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ABSTRACT

In this paper, we propose a deep learning based algorithm to
estimate the position of an user by utilizing reference signal
received power (RSRP) and the location of base stations. To
obtain reliable results in a real communication environment,
parameters were measured using commercially available base
stations and mobile phones within a LTE network. Since the
structure of the measured data changes in accordance with the
number of connected base stations, it is necessary to work on
data uniformity processing before running the deep learning
network. Therefore, we extract only the case in which three
base stations are connected, using it as a feature of deep learn-
ing network. The experimental results reveal that the perfor-
mance of the proposed algorithm is much better than that of
the conventional fingerprint method. The average distance
error is reduced from 71.04 meters for the fingerprint-based
method to 43.51 meters for the proposed deep learning-based
method.

Index Terms— deep neural network, outdoor position-
ing, wireless positioning, field measurement, reference signal
received power

1. INTRODUCTION

Smart phones are becoming an essential part of daily human
life. In order to provide a standard quality of service for
users, the communication environment’s coverage needs to
be expanded by increasing the number of base stations at
proper places. Conventionally, drive test was performed to
optimize the network infrastructures; however, it is labor-
intensive and costly. To reduce costs, the minimization of
drive tests (MDT) was specified in the 3rd Generation Part-
nership Project (3GPP) [1] allowing for the continuous and
automatic monitoring of the radio status of each user’s device.

In order to draw a coverage map using MDT data, it is
very important to identify the location of user’s device. It
is trivial to obtain the exact location if we use global navi-
gation satellite system (GNSS) for MDT data [2]. However,
when the user turns off the GNSS functionality, the location
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of the user equipment (UE) has to be estimated through the
use of other information made available through MDT mea-
surements. For example, it is possible to estimate the location
of the UE by utilizing the received signal strengths (RSSs) of
multiple base stations. There are many positioning methods
that use RSS including triangulation and fingerprint-based po-
sitioning method [3][4][5][6]. However, since RSS varies
greatly depending on the surrounding environment, it can be
complicated to determine the exact location of the UE using
the conventional approaches.

In this paper, we estimate the location of the UE using ref-
erence signal received power (RSRP) and the location of base
stations with a deep neural network (DNN) structure. DNN
successfully finds a non-linear relationship between any in-
put and output parameters if the training database is sufficient
enough. Due to this characteristic, DNN has also been ap-
plied to wireless positioning researches [7][8][9]. However,
it has never been used for the scenario in an outdoor LTE en-
vironment, especially using the measured data in a real com-
munication field. The proposed algorithm utilizes three of the
strongest RSRPs and their corresponding base stations’ lati-
tudes and longitudes for the input and the latitude and longi-
tude of the UE for the output parameters of the DNN. Before
the network is trained, all the input data are first normalized
in order to have zero mean and unit variance. In consideration
of the fact that these parameters are temporally related, data
in consecutive frames are simultaneously used with a con-
text window. In order to verify the actual performance of the
proposed algorithm, we measured the data from a commer-
cial LTE communication system, which was operated in 1800
MHz band.

2. BACKGROUND

2.1. Overview of minimization of drive tests

MDT, which was first introduced in 3GPP Release 10, is a
solution that allows for the monitoring of the status of re-
ceived radio with commercial devices for the purpose of op-
timizing network parameters [10]. Fig. 1 depicts a simplified
MDT architecture that consists of operation and maintenance
(OAM), radio access network (RAN) node, trace collection
entity (TCE) and UE [10]. OAM determines the configura-
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Fig. 1. Flow of MDT protocol.

tion of MDT parameters for the UE to measure and then sends
these parameters to the RAN node. The RAN node, which is
also known as an evolved node B, is a base station within
LTE network. The RAN node receives the parameters and
then sends them to the UE in order to activate the MDT func-
tionality of the UE. The UE then reports the measured data to
the RAN node. This data is finally sent to the MDT server,
which is the TCE [11].

Among many parameters available in the MDT data for-
mat, we can use RSRP and physical cell id (PCI) in order to
estimate the location of UE. RSRP is defined as the linear av-
erage over the power contributions of the resource elements
that carry cell-specific reference signals [12]. PCI is an iden-
tifier of a cell at physical layer indicating which base station
the UE is connected to. Through PCI, the latitudinal and lon-
gitudinal of the base station is provided.

2.2. Conventional fingerprint-based localization

Fingerprint-based localization matches the observations of
geotagged signatures to a map of previously measured signa-
tures [6][13][14][15][16]. This type of localization displays
relatively high performance if an accurate database is avail-
able [13]. In this paper, we deploy the grid-based fingerprint
scheme.

The localization process is divided into training and
matching phases. The training phase exploits measured sig-
natures in order to create a database for each grid unit. The
region is made up of pre-defined square grid units, and the
signature of each grid unit is saved in the training databases.
In other words, each grid point is represented by one training
signature vector such as RSRPs and their corresponding base
stations, PCIs. Next, each grid unit’s signature is mapped to
the longitude and latitude of the middle point of the grid unit.

During the matching phase, the location of the UE is es-
timated by the discovery of the best matching signature. In
order to determine the best matching signature in the train-
ing database, the test signature vector that has the same con-
figuration as the training phase is compared to each training
signature vector. Next, the grid point is searched by a pat-
tern matching algorithm in order to determine the grid unit
that has the minimum Euclidean distance among the grid unit

Table 1. Field measurement format.
Parameter Description
EARFCN Uplink or downlink frequency
(UL, DL) as E-ARFCN

Bandwidth Uplink or downlink bandwidth
(UL, DL) as E-ARFCN

Band Band as E-ARFCN
PCI Top 1 to 20

Top set RSRP Top 1 to 20
RSSI Top 1 to 20

RSRQ Top 1 to 20

candidates that have the same PCI set [16].

2.3. Deep neural network

Deep neural network has been successfully used for model-
ing complicated relationship between input and output values
when a large amount of data is available to train the network.
A DNN consists of input, output, and hidden nodes. To model
a function using DNN, the neural network has to be trained by
adjusting the weight values via the input and output values.
The DNN training process is divided into two stages.

The first stage is the feed-forward stage. This is the pro-
cess of calculating the output value of the current network
from the input layer to the output layer. The feed-forward is
implemented by the following equation:

h = f(Wxhx+ bh) (1)
y = Whyh+ by, (2)

where x, h, y, W , b and f are the input vectors, hidden vec-
tors, output vectors, weight matrices, bias vectors and hidden
layer activation function, respectively (e.g. Wxh is the input-
hidden weight matrix and bh is hidden bias vector). Since the
activation function models the nonlinear relationship between
the input and output values, as well as the fact that these op-
erations are repeated from the input layer to the output layer,
a DNN effectively models the nonlinear function.

The second stage is the back-propagation stage. This is
the process of calculating the difference between the output
value and the true value and updating all the weights from
the output layer to the input layer so that the difference is
minimized. The gradient descent method is used to minimize
the cost function.

3. PROPOSED DNN-BASED LOCALIZATION

3.1. Field measured data analysis

The format of field measured data is represented in Table 1.
Among these parameters, we use PCI and RSRP of Top set.
The number after ‘Top’ indicates the order according to the
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Fig. 2. Block diagram of DNN training and test.

strength of the RSRP. However, the number of base stations
connected to the UE changes every moment depending on the
surrounding environment. In field measured data, only one
station is connected in 82.74% of cases, two stations are con-
nected in 10.65% of cases, and three stations are connected
in 4.82% of cases. The portion of the data connected to more
than three base stations is too small and the data connected
to two base stations lacks information for predicting the posi-
tion of the UE. Accordingly, in this paper, we utilize the data
of three connected base stations. However, the time interval
between the consecutive data changes as a result of the dis-
carded data. Our raw data was transmitted with an average
of 77.01 times per second. After extracting the data that had
three connected base stations, the remaining data were mea-
sured with an average of only 3.83 times per second. When
the time differences between two consecutive samples were
measured using time stamps, most of them were placed within
one second; however, sometimes the difference lasted longer
than a minute. Therefore, it is necessary to compensate for
this difference when training a DNN network.

3.2. DNN training and test

Fig. 2 illustrates the training and test method of the DNN
structure for positioning. During the training stage, all the
features for the training set are normalized to have zero mean
and unit variance. The RSRP, latitude and longitude of the
Top 1 to 3 base stations are used as DNN input features, which
are symbolized by RSRPBS , LonBS and LatBS . The lati-
tude and longitude of the UE are used as DNN output fea-
tures, which are symbolized by LonUE and LatUE . Next,
the DNN network repeats feed-forward and back-propagation
continuously, updating the weight and bias values so that the
output data of the input features, which are calculated by the
network, are close to the target data. During the test stage,
the input features are normalized to have zero mean and unit
variance in order to match the training process. Finally, we
obtain the estimated latitude and longitude values through the

(a) Data measured in detail. (b) Data measured sparsely.

Fig. 3. Drive trajectory of the field measurements.

Table 2. Database and DNN network setup.
26,061 (S5 A)

# of samples detailed DB 22,297 (S5 B)
31,511 (G5)

sparse DB 10,875 (S5 A)
Input layer 9 dimensions

Output layer 2 dimensions
Normalization Zero mean, unit variance

Weight initialization Xavier
Activation function ReLU

Optimizer Adam
Cost function MSE

trained network.
We also extend the proposed algorithm to have a context

window that uses past and future features, as well as the cur-
rent DNN input feature. The rationale behind this idea is that
the RSRP data is a time series; thus, the past and future input
features are correlated with the current output features.

4. EXPERIMENTS

4.1. Simulation setup

The field measurements were performed using 1800 MHz
LTE bands in Icheon-si, Gyonggi-do, Republic of Korea on
Aug. 2017. The measured area was about 910 meters east to
west and 1100 meters north to south. The measurements were
performed twice. The initial measurements took into account
almost all roads in detail, using three devices (two Samsung
Galaxy S5s and one LG G5). The secondary measurements
were relatively sparser than the first ones, using one device
(a Samsung Galaxy S5). We call these data sets “detailed
DB” and “sparse DB”, respectively. The two drive routes are
shown in Fig. 3. The devices were connected to an average of
1.34 base stations on a time stamp, and the median distance
between the serving cell and the UE was about 105.16 meters.

These experiments are performed in several ways. The
first experiment is to compare the performance variation of
the DNN network when the number of nodes and the number
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Fig. 4. Average distance errors for various nodes and layers.

of layers are adjusted. The number of nodes was experimen-
tally increased from 128 to 1,024, and the number of layers
was increased from 1 to 3. Three detailed DBs with 5-fold
cross validation were used to prevent over-fitting and to com-
pare performance fairly. The second experiment is to com-
pare the performance by changing the size of the context win-
dow. The size is changed from (0+1+0) to (4+1+4) to find
the proper length of context window. The (4+1+4) means to
use the current features with four frame features before and
after the current frame. The (0+1+0) means to use only the
current frame features. The third experiment compares the
performance of the proposed localization method to that of
the conventional fingerprint-based method.

Table 2 shows the setup of the DNN network. In all ex-
periments except the first one, we used the DNN networks
having 3 layers with 1,024 nodes each, 3 detailed DBs as a
training set, and the sparse DB as a test set. The number of
training set is 79,869 and the number of test set is 10,875.

4.2. Simulation results

Fig. 4 displays the result of the first experiment. An aver-
age distance error between the estimated position and the tar-
get position in metric units is used to determine representa-
tive performance. The performance improves as the numbers
of nodes and layers increases. Of course, the complexity in-
creases exponentially as the number of layers increases.

Table 3 shows the results of the second experiment. The
average distance error and distance errors for 70% and 90% of
cumulative distribution function of distance error between the
estimated position and the actual location obtained by GNSS
are represented in metric units. In case of using the context
window (1+1+1), the performance was found to be the best.
However, the results also show that performance does not
improve when the size of the context window is increased.
This is due to the time discontinuity caused by discarding the
data if they do not include the parameters from at least three
base stations. In order to compensate for this discontinuity,
a data interpolation method or preprocessing with successive
sequences is required. It remains our future work.

Table 3. Performance with different context window size.
Context Average Distance err. Distance err.
window distance err. for 70% for 90%
(0+1+0) 51.70 m 56.37 m 119.73 m
(1+1+1) 43.51 m 42.33 m 98.97 m
(2+1+2) 45.09 m 44.17 m 105.47 m
(3+1+3) 45.78 m 46.41 m 102.19 m
(4+1+4) 47.51 m 46.47 m 108.12 m
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Fig. 5. Cumulative distribution function of distance error.

In the third experiment, the fingerprint-based method that
uses RSRP measurements of the Top 1 to 3 base stations with
a 10-by-10 meters grid unit was used to compare the perfor-
mance with the proposed algorithm. A context window of
(1+1+1) is applied to the DNN input layer. The average dis-
tance error is 71.04 meters for the fingerprint-based method,
and 43.51 meters for the DNN-based method. The cumula-
tive distribution function of the distance error is plotted in
Fig. 5, demonstrating that the distance error is reduced from
72.14 meters to 42.33 meters for 70% and the distance error
is reduced from 208.5 meters to 98.97 meters for 90% us-
ing the DNN-based localization method when compared with
fingerprint-based localization method. It is obvious that the
proposed DNN structure predicts the location of the UE bet-
ter than the fingerprint-based method.

5. CONCLUSION

This paper has proposed a DNN structure that can predict
the location of an UE using RSRP data and the locations of
the base stations. Since field measurement data obtained by
commercial base stations and UEs were used in these experi-
ments, the results fully represent the outcomes that can be ac-
tually obtained in real environments. The experimental results
demonstrated that the average distance error of the proposed
algorithm could be reduced by 27.53 meters in comparison to
the conventional fingerprint-based localization method. We
are going to increase the amount of training database and use
additional environment-related features in order to further im-
prove the performance.
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