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ABSTRACT
In this paper, we consider a joint topology and radio resource op-
timization for device-to-device (D2D) based mobile social net-
works. The considered social network is an interest based which
is modeled as a d−intersection binomial random graph. The Ra-
dio network is also modeled as a random graph where an edge
between any two distinct nodes is activated with a certain prob-
ability that is equivalent to the probability of exceeding a certain
signal to interference ratio for that link. The entire network is
then modeled as an intersection graph between the social and ra-
dio induced graphs. Thereafter, network topology is optimized
such that enabled social edges satisfy certain network connectiv-
ity constrains under specific radio environment characteristics.
Radio resource allocation is performed to maximize the radio
resource utilization exploiting both social ties awareness among
the network nodes and knowledge of channel gains among users’
locations. We formulate our radio resource allocation problem
as a semidefinite program over a graph representing the network
topology. Simulation based numerical results are shown in terms
of achieved link efficiency and optimized topology parameters.

Index Terms— Spectrum Cartography, Radial Basis Func-
tions, Alternating Direction Optimization.

1. INTRODUCTION

Background and Motivation- One of the potential technologies
to meet the huge data rate demands in next generations wireless
networks is device-to-device (D2D) communications [1]. With
D2D communications, devices in the proximity of each other can
exchange data directly among each other through short-range
low-power radio links instead of double hop communications
through base stations.

On the other hand, instead of projecting social conectivity
aspects only on the application layer, one of the recent trends
in wireless communications is to utilize social relations and
attributes among users information in wireless networking opti-
mization under a framework called mobile social networks [2].
Mobile social networks can be combined with D2D commu-
nications where data is disseminated cooperatively within the
network using D2D links and exploiting social awareness [3].
In this paper, we develop a mechanism for mutual inference
between social and radio environment knowledge aiming at op-
timizing the network’s performance in terms of connectivity.
Moreover, we exploit this mechanism to address the problem of
radio resource allocation for D2D based mobile social networks.

This work was supported by the FRIPRO TOPPFORSK grant 250910/F20
from the Research Council of Norway.

Related work and contribution- Radio resource allocation
for D2D communications is well documented in the literature
[4–6]. Regarding mobile social networks, most of the previous
work tackles the issue of data routing within the D2D based mo-
bile social networks with a common assumption of having the
radio resources already assigned [7].

Social aware radio resource allocation for D2D pairs is one
of the advancing fields in mobile networking. However, most of
the contributions there are in the context of coordination among
D2D and cellular users exploiting social ties and communities,
as in [8] and [9]. Both [8] and [9] assume predefined social
characteristics of users and then the radio resource allocation is
performed accordingly.

In contrast to the previous related work, the contributions of
this paper are highlighted as follows:

1. We optimize a D2D based mobile social network topology
by exploiting both social and radio environment informa-
tion. The optimized network topology meets a specific
connectivity constrain.

2. We formulate and solve a radio resource allocation prob-
lem among devices forming a D2D based mobile social
network. The objective of our optimization problem is to
maximize the radio resource utilization.

Even though modeling a network as a single graph represent-
ing an intersection between social and radio induced graphs is
used to facilitate our main contributions in 1 and 2 above, it is
still useful as a standalone contribution which to the best of our
knowledge has not been done before.

Notation- Upper case bold letters are used to denote matrices
such as C ∈ RM×N while the element corresponding to the kth

row, lth column of C is denoted as Ckl. Column vectors are
denoted by lower case bold letters as c with ck being the kth

entry of vector c. We use tr(C),CT to denote the trace and
transpose of matrix C, respectively. A diagonal matrix where
the diagonal elements are the entries of vector c is denoted as
diag(c). |S| is used to denote the cardinality of set S. 1 and 0
denote the all-one and all-zero vectors, respectively. P[α] is the
probability that event α takes place.

Organization- The rest of this paper is structured as follows.
Section 2 presents some necessary preliminaries on graph theory.
Section 3 introduces the system model. In section 4, joint net-
work’s topology and radio resource optimization is explained.
Our simulations are discussed in Section 5. Finally, Section 6
concludes the paper.
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2. PRELIMINARIES ON GRAPH THEORY

Incidence and Laplacian matrices for undirected graphs- We
define an undirected graphG(N , E) composed of the node setN
and the edge set E , where |N | = N and |E| = M . For each edge
m, we define the column vector am ∈ Rn where ami = 1, amj =
−1 if the edge m connects nodes i and j, amk = 0,∀k 6= i, j.
The incidence matrix [10] of graph G, A ∈ RN×M is given by
A = [a1 |a2 | · · · |aM ] which indicates the available edges.

We define the weight vector w ∈ RM as w = [w1 w2 · · · wM ]T

where wi is the corresponding normalized weight for the ith

edge. Therefore, the vector w has to fulfill 0 � w � 1 and 1Tw =
1. If we define W ∈ RM×M as W := diag(w), then the Lapla-
cian L is given by:

L = AWAT (1)

Graph connectivity- A graph is connected if there exist
at least one path in between any two distinct nodes. Graph
connectivity is determined by the fact that the Laplacian is a
positive semidefinite matrix [10] i.e. L � 0. Let us assume
that the ascendingly ordered eigenvalues of L are denoted by
λ1, λ2, · · · , λN , then λ1 = 0 ≤ λ2 ≤ · · · ≤ λN . In order to
have a single connected graph, the second eigenvalue λ2, known
as Fiedler eigenvalue or algebric connectivity, has to satisfy
λ2 > 0 [11]. A graph is said to be k− connected if it stays
connected after a removal of any (k − 1) edges [12].

A graph intersection- Gc = Ga ∩ Gb over the same set of
nodes N means that nodes i, j ∈ N have an edge in between in
Gc if and only if they have an edge in between in both Ga and
Gb.

Random Graph- Random graphs were introduced by Erdős
and Rényi [13] and defined such that an edge between any two
nodes exists with a specific probability independently of other
edges. One of the key random graph models is a binomial ran-
dom d− intersection graph, which is defined overN as follows:
Given a pool of items, each item is assigned to a given node
with a specific probability independently of other nodes. Con-
sequently, an edge between any two nodes is established if they
have at least d items in common [12].

3. SYSTEM MODEL AND PROBLEM FORMULATION

3.1. Social network model

We consider a network consisting of a set N of nodes randomly
deployed in a geographical area, with each node indexed as i,
1 ≤ i ≤ N (i.e. |N | = N). Social ties among nodes can
be reflected by their common interest. Quantitatively, if each
node i selects a set of objects Xi from a pool of available objects
P where Xi ⊆ P and |P| = P , then two nodes i and j are
socially connected if they select at least d common objects from
the pool [14]. An example of such a pool could be for instance
Youtube where the objects are all available videos.

The social networks can be modeled as an undirected random
graph as follows. if we assume that each object in P is selected
with a probability ν, then our social network can be modeled as
an undirected binomial random d− intersection graph denoted
as Gs(N , d, ν,P) which has a set of edges Es defined as

Es(d, ν,P) = {(i, j) | |Xi ∩ Xj | ≥ d} (2)

For the sake of simplicity, the notation Gs(N , Es) will be used
instead of Ga(N , a, ν,P) and it will be referred to as the social

graph hereafter.
We denote the social tie between two nodes i and j as ∆ij ,

which is defined as the ratio between the number of common
objects in sets Xi and Xj and the total number of shared objects
within the network. ∆ij is therefore obtained by

∆ij :=


Xi ∩ Xj |∑N

l=1

∑N
m=1
m 6=l
|Xl ∩ Xm|

, i 6= j

0, i = j

(3)

Subsequently, we consider a symmetric matrix ∆ ∈ RN×N to
represent the social ties.

3.2. Radio network model

The nodes are assumed to have a knowledge of the radio environ-
ment maps (REMs) which are essentially spatial, frequency and
time dependent maps that can be constructed for different radio
parameters such as received signal power, channel gains and in-
terference. In this paper, we consider channel gain based REMs,
which can either be generated cooperatively by the nodes them-
selves or provided by another entity or sensing network. Thus,
REM construction and dissemination are out of the scope of this
paper and the reader is referred to [15, 16] on more elaborations
on REMs constructions and applications. Accessing the REMs
implies having a knowledge of a specific interference map at
a given bandwidth centered at a certain frequency. Moreover,
knowing the interference map, the attainable channel signal to
interference ratios (SIRs) for a link between each pair of nodes
is therefore revealed. If the link (i, j) between nodes i and j has
a channel SIR denoted by γij and modeled as a random variable
(e.g. log normally distributed) and if a successful communica-
tion requires a minimum threshold γ0 of the channel SIR, then
the probability of failure of the radio link connecting nodes i and
j denoted by µij is P[γij ≤ γ0]. Hence, a radio environment in-
duced random graph Gr(N , Er) is defined over the nodes set N
where nodes i and j have an edge in between (i, j) ∈ Er with a
probability µij .

3.3. Combined social and radio network model

For a mobile social network, different objects are delivered to
different nodes through D2D radio links, then the whole network
can be modeled as a graph G(N , E) defined by

G(N , E) = Gs(N , Es) ∩Gr(N , Er) (4)

Meaning that the intersection between the social network and the
radio network induced graphs is interpreted as a network com-
posed of the nodes set N and the edges set Es, where each edge
in Es is activated with a probability µij . Let us denote the num-
ber of total edges as M = |Es|. Moreover, we re-index all the
active radio links as 1 ≤ m ≤ M (i.e. there is a mapping
m ↔ (i, j)) with their associated link failure probabilities as
µm. Accordingly, we can obtain the probability that more than
k links fail, denoted by ζk, as follows:

ζk =
M∑
i=k

(M
i )∑

j=1

i∏
m=1

µjm

M∏
ḿ=i+1

(
1− µjḿ

)
(5)

where µjm is the probability of link failure of the mth link in the
jth realization, out of a total of

(
M
i

)
of indexes of links (i.e. all

possible combinations of selecting i ≥ k out of M links).
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4. NETWORK PARAMETERS OPTIMIZATION

4.1. Social-radio network mutual inference

In order to assure objects dissemination across a social network,
the graph G(N , E) has to be connected. As proved in [17], for
our given binomial random d−intersection graphGs(N , Es), the
probability θk,d of k−connectivity, is given by

θk,d = e
−

e−ω

(k − 1)! (6)

where ω ∈ [−∞,+∞] such that:

1

d!
· ν2d · P d =

lnN + (k − 1)ln (lnN) + ω

N

This formula of θk,d holds under the condition P � N , which is
imposed primarily for technical reasons but it is satisfied in most
cases in practice as the size of objects pool is usually much larger
than the number of users accesing it within a specic geographical
area [14].

If the network has to be connected with a probability at least
η, then our objective is to find the least number of links that
assure this connectivity under the constrain that the minimum
required common interest for establishing a social edge between
any two nodes is kept as small as possible but not smaller than
the original default value. Therefore, following is a formulation
of topology optimization problem

minimize
M,κ

M

subject to M = |Es|, θk,d ≥ η
κ ≥ −dinit, κ = −d, κ integer

(7)

Where κ is a variable equivalent to −1 × d injected to be min-
imized which implies maximizing d and dint is the initial value
of d.

The optimization problem formulated in (7) is non convex as
its feasible set is a discrete set, hence we solve it as follows.

1. We can find the maximum number k? of links failing si-
multaneously with a probability (1− η) given by

k? = k such that ζk ≤ (1− η) (8)

Finding k? by (8) uses the initial social network settings
in terms of the minimum common interest d, which deter-
mines the topology and hence the number of links M .

2. Thereafter, the social network minimum common interest
for establishing a social link needs to be updated to ac-
commodate connectivity constrains in terms of η as:

d? = min(dinit, d such that θk?+1,d+1 < η ≤ θk?+1,d)
(9)

It is important to note that modifying the minimum com-
mon interest as in (9) is a requirement to meet a network
connectivity with probability η. Therefore, the minimum
possible social edges among nodes are superimposed by
determining the minimum required common interest for
the connectivity constrain η.

3. After finding d?, the incidence matrix A(d?) of our opti-
mized topology is found as social edges are identified. For
a simplified notation, we use A instead of A(d?) here-
after.

4.2. Radio resource allocation

The entire available bandwidth B is divided into orthogonal M
radio resource block RRB. Our ultimate goal is to maximize the
utilization of the available bandwidth in terms of link efficiency
constrained by the network connectivity. Next, we formulate
analytically our objective with its associated constraints.

The entries of link weights vector w have to be assigned pro-
portionally to the volume of traffic they carry. If we assume that
all objects have similar traffic volume then we can character-
ize carried traffic by the social ties matrix ∆ 1. Moreover, the
assigned weights have to take into account also the differences
in the SIRs across the links. Accordingly, we define our utility
function f(W) as:

f(W) =
N∑
i=1

N∑
j=1

∆ij log2(1 + γ̄ij)︸ ︷︷ ︸
Link capacity

(−Lij)︸ ︷︷ ︸
Link weight

(1− µij)︸ ︷︷ ︸
Link activity

(10a)

where W = diag(w) and Lij = [AWAT ]ij . If we define the
matrix Γ ∈ RN×N to be the link capacity matrix with compo-
nents Γij = log2(1+γ̄ij) and the link activity probability matrix
Ξ ∈ RN×N where Ξij = (1 − µij), then f(W) can be written
in a compact form as follows:

f(W) = −tr(∆ΓAWATΞ) (10b)

The minus sign in (10a) and (10b) comes from the fact that
AWAT has non-positive off diagonal entries.

Maximizing f(W) may result in sparse w, however network
connectivity needs to be maintained which imposes constrains
on W that are derived as follows.

As introduced in Section 2, a connected graph has a Lapla-
cian with a zero eigenvalue of multiplicity 1 . This zero eigen-
value corresponds to the eigenvector 1√

N
1. Henceforth, we use

this property to impose constrains on the Laplacian L = AWAT

that ensure a connected graph. As it is well known, there exist
(N − 1) eigen vectors that can be chosen to be othonormal to

1√
N

1,which can be obtained using Gram-Schmidt orthogonal-
ization. Let us call these vectors v1, · · · ,vN−1, then we can
form the matrix V as

V ∈ RN×(N−1) := [v1 |v2 | · · · |vN−1] (11a)

The resulting projection matrix onto the complement space of
1√
N

1 is:

VVT = I− 1

N
11T (11b)

Furthermore, since 1√
N

1 is in the null space of L, then:

LVVT = LI− L
1

N
11T = L. (11c)

In order to identify the characteristics of the Laplacian under
connectivity constraints, we define the matrix Q1 ∈ RN×N as

Q1 := L− tVVT = (LV − tV)VT (11d)

such that λ2 = t > 0. Similarly, to facilitate network connectiv-
ity constrains, we introduce Q2 ∈ R(N−1)×(N−1) as:

Q2 := VT (LV − tV) � 0 (11e)
1In case different objects have different traffic volume, each object can be

weighted by its traffic volumes and incorporate that in the social ties matrix
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Fig. 1. (a) A realization of a simulated radio map incorporates a social network with the social edges. (b)k− connectivity probability
for different values of k, minimum common interest for social edge establishment, d and the probability of object selection, ν. The
pool size is 10000 objects. (c) Achieved network normalized average throughput for different values of η and γ0. The pool size
P = 10000 objects, object selection probability is 1× 10−4.

Q2 � 0 always holds since 1√
N

1 is not in the null space of Q2.
If C ∈ Rn×m, D ∈ Rm×n and n ≥ m, then it is well known
that CD and DC share the same m eigenvalues while CD has
(n − m) extra zero eigenvalues. Based on this property, (11d)
and (11e), Q1 and Q2 have the same positive N − 1 eigenvalues
with one additional zero eigenvalue of Q1. This implies that

(LV − tV)VT � 0 (11f)

Subsequently, considering our objective (10b), the constraint set
established by (11e) and (11f) and constraints on the Laplacian
L, we can formulate our optimization problem as:

maximize
W,t

− tr(∆ΓAWATΞ)

subject to VT (AWAT − tI)V � 0

(AWATV − tV)VT � 0

W � 0,W diagonal, tr(W) = 1

t > 0

(12)

which is a semidefinite programming (SDP) convex problem.

5. SIMULATIONS AND RESULTS

A setup of N LTE D2D-supportive nodes operate at 2.6 GHz
distributed uniformally at random over an indoor area of 50m×
50m is considered for simulations with two LTE indoor termi-
nals as interferers. Hence, the 3GPP propagation model in [18]
is used which results in a link failure probability as muij =
1 − Φ

(
(γ0 − γ̄ij)/(

√
2σ)
)
, where Φ(·) is the cumulative den-

sity function (CDF) of Gaussian random variables. γ̄ij is the
mean SIR for the link between nodes i and j and σ = 6 dB is
its log-normal distribution standard deviation. γ̄ij , σ and γ0 are
all measured in logarithmic scale. All terminals are assumed to
transmit with a power of 30 dBm. Fig. 1(a) depicts the used
REM where the normalized interference is shown. Moreover,
Fig. 1(a) incorporates a realization of a social network into the
radio map. The solid lines connecting different nodes are the
social edges obtained from a d−intersection binomial random
graph. In this particular example d = 2, ν = 1 × 10−3 and
P = 10000 objects. Simulations are carried out for a network
consists of N = 20 nodes

The results of θk,d are shown in Fig. 1(b). As aligned with
the theory, k− connectivity decreases with the increase of k as
the more edges are randomly removed, the lower the probabil-
ity of a graph to stay connected. Moreover, with the increase of
the minimum common interest required for establishing a social
edge, d, the k−connectivity decreases as the number of edges in
the network decreases and thus removing edges influences more
towards getting disconnected. Furthermore, the higher the prob-
ability of object’s selection from a social pool, the higher the
probability of connectivity as different nodes can establish more
social edges which results in having more edges in the entire
network.

Our achieved objective f(W)which is the summation of link
efficiency for all links found by −tr(∆ΓAWATΞ) is shown in
Fig. 1(c) for different values of η and γ0. Higher value of η
implies connected network with higher probability and therefore
higher normalized overall link efficiency. on the other hand, if a
network requires a higher minimum link capacity γ0 to activate
the link at lower connectivity requirements, then higher average
network throughput is achievable as maintaining connectivity is
superimposed by adding more links to the network by means
of decreasing the minimum common interest, d?. However, at
some point, if both network connectivity requirement and γ0 are
both high, then many social links will exist and several of them
will have low efficiency as they carry few objects which decrease
the entire network link efficiency.

6. CONCLUSIONS

A Framework for optimizing both network topology and radio
resource in D2D based mobile social networks is developed
based on random graphs and convex optimization over graphs.
Network topology and radio resource are jointly optimized such
that a minimum network connectivity is met while radio resource
is maximally utilized.
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