + cA>(Axk+1 −Bzk) = 0, (9)

B>λk + cB>(Axk+1 −Bzk+1) = 0, (10)

λk+1 = λk + c(Axk+1 −Bzk+1). (11)

Left multiplying (11) by B> and adding it to (10) yields

B>λk+1 = 0. (12)
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Algorithm 1: Hybrid Consensus ADMM

1: Initialization: x0 = 0, z0 = 0, α0 = 0, set
hyperparameter c > 0, precision ε > 0

2: while primal or dual residual greater than ε do
3: update x at each node according to (15)
4: update z at each local FC according to (13)
5: update α at each node according to (14)
6: end while

Assume λ is initialized such that B>λ0 = 0, then it can be
guaranteed that (12) will always hold for all k ≥ 0. Conse-
quently, we can solve (10) for z

zk+1 = E−1C>xk+1. (13)

Similarly, left multiplying (11) by A> and introducing a
new variable αk = A>λk gives

αk+1 −αk = c(Dxk+1 −Czk+1). (14)

Plugging (13) into (9) yields

xk+1 = (∇f + cDI)−1(cCzk −αk). (15)

Remark: Note that here we are presenting a scalar version of
this algorithm to simplify the notation as well as the analysis.
It’s trivial to generalize to the vector case by extending the
corresponding matrices to block structure.

3.3. Connections to C-CADMM and D-CADMM

Modeling constraints as a hypergraph affords great flexibility,
and provides a unified view of consensus ADMM formula-
tions. Indeed it is not difficult to see both centralized and
decentralized versions are special cases of H-CADMM.
C-CADMM as a special case: There is only one global FC,
therefore A = I, B = 1,M = 1, consequently, D =
A>A = I, E = B>B = N , C = A>B = 1. Then (13) is
actually zk+1 = 1

N

∑N
i=1 x

k
i = x̄k. As a result, (15) and (14)

are in fact

xk+1 = (∇f + cI)−1(c1x̄k − λk), (16)

λk+1 = λk + c(xk+1 − 1x̄k+1), (17)

where we have used the fact that αk = A>λk = λk. Com-
paring (16) to (2), one realizes that (2) is indeed the entry-wise
update. Similar observation holds for (17) and (3).
D-CADMM as a special case: In this case, each hyperedge
has a degree 2. Therefore, E = 2I, and (13) now becomes

zk+1 =
1

2
C>xk+1. (18)

Using (18) to eliminate z, (15) and (14) can be simplifed as

xk+1 = (∇f + cDI)−1(
c

2
CC>xk −αk), (19)

αk+1 = αk + c(D − 1

2
CC>)xk+1. (20)

1

4

2

3

1

FC

2

3

4

Fig. 1. Illustration of accelerating D-CADMM.

Noticing that Dii = |Ni| and (CC>x)i =
∑
j∈Ni

(xi + xj),
one realizes that (5) and (6) are the entry-wise version of (19)
and (20).

4. LINEAR CONVERGENCE RATE

Consider Algorithm 1 for solving hybrid consensus optimiza-
tion problems and introduce

u =

[
z
λ

]
, G =

[
cE 0
0 1

c IT

]
,

where u is the concatenation of the primal variable z and the
dual variable λ. Obviously, G is positive definite, based on
which we can define the “G-norm” ‖x‖G = x>G, for x ∈
RM+T . Due to the strong convexity and Lipschitz continuous
gradient, we can show that uk is Q-linearly convergent to its
optimal value u? in the G-norm sense. Furthermore, the Q-
linear convergence of uk implies the R-linear convergence of
xk to its optimal value x?.

Theorem 1. Consider the ADMM updates in (13)(14)(15). If
the objective function is σ-strongly convex and its gradient is
L-Lipschitz continuous, then for any µ > 1, uk is Q-linearly
convergent to its optimal value u? with respect to the G-norm

‖uk+1 − u?‖2G ≤
1

1 + δ
‖uk − u?‖2G,

where the constant δ satisfies the inequality

δ ≤ min

{
µ− 1

µ

λmin(D)

λmax(D)
,

2σ

cλmax(CE−1C>) + µL2

cλmin(D)

}
.

Furthermore, xk is R-linearly convergent to x?, i.e.,

‖xk+1 − x?‖22 ≤
1

m
‖uk − u?‖2G.

The proof of Theorem 1 is omitted due to space con-
straints. However, it’s worth mentioning that λmin(D) and
λmax(D) are actually equal to the smallest and largest node
degree of the underlying hypergraph respectively, which pro-
vides a useful link between graph topology and convergence
rate.
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Fig. 2. Relative accuracy vs number of iterations of H-CADMM and D-CADMM on: (a) a line graph with 50 nodes and 49
edges (left plot); (b) Karate club network with 34 nodes 76 edges (middle plot); (c) US power grid network with 4,941 nodes
and 6,594 edges (right plot). For reference we also include the performance of the centralized version (dashed line).

5. FAST DECENTRALIZED LEARNING

Decentralized learning is ideal for parallel processing when
global FC is not available, since it only involves information
exchange among neighbors. However, it also suffers from
slow convergence – especially when the diameter of the un-
derlying graph is large; a fact that may impede its applicabil-
ity to certain real-world settings.

Thankfully, the framework we develop in this work can al-
leviate this problem. In particular, our analysis suggests that
one can accelerate the convergence of D-CADMM simply by
denoting a carefully selected subset of nodes on the underly-
ing graph as local virtual-FCs and proceed by applying our
proposed algorithm. A prominent advantage of this approach
is that there is no need to have a dedicated FC, nor to modify
existing edges. The creation of each virtual FC can be done
simply by selecting a node and then connecting the node itself
and all its edges to the newly created virtual FC. The proce-
dure is illustrated in Fig. 1.

The issue of selecting the the right nodes for the job is non
trivial and it is intuitively apparent that it should be governed
by the properties of the underlying graph. Here, for simplic-
ity, we use the nodes with the highest degree.

6. NUMERICAL TESTS

In this section, we perform several numerical experiments
to test our algorithm using both synthetic and real networks.
For all the experiments, we assume that the agents try to
measure x0 based on observation yi = x0 + εi, where
εi ∼ N (0, 0.1). Each agent tries to minimize the estima-
tion error fi(x) = 1

2‖yi − x‖
2
2. We solve the same problem

on different networks using C-CADMM, D-CADMM with

standard settings and H-CADMM using the method depicted
in Sec. 5 by setting nodes with degree greater than 2 as local
virtual-FCs. Penalty parameter c is tuned individually for best
performance. The relative accuracy, ‖xk − x?‖2/‖x?‖2 vs.
iteration number is recorded for comparison. We first test on a
line graph of 50 nodes. Line graphs have the largest diameter
given the number of nodes, thus, they represent the worst case
for D-CADMM. Simulation results, presented in Fig. 2, show
that H-CADMM performs markedly better than D-CADMM,
demonstrating that our approach can achieve considerable
acceleration even for the most difficult cases. The second
experiment is performed on Zachary’s karate club [17]. This
network has many clusters which intuitively should allow
our approach to achieve significant acceleration. Indeed, re-
sults in Fig. 2 show a large gap between H-CADMM and
D-CADMM. Finally, we test our algorithm on a large real
network, the US power grid [18]. This network consists of
4,941 nodes, representing generators, transformers or sub-
stations, 6,594 edges, representing high-voltage transmission
lines. The results are presented in Fig. 2. Though it takes
much more iterations to achieve the same accuracy – which is
not surprising given the size of network – our approach does
accelerate D-CADMM by a considerable margin.

7. CONCLUSION

In this paper, we proposed the novel H-CADMM that general-
izes both centralized and decentralized consensus ADMM in
a unified view, enabling the acceleration of D-CADMM with
modified updates. We also provide linear convergence rate H-
CADMM. Numerical tests demonstrate its effectiveness.
Acknowledgements: The authors would like to thank Prof.
Mingyi Hong, for several insightful discussions.
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