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ABSTRACT

Clock synchronization is required by most time-based localization
methods in wireless sensor networks (WSNs). However, synchro-
nization is often coupled with localization. Furthermore, the accu-
racy of anchor positions depends on several factors, and uncertain-
ties may exist in the observed anchor positions. Thus, we propose
a joint time and location estimation of target sensors using a sin-
gle mobile anchor to reduce the deployment cost for WSNs. Taking
anchor position uncertainties into account, we develop an expecta-
tion maximization (EM)-type method to solve the joint estimation
problem. The simulation results verify the performance of the pro-
posed EM method is superior than conventional methods, such as
least squares (LS), weighted least squares (WLS) and generalized
total least squares (GTLS) estimators.

Index Terms— wireless sensor networks, expectation maxi-
mization, localization, synchronization, anchor position uncertain-
ties

1. INTRODUCTION

Wireless sensor networks (WSNs) attract numerous attention be-
cause of their wide applications [1] [2]. The information gathered
by sensors will be much more meaningful if it is tagged with sensor
positions and timestamps to indicate where and when it is collected.
Thus it is significant to solve localization and synchronization prob-
lems for WSNs. Time-based approaches are often adopted in local-
ization for WSNs. However, time synchronization is always coupled
with time-based localization. Furthermore, the sensor localization
is usually aided by anchor nodes with known positions, which are
often determined by global positioning system (GPS), inertial nav-
igation system (INS) [3] or baseline localization systems [4]. The
uncertainties of anchor positions are inevitable and degrade the lo-
calization and synchronization performance of target sensors.

In order to deal with the coupled problems, some research works
propose to accomplish localization and time synchronization simul-
taneously. For instance, in [5] and [6], the joint estimation is ac-
complished by semi-definite programming (SDP). Moreover, a dis-
tributed belief propagation algorithm is developed in [7]. A novel
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two-step algorithm is described in [8]. However, none of these algo-
rithms considers anchor position uncertainties. To cope with anchor
position uncertainties, [9] and [10] propose the target position esti-
mation for WSNs through SDP and expectation maximization (EM),
respectively. However neither of them considers synchronization is-
sues. In addition, some works propose to accomplish the joint es-
timation with anchor position uncertainties. In [11], whose clock
skew is not considered, an semi-definite relaxation (SDR) method is
proposed. Among the research works presented above, only [11] u-
tilizes a single mobile anchor and others assume accurate knowledge
of anchor positions. Our previous work introduced in [12] analyzes
the characteristics of the single mobile anchor system. It discusses
the joint estimation problem without anchor uncertainties.

In this paper, we use a single mobile node as an anchor node to
assist the localization and synchronization of the target sensors. In-
stead of fixed anchor nodes, the mobile anchor decreases the anchor
deployment cost and adds flexibility. Considering the anchor un-
certainties, we propose the EM method to jointly estimate the clock
skew and offset of the target sensor as well as its position. We also
tailor the conventional least squares (LS), weighted LS (WLS) and
generalized total LS (GTLS) estimators to compare with the pro-
posed EM method. The simulation results show that the proposed
EM algorithm has a better performance.

The rest of this paper is organized as follows. In Section 2, the
system model of joint synchronization and localization in the pres-
ence of anchor position uncertainties is presented. In Section 3, we
propose the EM algorithm and adjust the LS, WLS and GTLS algo-
rithms for fair comparison. The performance of the proposed EM
estimator is compared with the ones of the LS, WLS and GTLS al-
gorithms in Section 4.

2. SYSTEM MODEL

We consider a scenario where a single mobile anchor is employed
to localize and synchronize the target sensors in WSNs. As the pro-
posed method is the same for all the sensor nodes, we exemplify
the case of localization and synchronization of a single target sensor.
The position and timestamp of the mobile anchor is recorded when-
ever it broadcasts a packet. If we assume that the mobile anchor has
a standard clock with a reference time t, and the target sensor has an
asynchronous clock with its local time C(t), their relationship is

C(t) = αt+ β, (1)
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where α is the clock skew, and β is the clock offset of the target
sensor with respect to (w.r.t.) the mobile anchor. We define that the
i-th packet is broadcast by the mobile anchor at ti according to the
standard clock. The current mobile anchor position is recorded as
ai. Let us define the corresponding true position of the anchor as
aio and the position uncertainty as ∆ai. The relationship among
them is aio = ai + ∆ai, where [∆ai]j ∼ N(0, σ2

a). The mobile
anchor moves along a user-defined trajectory as shown in Fig. 1.
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Fig. 1: An example of localizing a target sensor by a single
mobile sensor.

Define the position of the target sensor as x. According to the
time of flight between the mobile anchor and the target sensor, the
distance between them while the i-th packet is broadcast could be
calculated as di, where di = ∥aio − x∥. We consider the system of
two dimensions, which could be extended to the three dimensional
case easily. The time stamp ri is recorded when the i-th packet is
received by the target sensor. We arrive at

ri = α(ti +
di + wi

c
) + β, (2)

where c is the signal propagation speed related with environmen-
t conditions. The measurement noise is denoted as wi, and wi ∼
N(0, σ2

w). We aim to estimate the position (x) and clock parame-
ters (α and β) of the target sensor using the timestamps (ri and ti)
and the observations of anchor positions (ai).

Let us define θ1 =
1

α
and θ2 =

β

α
, and assume that there are

N packets received by the target sensor. We could linearize (2) as
follows. Firstly, the equation (2) could be rewritten as (riθ1 − θ2 −
ti)c = di + wi. Squaring both sides of the resulted equation, and
according to di = ∥x− aio∥, we arrive at

(r2i θ
2
1 + θ22 + t2i − 2riθ1θ2 − 2ritiθ1 + 2tiθ2)c

2

= ∥x∥2 − 2aT
iox+ ∥aio∥2 + 2diwi + w2

i .
(3)

As aio = ai+∆ai, we have ∥aio∥2 = −∥ai∥2+∥∆ai∥2+2aT
i aio.

Taking it into account and rearranging (3), we achieve

c2t2i + ∥ai∥2

= −2aT
iox+ 2c2ritiθ1 − 2c2tiθ2 + 2c2riθ1θ2 − c2r2i θ

2
1

+ ∥x∥2 − c2θ22 + 2aT
i aio + ∥∆ai∥2 + 2diwi + w2

i . (4)

As a result, we rewrite (4) into a vector form as follows.

s = Gy −Aho + e, (5)

where [s]i = c2t2i + ∥ai∥2,G =
[
Ho R

]
,with i = 1 · · ·N,

[Ho]i,: = −2aT
io,

[R]i,: =
[
2c2riti, −2c2ti, 2c2ri, −c2r2i , 1

]
,

y =
[
xT zT

]T
,with

z =
[
θ1, θ2, θ1θ2, θ21, ∥x∥2 − c2θ22

]T
,

A =


aT
1 0T

2 · · · 0T
2

0T
2 aT

2 · · · 0T
2

...
...

. . .
...

0T
2 0T

2 · · · aT
N

 , [ho] = vec(Ho),

[e]i = 2diwi + w2
i + ∥∆ai∥2.

We are interested in estimating y. Considering the relationship be-
tween the elements of Ho and ho, (5) can also be rewritten as

s = (IN ⊗ xT −A)ho+Rz+ e. (6)

The unknown parameters to be estimated are x and z. The accurate
anchor positions are denoted by ho. The value of ho is unknown due
to the anchor uncertainties. The value of α and β could be recovered

from z through α̂ =
1

[z]1
, β̂ =

[z]2
[z]1

. The EM-based method will be

developed based on (6) in the following sections.

3. THE PROPOSED EM-BASED METHOD

This section proposes the EM algorithm to estimate the clock param-
eters and position of the target sensor. We also tailor the LS, WLS
and GTLS estimators to compare with the EM-based method.

3.1. The iterative steps of the EM method

The EM algorithm tries to find the maximum likelihood estimation
through iterative steps. This iterative algorithm aims to complete
the estimation with data dropouts. The system model (6) indicates
that y =

[
xT zT

]T could be estimated if s and ho are known.
However, ho is unknown due to anchor position uncertainties. Thus,
we regard ho as the hidden variable vector. We carry out the E step
and M step of the EM algorithm respectively, after the initial value
of y is determined by the LS estimator.
The E step
In this step, we compute the expectation to obtain the hidden variable
vector estimation and the objective function of the EM algorithm.
The estimation of ho is determined by the expected value of ho w.r.t.
s and the previous estimate of y denoted as ŷ(k − 1). This estimator
is also called minimum mean square error (MMSE) estimator. The
error covariance of the MMSE estimator is calculated as (8).

ĥo(k) =
∫
ho

hop(ho|s, ŷ(k − 1))dho. (7)

Cĥo
(k)

=
∫
ho

(ho − ĥo(k))(ho − ĥo(k))
T p(ho|s, ŷ(k − 1))dho. (8)

As the probability density distribution of ho is Gaussian, we could
obtain

Cĥo
(k) = (C−1

ho
+ (IN ⊗ xT −A)TCe

−1(IN ⊗ xT −A))−1,

(9)

ĥo(k) (10)

= Cĥo
(k)((IN ⊗ xT −A)Ce

−1(s−Rz−E{e}) +C−1
ho

h),
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where h =
[
−2aT

1 · · · −2aT
N

]T . The objective function of
the EM algorithm is the expected value of log p(s,ho|y) w.r.t. the
conditional distribution of ho given s under ŷ(k − 1). Denote the
expected value of the log likelihood as Q(y|ŷ(k − 1)), we arrive at

Q(y|ŷ(k − 1))=
∫
ho

(log p(s,ho|y)) p(ho|s, ŷ(k − 1))dho.

(11)

Since p(s,ho|y) = p(s|ho,y)p(ho|y) and ho is independent from
y, we can simplify the calculation of Q(y|ŷ(k − 1)) without the
constant terms. The following equation can be easily obtained.

Q(y|ŷ(k − 1)) ∝
∫
ho

(log p(s|ho,y)) p(ho|s, ŷ(k − 1))dho.

(12)
Using the Taylor expansion, (12) has a linear approximation at
ĥo(k), which is the current estimate of ho. As the higher-order
terms are equal to zero, only the first two derivatives remain.
Denote Ce as the covariance matrix of e, and cl as the l-th
column vector of the square root of Ce. Therefore, [cl]i =

1√
4d2iσ

2
w + 2σ4

w + 2σ4
a

, i = l

0, i ̸= l
. Using (7) and (8), we

could simplify Q(y|ŷ(k − 1)) as a quadratic function w.r.t. y

Q(y|ŷ(k − 1))

∝ (s− (IN ⊗ xT −A)ĥo(k)−Rz−E{e})TC−1
e

(s− (IN ⊗ xT −A)ĥo(k)−Rz−E{e}) (13)

+

N∑
l=1

cTl (IN ⊗ xT −A)Cĥo
(k)(IN ⊗ xT −A)T cl.

The M step
In this step, ŷ(k) is achieved by maximizing (13). The estimate ŷ(k)
could be obtained if the derivative of (13) w.r.t. y equals to zero.
Let us define Ĝ(k) =

[
Ĥo(k) R

]
. As a result, we obtain the

estimate of y in the current iteration as follows.

ŷ(k)

= ((Ĝ(k))TC−1
e Ĝ(k) +

N∑
k=1

PT (cTl ⊗ I2)Cĥo(k)
(cl ⊗ I2)P)−1

((Ĝ(k))TC−1
e (s+Aĥo(k)−E{e})

+
N∑

k=1

PT (cTl ⊗ I2)Cĥo
(k)AT cl), (14)

where P =
[
I2 02×5

]
, and x = Py.

In summary, the estimation process consists of two steps. Firstly,
ĥo(k) and Cĥo

(k) is derived according to (9) and (10) and we arrive
at (13). Secondly, we could obtain ŷ(k) through (14). The two
steps are repeated alternately. The EM algorithm terminates when
∥x̂(k)− x̂(k − 1)∥ ≤ 0.001. The initial value ŷ(0) comes from an
LS estimator.

3.2. The tailored LS, WLS and GTLS estimators

In this section, we tailor the LS, WLS and GTLS estimators for joint
synchronization and localization with anchor position uncertainties.

The performance of the three algorithms could be compared with the
proposed EM-based method.
The LS and WLS algorithm
Let us define [ρ]i= c2t2i − ∥ai∥2, [ϵ]i=2diwi + w2

i + ∥∆ai∥2 +
2aT

i ∆ai, ȳ = y + ∆ȳ,∆ȳ =
[
0T
6 σ2

w + 2σ2
a

]T and rewrite
(5). We obtain the system model for the LS estimator and the LS
estimate of ȳ as follows.

ρ = Gȳ + ϵ−E{ϵ} = Gȳ + ϵ− (σ2
w + 2σ2

a)1N , (15)̂̄yLS = (GTG)−1GTρ. (16)

Note that the accurate anchor position is unknown because of anchor
position uncertainties. The value of aio in submatrix Ho of G is
replaced by ai during the estimation process.

When the accurate positions of the mobile anchor are known, we
denote [ζ]i = c2t2i − ∥aio∥2, [η]i = 2diwi + w2

i , ỹ = y + ∆ỹ,
∆ỹ =

[
0T
6 σ2

w

]T . We arrive at

ζ = Gỹ + η. (17)

Denote the covariance matrix of η as Cη , which is a diagonal matrix
and [Cη]i,i = 4d2iσ

2
w + 2σ4

w. The value of di is decided by di =

∥̂̄xLS − aio∥ from (16). The LS and WLS estimate ̂̃yLS−I and̂̃yWLS are as follows, respectively.

̂̃yLS−I = (GTG)−1GT ζ, (18)̂̃yWLS = (GTC−1
η G)−1GTC−1

η ζ. (19)

The GTLS algorithm
Referring to [13], the GTLS solves the linear parameter estima-
tion problem while the observation matrix are with Gaussian
noise of zero mean. The equation (5) is equivalent to (20) while
y⃗ = [y]1:6,W = [G]:,1:6, [ε]i = 2diwi + w2

i + ∥∆ai∥2 +
2aT

i ∆ai + ∥x∥2 − c2θ22 .

ρ = Wy⃗ + ε. (20)

The expected value of ε is not equal to zero. Therefore, we substract
E{ε} from both sides of (20). Let us define ϱ = ρ − E{ε}. Con-
sidering the LS estimator is unbiased, the estimate of E{ε} could be
obtained by [̂̄yLS ]7. Then, the following equation could be derived.

ϱ = Wy⃗ + ε− [̂̄yLS ]71N . (21)

Denote the errors in Ho and ϱ as [F]i,:=
[
−2∆aT

io [ε]i − [̂̄yLS ]7
]

and CF = E{FTF}. RC is the Cholesky decomposition of CF.
Therefore, the GTLS algorithm is proposed as

arg min
Ĥo,ϱ̂

∥∥∥[ Ho − Ĥo ϱ− ϱ̂
]
RC

−1
∥∥∥

s.t. Range(ϱ̂) ⊆ Range(Ŵ). (22)

The detailed solution of this problem is described in [13].

4. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the EM method
through simulations for underwater WSNs. The positions of the mo-
bile anchor are decided by GPS when it is on the sea surface and INS
underwater. The positions of the mobile anchor consist uncertain-
ties. As the depth of the target sensor could be measured by pressure
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sensors, we consider the localization system of two dimensions. The
accurate positions where the mobile anchor transmits signals are
shown in Fig. 1. The signal propagation speed is c = 1500 m/s,
which is the average speed of the acoustic signal underwater. The
coordinates of the target sensor are uniformly distributed inside
the square in Fig. 1. The clock parameters α and β are uniformly
distributed in the range [−0.3, 0.3] and [1 − 10−3, 1 + 10−3], re-
spectively. We run 5000 rounds of Monte Carlo trails to obtain the
simulation results.
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Fig. 2: RMSE of the target sensor position estimation
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Fig. 4: RMSE of β estimation

Fig. 2 shows the position estimation performance versus dif-
ferent anchor position uncertainties, when σ2

w = 10 m2. The EM
estimator achieves the best performance compared with the LS and
GTLS estimators. Because it explores the priori information about
the anchor position and noise. The GTLS estimator performs better
than the LS estimator as expected. The WLS estimator has a lower
root mean square error (RMSE) than the LS-I estimator though both
of them are carried out based on accurate anchor positions. Because

the variances of the observations are unequal in our system. The EM
algorithm performs better than the LS estimator even though the an-
chor position uncertainties are low. It is clear that the EM estimator
has a better performance than LS-I while 1/σ2

a is greater than 10 dB.
Figs. 3 and 4 show the performance of clock skew and offset estima-
tion under the same settings as in Fig. 2. The trend is similar to Fig.
2.
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Fig. 5: RMSE of the target sensor position estimation

If we set σ2
a=10 m2, the RMSE of localization under different

measurement noises could be illustrated in Fig.5. The WLS estima-
tor has a lower RMSE than LS-I and the gap between their perfor-
mance stays constant. The error floors are determined by the anchor
position uncertainties. The performance trend of clock skew and off-
set estimation under the same settings as in Fig. 5 is similar to the
position estimation. Thus, we omit their figures.

A. APPENDIX

A.1. The covariance matrix Ce and Cho

As wi ∼ N(0, σ2
w) and [∆ai]j ∼ N(0, σ2

a), the expectation and
covariance matrix of e can be modeled as follows.

E{[e]i} = E{2diwi + w2
i + ∥∆ai∥2} = σ2

w + 2σ2
a, (23)

[Ce]i,j = E{[e]i[e]j} −E{[e]i}E{[e]j}

=

{
4d2iσ

2
w + 2σ4

w + 2σ4
a i = j

0 i ̸= j
, (24)

Ce is related to the distance di, and it should be updated upon the
current estimate of x and aio every iteration.The covariance matrix

Cho of ho can be derived as [Cho ]i,j =

{
4σ2

a, i = j
0, i ̸= j

.

A.2. The covariance matrix Cε and CF

The value of Cε and CF could be computed as

[Cε]i,j =

{
4d2iσ

2
w + 2σ4

w + 4σ4
a + 4σ2

a∥ai∥2, i = j
0, i ̸= j

(25)

CF=

 4Nσ2
aI2 u

uT
N∑
i=1

N∑
j=1

[Cε]i,j

 ,with u =

 4σ2
a

N∑
i=1

[ai]1

4σ2
a

N∑
i=1

[ai]2

 .

(26)
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