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ABSTRACT

Acoustic source localization in sensor network is a chal-
lenging task because of severe constraints on cost, energy,
and effective range of sensor devices. To overcome these lim-
itations in existing solutions, this paper formally describes,
designs, implements, and evaluates a Half Plane Intersec-
tion method to Sequence-Based Localization, i.e., HPI-SBL,
in distributed smartphone networks. The localization space
can be divided into distinct regions, and each region can be
uniquely identified by the node sequence that represents the
ranking of distances from the reference nodes to the region.
The key idea behind HPI-SBL is to turn the localization
problem into half-plane intersection by processing the node
sequence. The proposed design is evaluated through ex-
tensive simulations and physical experiments in an indoor
test-bed with 30 smartphone nodes. Evaluation results show
that HPI-SBL can effectively locate the acoustic source with
good robustness.

Index Terms— Sequence-based localization, acoustic
sensor networks, half plane intersection

1. INTRODUCTION

Acoustic source localization (ASL) is an important signal pro-
cessing task, and has a wide range of application scenarios,
such as speaker-location-aware audio capturing in videocon-
ferencing [1], shooter localization in a battle field [2], and
wild biological acoustic studies [3]. The traditional central-
ized microphone array-based solution to ASL exploited mul-
tiple synchronized microphones to simultaneously acquire
multiple signals, which had some limitations with regard to
the distances between the microphones, and sensing range
for the large-scale applications. Wireless acoustic sensor net-
works (WASNs) can overcome these limitations. A WASN
consists of a set of wireless microphone nodes that are spa-
tially distributed over the environment, usually in an ad-hoc
fashion. Due to the wireless communication capabilities, the
array-size limitations disappear and the microphone nodes
can physically cover a much larger area.
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Acoustic source localization problem in sensor networks
has been widely studied in the literature [4–10]. There is a
trade-off between the accuracy of localization and the com-
putational complexity for existing different solutions. Most of
localization systems are based on range measurements, such
as distance measurements and angle measurements among
sensor nodes. Range-based localization methods can achieve
good localization performance, however, generally are sen-
sitive to the mesurement errors. There have existed some
approaches to range-free localization [11–17]. Yedavalli, et
al. [18] proposed a range-free Sequence-Based Localization
(SBL) method in wireless sensor networks. The heart of SBL
is the division of a 2D localization space into distinct regions
by the perpendicular bisectors of lines joining pairs of anchor
nodes. Each distinct region can be uniquely identified by a
node sequence that represents the distance ranks of the acous-
tic source to that region. Based on the rank of measurements
between the acoustic source and the sensor nodes, the loca-
tion of acoustic source can be estimated by searching through
the node sequence table.

In this paper, we present a robust Half Plane Intersection
to Sequence-Based Localization (HPI-SBL) by deeply min-
ing the information embedded in the node sequence. As a
range-free scheme, our design applies node sequences instead
of direct time of arrival (TOA) as the measurement informa-
tion, and has the following two major advantages: (i) node se-
quences are more robust to the measurement noise; (ii) node
sequences significantly alleviate the accuracy requirement of
time synchronization in sensor networks. Compared with ear-
lier works on sequence-based localization in sensor networks
(e.g. SBL [18]), the primary contribution of our work is pro-
viding a robust approach to solve the sequence-based local-
ization problem with the uncertainty of node position errors
and measurement errors. The proposed HPI-SBL system for-
mulates the localization as the probabilistic half-plane inter-
section problem. The proposed design is evaluated with both
test-bed experiments and extensive simulations. Evaluation
results show that the proposed HPI-SBL system can provide
improved localization robustness.
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2. SYSTEM OVERVIEW

In this section, we focus mainly on the system overview of our
HPI-SBL system, which aims at locating an acoustic source
with the node sequence. Fig.1 shows a layout of a acoustic
sensor network with N sensor nodes and the acoustic source.
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Fig. 1: Overview of HPI-SBL

We use circles and the triangle to stand for sensor nodes
and the acoustic source, respectively. Consider any two refer-
ence nodes and draw a perpendicular bisector to the line join-
ing their locations. This perpendicular bisector divides the
localization space into two different regions that are distin-
guished by their proximity to either reference nodes, as illus-
trated in Fig.1. Similarly, if perpendicular bisectors are drawn
for all pairs of reference nodes, they can divide the localiza-
tion space into many regions. All locations inside the same
region have the same node sequence, and the node sequence
of a given region is unique to that region. If each region in
the arrangement is represented by its centroid, then there ex-
ists a one-to-one mapping between a node sequence and the
centroid of the region that it represents.

Briefly, sequence-based localization system works as fol-
lows. Sensor nodes detect the acoustic event sequentially at
different time instants, then an order of related nodes, called
node sequence, is naturally generated. For instance, in Fig.1,
when the acoustic source generates a wave, the node sequence
NodeSeq(ACBD) is obtained along the sound propagation.
The node sequence implies the location information of the
acoustic source. By gathering the TOA measurement data
from sensor nodes, the location of the acoustic source can be
estimated by processing the node sequence.

Fig.2 shows that NodeSeq(ACBD) can be achieved by
TOA measurement of the acoustic event. We can get the dis-
tance sequence SA < SC < SB < SD from each node
to the acoustic source S. SA < SC shows that the acous-
tic source S lies in the right half-plane of the perpendicular
bisector of A and C. Similarly, SC < SB means that the
acoustic source S lies in the left half-plane of the perpendic-
ular bisector of C and B. SB < SD shows that the acoustic
source S lies in the left half-plane of the perpendicular bisec-
tor of B and D. The intersection of the three half-planes is the
final region of the acoustic source.
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Fig. 2: The basic idea of HPI-SBL

Compared to earlier works on sequence-based localiza-
tion with brute force searching scheme (SBL [18]), we care-
fully formulate sequence-based localization as the traditional
half-plane intersection problem. To the best of our knowl-
edge, this is the first work to leverage half-plane intersection
for solving sequence-based localization problems in sensor
networks.

3. DESIGN

In this section, we firstly introduce the basic HPI-SBL
method. After the basic HPI-SBL method is proposed, we
describe the probabilistic HPI-SBL method in the next sub-
section. Finally, weighted probabilistic HPI-SBL, the robust
version of HPI-SBL is given.

3.1. Basic HPI-SBL

In this section, we introduce the basic sequence-based local-
ization technique based on half-plane intersection.

Considering a sensor network in the 2D space with N
nodes, all nodes are X = {node1, · · · ,nodei, · · · ,nodeN},
where any node nodei has its location coordinate denoted
as [xi, yi]. As showed in Fig. 2, an acoustic event occurs at
Xs= [xs, ys], di is the distance from nodei to the acoustic
source S. The node sequence is determined by the distances
from nodes to the acoustic source S.

Basic HPI-SBL turns the localization problem into half-
plane intersection by processing the node sequence. The half-
planes are constructed by the two adjacent nodes in the node
sequences. We can find a solution to narrow the source re-
gion by making intersection of these half-planes. Given the
following node sequenceNodeSeq(· · · , i, j, k, · · · ) obtained
by time of arrival (TOA) information of the acoustic event,
we can get the distance sequence di < dj < dk from the
acoustic source to each node. Just considering the adjacent
node, we can have the following N(N − 1)/2 linear con-
straints: di < dj , di < dk and dj < dk, etc. We construct the
corresponding N(N − 1)/2 half-planes Hij , Hik and Hjk,
etc. di < dj means that the acoustic source lies in the left
half-plane Hij of the perpendicular bisector of nodei and
nodej . The intersection of the N(N − 1)/2 half-planes is
the final region of the acoustic source.
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3.2. Probabilistic HPI-SBL

For the sake of presentation, until now we have described
HPI-SBL in an ideal case where a complete and perfect node
sequence can be obtained. In this section, we describe how to
make HPI-SBL work well under more realistic conditions.

In the practical application, if two nodes are very close
to each other along the direction of event propagation, they
would detect the event almost simultaneously. In this case,
the flip problem of node sequence may occur. Basic HPI-SBL
might fail to find a feasible solution that satisfies all the con-
straints when sequence flip occurs. For example, as shown
in Fig.2, the right middle region identifies by the node se-
quence NodeSeq(DBCA). Once the order of node A and
C is flipped in NodeSeq(DBCA), the region corresponding
to NodeSeq(DBAC) does not exist, basic HPI-SBL can not
give the accurate estimation. In this section, we propose a ro-
bust solution to address the problem of sequence flip, called
probabilistic HPI-SBL.

Considering the uncertainty of the measurement with the
node sequence NodeSeq(· · · , i, j, · · · ), the probability of
di < dj can be described as

p(di < dj) > α (1)

Eq.1 means that the probability of the acoustic source in the
left side of the the half-plane Hij is α, and the right side is
1−α. After dividing the localization space into some discrete
grids, the weight of the grid point in the left side of the the
half-plane Hij is α, and the weight of the grid point in the
right side of the the half-plane Hij is 1− α.

Besides these key constraints mentioned in basic HPI-
SBL, some relaxed constraints are also provided some local-
ization information. For example, given NodeSeq(ACBD),
three key constraints SA < SC, SC < SB and SB < SD
from the two adjacent nodes, and three relaxed constraints
SA < SB, SA < SD and SC < SD from the two nonad-
jacent nodes in the node sequence are achieved, respectively.
Given the node sequences with N nodes, all N(N − 1)/2
constraints can be ultilized to further improve the localization
robustness. By processing N(N − 1)/2 half-planes, we can
compute the cumulative weight w of each grid point x

w(x) =

N−1∑
k=1

α(k). (2)

The region with the highest probability is the final region of
the acoustic source

X̂s = argmax
x∈R

w(x). (3)

The centroid of the final region is the estimated location of
the acoustic source.

3.3. Weighted Probabilistic HPI-SBL

Considering the uncertainty of the measurement with the
node sequence NodeSeq(1, · · · , i, j, · · · , n), the probability
of di < dj can be described as

p(di < dj) > αij (4)

In real condition, we consider the probabilities given by
different half-plane exist differences. Here we call the line
which divide the space as edge. We believe the edge con-
structed by i, j, if closer to the acoustic source, the half-plane
divided by it is more essential to localization for determining
a more accurate area, meawhile, is more likely to occur flip,
we give αij a smaller value. As for the edges further to the
source, its function is inferior in localization, but impossible
to occur flip so more believable, we set αij a large value. In
this way, utilizing the weighted probability to determine the
acoustic source.

As the node sequence NodeSeq(· · · , i, j, · · · ) is known
to us, for every half-plane, the probability change dynami-
cally according to the distance of the edge to the acoustic
source. If the node i, j that construct the half-plane in the
sequence is 1 and n, as the relative distance is the largest, we
set αij a largest value α, if the relative distance of i, j in the
sequence is the smallest 1, we give αij a smallest probability
β. As for other half-planes, we utilize the arithmetic propres-
sion between α and β by the relative distance of i, j to set
their probabilities.

4. EVALUATION

4.1. Simulation

To verify our method and obtain an intuitive understanding of
the localization performance under different conditions, we
developed a Monte Carlo simulator that implements both SBL
and HPI-SBL using MATLAB. In the simulation, we ran-
domly deployed some smartphones (default 20) in a 10m ×
10m area. Considering the impact of the uncertainty of node
position and TOA detection, we added a certain amount of
node location error (default 0.4m) and TOA measurement er-
ror (default 2ms) in all the simulations. Table 1 lists default
configurations of major parameters in the simulation. All
statistics reported are RMSE over 100 trial runs for high con-
fidence. The results of simulation evaluation are as follows.

1) Impact of the number of anchors: In this experiment,
we investigated the localization error and number of anchors
with a different number of anchors from 10 to 40 in steps of
3. TOA error is 2ms, and other simulation parameters are de-
fault values. With more anchors, the whole space area will
be divided into smaller parts, thus more accurate localization
estimation could be achieved. The results shown in Fig.3 in-
dicate that, as the number of anchor nodes increases, the lo-
calization error decreases for both methods. Fig.3 shows that
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Table 1: Default configuration parameter

Parameter Description
Field Area 10m ×10m

Number of Anchors 20 (Default)
Node Location Error 0.4m (Default)
TOA Detection Error 2ms (Default)
Random-Seed Loop 500 times (Default)

the localization error of HPI-SBL method is smaller than the
SBL method.

2) Impact of the location error: We choosed the loca-
tion error with the range from 0 to 1m in steps of 0.05m for
the three methods. Fig.4 illustrates a comparison of local-
ization errors between the SBL and the proposed HPI-SBL.
Fig.4 indicates the location error of anchors has an effect on
the localization results. The proposed HPI-SBL method is
more accurate than the SBL method. For the SBL method,
the localization error changes obviously as location error in-
creases in Fig.4. However, as demonstrated in Fig.4, with
the increase location error of nodes, the localization error of
HPI-SBL increases relatively slowly, which demonstrates the
HPI-SBL method is more robust to the node location error.
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Fig. 3: Localization Error vs.
Number of Anchors
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Fig. 4: Localization Error vs.
Node Location Error

3) Impact of the TOA measurement error: In this ex-
periment, we performed the impact of the TOA error of an-
chors for the two methods with the range from 0 to 4ms in
steps of 0.25ms. Other simulation parameters keep default.
As it is shown in Fig.5, the localization errors of the three
methods are increasing as the TOA error growth. Also, the
HPI-SBL method has a better result than the SBL method.
We can conclude from this figure that HPI-SBL is more ro-
bust to TOA measurement error than SBL.

4.2. Emulation

In this section, we reported system implementation of our de-
sign based on smartphone arrays. The 30 smartphones are de-
ployed in a size of 16m×10m space and connected by CISCO
CVR328W-K9-CN wireless router. TPSN protocol is adapted
in the proposed HPI-SBL system to realize time synchroniza-
tion. In the experiment, smartphones are randomly deployed
in the space, and 100 times localization results are shown in

Fig. 6. In the figure, blue squares stand for anchor nodes, red
circle squares denote the real position of acoustic sources and
black dots are the estimated location by HPI-SBL. An arrow
origins from the estimated location of each acoustic source
and points to its real position. As shown in Fig.6, most of es-
timated locations are close to the ground truth and the errors
between them are very small. In our experiment, the acous-
tic sources got localized with average and maximum error of
0.84 feet and 3.91 feet, respectively. Fig.6 tells that the pro-
posed HPI-SBL successfully accomplishes acoustic source
localization with good robustness.

0 0.5 1 1.5 2 2.5 3 3.5 4

 TOA Error (ms)

0

0.2

0.4

0.6

0.8

1

1.2

 L
o

c
a

li
z
a

ti
o

n
 E

rr
o

r 
(m

)

  Localization Error vs. TOA Error

  SBL

 Probabilistic HPI-SBL

 Weighted Probabilistic HPI-SBL

Fig. 5: Localization Error vs.
TOA Error
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Fig. 6: Test-bed localization
result of the Weighted
Probabilistic HPI-SBL

Summary: Considering the parameters including the
number of anchors, node location error, TOA error and
testbed experiment prove that our methods have a great per-
formance. Probabilistic HPI-SBL method introduces the
probability, determine a more accurate with error tolerance.
Weighted probabilistic HPI-SBL set the half-plane with dif-
ferent weights, further strengthens the localization behavior.
Above all, our methods can accomplish localization with
robustness.

5. CONCLUSIONS

In this paper, we presented a novel localization technique
HPI-SBL. The reference nodes sequence is computed by
TOA measurements of acoustic signals between the acoustic
source and reference nodes. The half-planes are constructed
by processing the node sequence, then turn the localization
problem into half-plane intersection problem. Our system
runs on COTS smartphones, it has potential to enable a wide
range of distributed acoustic localization system. Besides the
basic design, robust HPI-SBL is proposed for further enhanc-
ing system robustness. Our system is verified and evaluated
through extensive simulation and test-bed experimentation.
Results have shown that the proposed method can effectively
implement acoustic source localization.
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