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ABSTRACT

The power grid is experiencing a profound transformation in recent
years with the proliferation of renewable sources and the advance
of bulk storage technologies. These changes have been anticipated
in the literature of signal processing and control, where several new
techniques for the optimal operation and design of the greed are re-
ported. The present paper builds on the state of the art, proposing a
novel stochastic approximation algorithm for optimizing the network
under risk constraints. The method is capable of processing massive
amounts of data, learning the distributions of the random generation
and demand, and adapting to seasonal changes and system evolu-
tion. In addition, a parsimonious storage design is achieved by in-
troducing a sparsifying penalty to the problem of siting and sizing.
Numerical examples show that the optimization algorithm succeeds
in guaranteeing that prescribed voltage limits are satisfied with an
outage probability that stands below theoretical bounds.

Index Terms— Optimal power flow, Stochastic approximation,
Risk constraints.

1. INTRODUCTION

The ongoing transformation of the power grid poses new technical
challenges for its optimal operation and design [1]. New forms of
randomness are introduced by the uncertainty of renewable sources.
The proliferating photovoltaic and wind farms are distributed geo-
graphically to capture the best wind and sun profiles, possibly out
of reach of high-capacity power lines. Weaker lines translate into
tighter optimization constraints, which call for sharper models of
the grid. Additional research efforts are needed for the recent in-
corporation of short-term distributed storage systems, e.g., batteries,
hydrogen cells, etc [2], [3]. By shifting energy across time, these
new storage technologies relax the instantaneous constraint that bal-
ances generation and demand, thus alleviating the stress of the sys-
tem during peak hours. On the other hand, modeling storage systems
for power system optimization introduces time-evolving dynamics,
which increases complexity.

Different models have been proposed for the AC power flow
through the grid, trading-off accuracy for simplicity and tractabil-
ity [4]. The simplest so-called DC power flow model is linear, but
imposes the strongest assumptions, including constant voltage am-
plitudes and lossless lines. On the other side, the full AC model
does not make these assumptions but it is nonconvex, although it
admits convex relaxations that have been proved exact under milder
assumptions [5]. In between these two models, linear alternatives

have been proposed which contemplate voltage variation, losses, and
reactive power [6].

As in [7], we adopt these linear models as constraints in the
problem of minimizing the aggregated generation cost of a power
system, and we extend the results for transmission networks with a
slack bus. The randomness form renewables and demand is handled
by setting risk constraints [7]. Such constraints can be seen as con-
vex relaxations of probabilistic constraints [8], or as a way to control
how large are the constraint violations when they occur [9].

The resulting risk-constrained optimization problem is tackled
by a tailored projected dual stochastic approximation algorithm (SAA).
A number of reasons make SAAs an attractive choice for the opti-
mization of power networks [14]. They implicitly learn from data the
underlying probability distributions of loads and sources, adjusting
the uncertainty of forecasts when these are available. The recursive
nature of SAAs allows one to incorporate one sample at a time, of-
fering a practical alternative to Montecarlo averaging methods which
stall when massive data is to be processed. Another reason to use
SAAs resides on its online and adaptive processing, that generalizes
the celebrated linear mean squares filer to nonlinear setups. With
a constant stepsize SAAs can adapt to seasonal changes or to the
evolving transformation of the grid.

Apart from a stochastic approximation treatment to the risk con-
straints, the paper introduces a sparsely distributed storage design.
A fully distributed storage design can be obtained by setting storage
units (SUs) at all buses and considering their capacity limits as op-
timization variables [10]. Several small SUs are introduced, whose
installation and maintenance costs result impractical [16]. In order to
avoid these residual SUs, the sparse design is proposed as as a half-
way alternative to centralized bulk storage concentrated in a single
node. The design capitalizes existing techniques in sparse signal
process to select the most relevant locations for a scattered storage
system to be installed at a reduced subset of nodes.

The specific time dependence of the storage variables has been
exploited in [12] using techniques of dynamic programming and op-
timal control, under a linear-quadratic model that yields closed-form
solutions for the backward induction updates [13]. Extending these
techniques to our generalized setup is not addressed here, but is an
opportunity for future research.

The presentation in this paper is incremental. A preliminary op-
timization approach is developed in section II, incorporating the risk
constraints in section III, and storage design in section IV. The SAA
is built in section V, to end with numerical examples and conclusions
in sections VI and VII.
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2. OPTIMAL POWER FLOW

Consider a system with N + 1 buses modeled as the nodes of a
graph, with edges representing the connecting power lines. Node
n = 0 is set as the slack bus, with a fuel-based generator and a
load connected to it. All other N buses may connect a load, a re-
newable generator, a SU, and a fuel-based generator. The following
vectors belong to RN and represent either optimization variables or
data pertaining to each of these N nodes. Entries of β represent
the capacity limits of SUs at each node, and are treated as constant
parameters until section IV. Entries of xτ and pτb denote the corre-
sponding stored energy and power levels extracted from storage at
time τ . Indexes τ = 0, . . . , T − 1 count time intervals of lenght
∆T . The whole length T∆T is to be chosen to match the cyclo-
stationary period of demand and renewable processes, typically a
week. Vectors pτg , pτl , pτr , qτg , qτl , and qτr represent the active and
reactive power of fuel-generators, loads, and renewable sources, and
pτn, qτn stand for the net power injected to the network at each bus.
Variables ατ ∈ [0, 1]N describe the fraction of renewable power
that is injected to the network after curtailment. Vector vτ col-
lects the voltage amplitudes at the nodes. Finally, scalars pτg0 and
qτg0 represent the power injected by the slack bus to maintain con-
stant voltage. For notational brevity, the variables are collected in
uτ := (xτ ,vτ ,ατ ,pτb ,p

τ
g ,p

τ
n,q

τ
r ,q

τ
g ,q

τ
n, p

τ
g0, q

τ
g0). Under these

definitions, and with the goal of minimizing operational costs, the
following optimization problem is set

min
{uτ}T−1

τ=0

T−1∑
τ=0

E [cτ (uτ )] (1)

s. to: xτ = xτ−1 − pτb (2)
0 ≤ xτ ≤ β (3)
pτn := pτr �ατ + pτg + pτb − pτl (4)
qτn = qτr + qτg − qτl (5)
vmin ≤ vτ ≤ vmax (6)
vτ := Apτn + Bqτn + v̄0 (7)
pτg0 = p̄0 + apτn − bqτn (8)
qτg0 = q̄0 + aqτn + bpτn (9)
0 ≤ ατ ≤ 1 (10)

(ατ (n)pτn(n))2 + (qτr (n))2 ≤ (pτr (n))2 (11)

Constraints (2) and (3) control the charge-discharge dynamics
of the SUs and set their capacity limits. Then, (4) and (5) balance
the injected power at each bus according to Kirchhoff’s node law.
The following (6) sets limits for the voltage amplitudes. Equation
(7) introduces a linear model for vτ in terms of the injected power
levels; see [6] for the definition of constant A,B ∈ RN×N and
v̄0 ∈ RN in terms of the network admittance matrix, and a discus-
sion of the corresponding approximation errors. Next, (8) and (9)
are the power levels that the slack bus needs to inject to the net-
work to maintain constant voltage. More details on (8) and (9) are
given in the next paragraph. Constraint (10) makes each entry of
ατ a fraction. Finally, (11) explains the capacity limits of renewable
sources: by shifting the power angle it is possible to inject reac-
tive power qτr (n) into the grid in detriment of the active power level
α(n)τpr(n)τ . It is worth noticing that ατ and qτr are control vari-
ables to optimize for, while the available power pτr is related to wind
flow and solar radiation levels, and thus treated as given data.

Equations (8)-(9) are derived using the model in [6] for the vec-
tor of complex-valued voltages at the nodes. Then multiply by the
network admittance matrix to find the current and power that the
slack bus has to inject in order to keep a prescribed complex voltage,
e.g, V0 = 1. The following result is obtained: partitioning the net-
work admittance matrix as in [y00 yT ; y Y] it results p̄0 + jq̄0 =
V0(y00 + yH(Y−1y)∗) and a + jb = diag((Y−1y)∗) where ∗
stands for complex conjugate and (·)H denotes Hermitian transposi-
tion.

Regarding (2), efficiency coefficients and power-rate limits for
SUs can be incorporated without affecting the structure of the (1)-
(11), but they are not included for simplicity. In particular, rate con-
straints couple the projection operators in section V.

Variables vτ , pτb , pτn, qτn, p
τ
g0 and qτg0 are redundant in (1)-

(11), so that our next step is to eliminate them keeping only those in a
reduced ũτ := (xτ ,ατ ,pτg ,q

τ
r ,q

τ
g). As detailed next, we eliminate

vτ by substituting (2), (4) and (5) in (7) and the result in (6)

vτ = v(ũτ−1, ũτ ) := Apτn + Bqτn + v̄0 = Apτn + Bqτn + v̄0

= A
(
Pτ
rα

τ + pτg + pτb − pτl
)

+ B
(
qτr + qτg − qτl

)
+ v̄0

= A
(
Pτ
rα

τ + pτg + xτ−1 − xτ − pτl
)

+ B
(
qτr + qτg − qτl

)
+ v̄0

Similarly we set pτg0 = p(ũτ ) and qτg0 = q(ũτ ) where p(ũτ )
and q(ũτ ) result from substituting (4) and (5) in (8) and (9), re-
spectively. With a slight abuse of notation we redefine the cost as
cτ (ũτ ) = cτ (uτ ) and recast (1)-(11) as

min
{uτ}T−1

τ=0

T−1∑
τ=0

E [cτ (ũτ )] (12)

s. to: 0 ≤ xτ ≤ β (13)
0 ≤ ατ ≤ 1 (14)

v̄min ≤ v(ũτ−1, ũτ )− v̄max] ≤ 0 (15)
gr (ατ ,pτr ,q

τ
r ) ≤ 0. (16)

The vector-valued gr (ατ ,pτr ,q
τ
r ) ∈ RN collects scalar functions

gr(α, p, q) = (αp)2+q2−p2, so that gr(ατ (n), pτr (n), qτr (n)) ≤ 0
substitutes (11).

Inequalities (15) and (16) may be too restrictive since they have
to be satisfied for all realizations of the random variables in play. A
probabilistic alternative is introduced in [7] and presented in next
section, where a prescribed outage probability is admitted in ex-
change for a lower average cost.

3. RISK CONSTRAINTS

If (15) or (16) are not satisfied, then either the grid will operate with-
out meeting quality standards or the protection devices will activate
causing the system outage. None of these situations are desirable,
and the optimization scheme should be designed such that they occur
with low probability. Prescribing an admissible outage probability ε
and focusing on (16), we relax the worst case restriction gr ≤ 0 for
its probabilistic counterpart P (gr ≤ 0) ≥ 1 − ε [7]. As depicted
in Fig. 1, this inequality is equivalent to z1−ε ≤ 0 where the per-
centile z1−ε is defined as the value such that P (gr ≤ z1−ε) = 1−ε.
In order to obtain a convex relaxation of z1−ε ≤ 0 we follow [7]
and [8] and resort to the conditional value at risk (CVAR). The
CVAR is defined as the conditional mean of gr above the percentile;
i.e., Cvar(1−ε)(gr) := E(gr|gr > z1−ε). It readily follows from its
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definition that Cvar(1−ε) > z1−ε, since values lower than or equal to
z1−ε are not averaged. Hence, enforcing Cvar(1−ε) ≤ 0 guarantees
z1−ε ≤ 0; see Fig. 1. One reason why CVAR is worth introducing
is that it admits the convex equivalent expression Cvar(1−ε)(gr) =

infz∈R
{

1
ε
E[[gr + z]+ − z

}
[9], where [·]+ stands for the projec-

tion onto the nonnegative real numbers. The previous equality im-
plies that if a scalar z exists such that 1

ε
E[[gr + z]+ − z ≤ 0, then

the infimum will be negative or equal to zero, that is, Cvar(1−ε) ≤ 0.
This also implies that the percentile z1−ε ≤ 0. Hence, it was estab-
lished that

1

ε
E[[gr + z]+ − z ≤ 0⇒ P (gr ≤ 0) ≥ 1− ε. (17)

Even though the CVAR was utilized as a convex relaxation for prob-
abilistic constraints, the constraint Cvar(1−ε)(gr) ≤ 0 could have
been introduced directly as a way to control the risk of a large de-
viations from the levels of normal operation [9]. Building on the
previous discussion we substitute (17) for the worst-case constraints
in (12)-(16) yielding

min
{uτ}T−1

τ=0

T−1∑
τ=0

E [cτ (ũτ )] (18)

s. to: 0 ≤ xτ ≤ β (19)
0 ≤ ατ ≤ 1 (20)
1

ε
E
[
v(ũτ , ũτ−1)− v̄max + zτM

]
+
− zτM ≤ 0 (21)

1

ε
E
[
v̄min − v(ũτ , ũτ−1) + zτm

]
+
− zτm ≤ 0 (22)

1

ε
E [gr (ατ ,pτr ,q

τ
r ) + zτr ]+ − zτr ≤ 0 (23)

In the next section we advance to storage design

4. DISTRIBUTED STORAGE

To optimize the siting and sizing of the SUs, β is incorporated as
optimization variable [11], [10], [12]

min
{uτ}T−1

τ=0 ,β

T−1∑
τ=0

E [cτ (ũτ ,β)] + λ‖β‖1 (24)

s. to: 0 ≤ xτ ≤ β (25)
0 ≤ ατ ≤ 1 (26)

under the additional constraints (21)-(23), and with cτ (ũτ ,β) rede-
fined to incorporate the cost of storage.

The extra term in (24) is introduced to control the number of
nodes where a SU will be set. Indeed, ‖β‖1 has been proved to
be a convex surrogate for the nonconvex pseudo-norm ‖β‖0 which
counts the number of nonzero entries of β [21]. By penalizing ‖β‖0
we avoid the installation and maintenance costs of small-capacity
SUs corresponding to entries β(b) ' 0. Selecting λ = 0 the solu-
tion of (24)-(23) yields a fully distributed design, and increasing λ
progressively only the most relevant sites are retained up to a point
where storage costs exceed generation costs and storage is discarded
as a whole.

Although the expected values in (24) and (21)-(23) could be ap-
proximated by sampling averages, that may introduce a prohibitive
numerical cost since each constraint would change into a sum over
the samples. To avoid such a curse of dimensionality we resort to
the recursive method of next section.

Fig. 1. Conditional value at risk as a relaxation of probabilistic con-
straints

Fig. 2. Random data simulating renewables and demand.

5. PROJECTED STOCHASTIC GRADIENT ALGORITHM

In order to minimize (24), we resort to a dual method in which the
risk constraints (21)-(23) are dualized and (25)-(26) are kept in the
constraint set. Upon grouping primary variables in y = ({ũτ , zτ},β)
= ({xτ ,ατ ,pτg ,qτr ,qτg , zτM , zτm, zτg , },β) we write

Le(y) = λ‖β‖1 +

T−1∑
τ=0

{
c̃τ (ũτ ,β)

+ (µτM )′
(

1

ε

[
v(ũτ , ũτ−1)− v̄max + zτM

]
+
− zτM

)
+ (µτm)′

(
1

ε

[
v̄min − v(ũτ , ũτ−1) + zτm

]
+
− zτm

)
+
(
µτg
)′(1

ε

[
gr (ατ ,pτr ,q

τ
r ) + zτg

]
+
− zτg

) }
(27)

Considering the founding theory of Robbins-Monro [22], we
wrote a stochastic version of the Lagrangian by dropping the ex-
pected values and keeping samples that depend on the realizations
of pτr , pτl , and qτl (recall that these are parameters hidden in func-
tions c(·), v(·), and gr(·)). Building on (27) we propose an online
stochastic primal-dual projected-subgradient descent iteration.
For each period k of length T∆T we collect samples
w(k) = {pτr ,pτl ,qτl , τ = kT∆T, . . . , (k+1)T∆T−1}. Then we
update y and the multipliers according to (28)-(31), and wait for a
next set of data w(k+ 1) in order to perform the next update. These
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Fig. 3. Evolution of the solution across iterations

updates are given by

y(k + 1) = ΠX [y(k)− γ∇yLe(y(k),µ(k); w(k))] (28)

µτM (k + 1) = µτM (k) + γ

(
1

ε
[gM + zτM ]+ − zτM

)
(29)

µτm(k + 1) = µτm(k) + γ

(
1

ε
[gm + zτM ]+ − zτm

)
(30)

µτg(k + 1) = µτg(k) + γ

(
1

ε

[
gr + zτg

]
+
− zτg

)
(31)

where∇y stands for the subgradient operator, gM := v(uτ ,uτ−1)−
v̄max, and gm := v̄min−v(uτ ,uτ−1). The operator ΠX(·) projects
xτ , pτg , α

τ , and β into the convex set X = {0 ≤ ατ ≤ 1,0 ≤
xτ ≤ β,pτg ≥ 0} which collects the constraints that where not du-
alized. Projections pτg ≥ 0, ατ ∈ [0, 1] and xτ ≥ 0 are trivial,
while xτ ≤ β are coupled across τ . However, the latter admits the
following closed-form solution

1) Project each xτ into xτ ≥ 0 and sort the inputs xτ and β
from larger to smaller.

2) For t = 0, 1, 2, . . ., compute the cumulative sample means
στ = (β +

∑t
τ=0 x

τ )/(t + 1), stopping at the first t? such
that σt? ≥ xt?+1, or set t? = T − 1 otherwise.

3) Set β = xτ = [σt? ]+ for τ ≤ t? and xτ = xτ for τ > t?.

Convergence of dual SAAs with inequality constraints and pro-
jection operators is addressed in [17] and [18]. The dual SAA in
(28)-(31) is to be run in two stages. In the first offline design stage
it runs on past record data in order to find the optimal storage dis-
tribution β. In a second operational stage β is not updated and the
iteration is run with a constant step size for adaptive control.

6. NUMERICAL EXAMPLES

The SAA developed in last section is tested in the reduced New Eng-
land IEEE 39 bus system, with bus n = 39 selected as the slack bus.
Buses 30-39 are connected to a local fuel-based generator.

The cost is selected as c(ũτ ,β) = cb‖β‖1 + cp
(
‖pτg‖1 + pg0

)
+cq

(
‖qτg‖1 + |qg0|

)
, with cp = cq = 1, and cb = 0.01. Loads

are simulated as random processes with time dependent mean and
variance. As it is shown in Fig. 2, the mean is constructed as a
Gaussian bell with peak at τ = 17, and sampled every hour from

Fig. 4. Histogram of voltage amplitudes

Fig. 5. Sparsely designed storage

τ = 0 to τ = T − 1 = 23. The standard deviation of the additive
white Gaussian noise is proportional to the mean at 10%. Every day
a new set of 24 samples is acquired to run one step of the SAA in
section V. Buses 1, 2, 5, 6, 9, 10, 11, 13, 14, 17, and 19 are fed
by renewable sources simulated as random processes with the same
structure as the loads but shifted in time with average peak at τ = 12.

Fig. (3) shows the evolution of the solution across SAA itera-
tions when run with a constant stepsize γ = 10−3 . The blue marks
depict the voltage of node n = 5 and time τ = 18, which enters the
prescribed accepted limits after a transient period. After the transient
has elapsed, voltages across all n and τ are distributed according to
Fig 4, and outage occurs with a frequency of 0.0618, staying be-
low the theoretical bound ε = 0.1. Finally Fig. 5 shows that when
λ = 1

T

∑T−1
τ=1 E[pτl ] only 15 SUs are kept in the system, achieving

the intended sparse design.

7. CONCLUSIONS

The optimal grid operation and design was modeled as a stochas-
tic optimization problem with risk constraints and storage dynamics.
The setup includes a linear model that relates voltages and injected
power levels, with the inclusion of a slack bus. A semi-distributed
storage layout is designed by adding the storage unit capacities as
optimization variables and imposing a sparsifying penalty. A stochas-
tic dual algorithm is derived and simulated, satisfying the constraints
within an outage probability that stays below theoretical bounds.
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