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ABSTRACT

We study a two-way relay network where multiple multi-antenna re-
lays facilitate two-way communications between multiple pairs of
transceivers. Each relay is equipped with a massive number of an-
tennas. As a result, we can assume that the transceiver-relay channel
vectors are approximately orthogonal, and thus, intra- and inter-pair
interference will be negligible. Aiming to maintain the signal-to–
noise ratio (SNR) at receiver front-end of each transceiver above a
certain threshold, we obtain the relay beamforming matrices and the
transceiver powers such that the total transmit power consumed in
the entire network is minimized. To do so, we assume that the chan-
nel vectors between each relay and different transceivers are asymp-
totically orthogonal. For such power minimization problem, we de-
rive computationally efficient solutions.

Index Terms— Two-way relay networks, massive MIMO, total
power minimization, multi-pair, multiple relay, MRC/MRT.

1. INTRODUCTION

In the past decade, cooperative wireless networks have attracted
much attention from the research community. Due to the spectral
efficiency improvements, two-way relay networks have been of
particular interest. Majority of studies on two-way relay networks
consider a simple configuration comprising a pair of single-antenna
transceivers and single-antenna relays. Aiming to exploit the ben-
efits of local beamforming at the relays, the authors of [1–4] study
bi-directional networks where two transceivers and a relay node
are equipped with multiple antennas. Assuming multiple single-
antenna relays, the studies in [5–7] investigate the problem of
bi-directional collaborative distributed beamforming. To exploit the
advantages offered by joint local and distributed beamforming the
investigations in [8, 9] consider cooperative networks, where multi-
ple multi-antenna relays are employed to facilitate communication
between a pair of transceivers. The problem of multiple peer-to-peer
communications using two-way relay networks is studied in [10]
and [11], where a two-way relay network enables peer-to-peer com-
munication among multiple pairs of transceivers. In such a network,
inter- and intra-pair interference must be suppressed. One way to
suppress interference at the relays is to equip the relays with a very
large number of antennas, thereby materializing a massive MIMO
relay network. Equipping network nodes with a massive number of
antennas (often referred to as massive multiple input multiple output
(MIMO) scheme) has been the center focus of a significant volume
of studies. However, published results on two-way network with
massive MIMO relays are still scarce.

We herein consider a two-way relay network with multiple
massive MIMO relays which aim to enable bidirectional multiple
peer-to-peer communications. Assuming maximum ratio combin-
ing/transmitting (MRC/MRT) schemes at the relays and exploiting
the approximate orthogonality among relay-transceiver channel vec-
tors, we provide a computationally efficient solution to the problem
of minimizing the total transmit when the transceivers’ signal-to-
noise ratios (SNRs) are to be above given thresholds.

2. SYSTEM MODEL

We study a two-way relay network consisting of K pairs of single-
antenna transceivers which wish to establish pairwise communica-
tions with the help of nr relays. The relays are equipped with M
antennas, and M is considered to be very large. Each relay uses an
MRC/MRT method to obtain the relay’s vector of transmitted signals
from the vector of signals received by that relay. Here, the two time-
slot multiple access broadcast (MABC) relaying scheme is consid-
ered. As such, in the first time-slot the transceivers simultaneously
transmit their signals toward the relays. In the second time-slot, each
relay forwards a linearly transformed version of the relay’s received
signal vector toward the transceivers. Denoting xi as the M × 1
vector of the signals received at the i-th relay in the first time-slot,
we can write

xi = HiP
1/2s + ni, for i ∈ {1, 2, . . . , nr} (1)

where Hi , [h1i h2i ∙ ∙ ∙ h2K,i] is the M×2K matrix of the chan-
nel vectors between the i-th relay and the 2K transceivers. Indeed,
the l-th column of Hi, denoted as hli, is the M × 1 channel vector
between the M antennas of the i-th relay and the l-th transceiver,
for l ∈ {1, 2, . . . , 2K} and i ∈ {1, 2, . . . , nr}. The 2K × 2K

matrix P , diag{p1, p2, . . . , p2K} is a diagonal matrix whose k-th
diagonal entry, denoted as pl, represents the transmit power of the l-
th transceiver, the vector s , [s1 s2 ∙ ∙ ∙ s2K ]T denotes the 2K × 1
vector of the signals transmitted by all transceivers, and sl represents
the symbol transmitted by the l-th transceiver. Note that h(2k−1),i

and h2k,i are the channel vectors between the two transceivers in
the k-th pair, for k ∈ {1, 2, . . . , K}. Similarly, s2k−1 and s2k are
the symbols transmitted by the two transceivers in the k-th pair with
p2k−1 and p2k as the corresponding transmit powers. That is, s2k−1

(s2k) is transmitted by Transceiver 2k − 1 (2k) and is meant to be
received by Transceiver 2k (2k − 1). The M × 1 vector ni denotes
the vector of the noises received at the M antennas of the i-th relay.
Here, the elements of ni are assumed to be zero-mean spatially and
temporally white Gaussian noise with variance σ2. The vector xi

received at the i-th relay is multiplied by a beamforming matrix Ai.
Let the M × 1 vector ti represent the vector of the signals transmit-
ted by the i-th relay. We can then write ti = Aixi. The received
signal at Transceiver l, denoted as yl, can be written as

yl =

nr∑

i=1

hT
liti + ηl =

nr∑

i=1

hT
liAiHiP

1/2s +

nr∑

i=1

hT
liAini + ηl.

(2)

where ηl denotes the noise at the receiver front-end of the l-th
transceiver. Using the definitions of xi in (1) along with that of ti,
the total relay transmit power, denoted as Pr , can be written as

Pr ,
nr∑

i=1

‖AiHiP
1/2‖2 + σ2

nr∑

i=1

tr(AiA
H
i ). (3)
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The total transmit power consumed in the entire network, denoted as
PT , is given by

PT =
2K∑

l=1

pl + Pr (4)

which is defined as the sum of the transceivers’ transmit powers and
the total relay transmit power. The channel coefficient from the k-th
transceiver to the m-th antenna of the i-th relay is herein modeled
as the product of three terms: the complex small-scale fading coef-
ficient, an amplitude factor that accounts for the path-loss (attenua-
tion), and the shadowing factor. That is, we can write the channel
coefficient matrix Hi as

Hi = GiD
1/2
i . (5)

Here, Gi denotes the matrix of small-scale fading coefficients and
Di is a diagonal matrix with positive real-valued diagonal entries
representing path-loss and shadowing (i.e., the large-scale fading
effect). Note that contrary to the large-scale effect, the small-
scale fading occurs over distances on the order of the signal wave-
length. As a result, the small-scale fading coefficients for different
transceivers can be independent. As such, channel vectors from
different transceivers become asymptotically orthogonal when M ,
the number of relay antennas, is large [12, 13]. This asymptotic or-
thogonality enables us to write HH

i Hi approximately as a diagonal
matrix, that is

HH
i Hi =D

1/2
i GH

i GiD
1/2
i ≈MD

1/2
i I2KD

1/2
i =MDi. (6)

Note that the approximation GH
i Gi ≈ MI2K holds true for large

values of M that are no less than 2K (i.e., M ≥ 2K). Employ-
ing the MRC/MRT-based scheme for signal processing at relays, the
relay beamforming matrix at relay i, denoted as Ai, can be written
as

Ai = H∗
i CiH

H
i (7)

where Ci is a 2K × 2K block diagonal matrix, that is

Ci ,






B1i ∙ ∙ ∙ 0
...

. . .
...

0 ∙ ∙ ∙ BKi




 . (8)

Here, each block is a 2 × 2 anti-diagonal matrix, is associated with
one of the transceiver pairs, and is given as

Bki ,

[
0 β(2k−1),i

β2k,i 0

]

. (9)

Using the definitions in (7)-(9), we can simplify the problem of
finding optimal beamforming matrices as finding the optimal val-
ues of parameters β(2k−1),i and β2k,i for k ∈ {1, . . . , K}, and
i ∈ {1, . . . , nr}. The role of the anti-diagonal matrix Bki on the k-
th diagonal block of Ci is to swap the linear estimates of the signals
transmitted in the first phase so that the linear estimate of the symbol
transmitted by Transceiver 2k can be forwarded to Transceiver (2k−
1) and the linear estimate of the symbol transmitted by Transceiver
(2k − 1) can be forwarded to Transceiver 2k. This goal is achieved
by multiplying ŝi with Ci, as (7) implies. As HH

i Hi ≈ MDi holds
for very large M (see (6)), the use of H∗

i as the left-most compo-
nent in Ai guarantees that the transmitted symbol estimates will not
interfere for M → ∞, as these estimate will be transmitted over
approximately orthogonal columns of H∗

i . However, when M is a
finite number, the MRC/MRT relaying scheme suffers from inter-
and intra-interferences.

Using (6)-(9) in (3), the total relay transmit power for the
MRC/MRC-based scheme can be expressed as

Pr =

nr∑

i=1

{
tr(AiHiPHH

i AH
i ) + σ2tr(AiA

H
i )
}

=

nr∑

i=1

tr
{
M3PDiC

H
i DiCiDi+σ2M2CH

i DiCiDi

}
. (10)

Since Di is a diagonal matrix and Ci is a block-diagonal matrix with
blocks formed as anti-diagonal matrices, CH

i DiCiDi becomes a
diagonal matrix.1 Hence, we can write

CH
i DiCiDi=diag

{
|β̃2,i|

2,|β̃1,i|
2, . . . ,|β̃2K,i|

2, |β̃2K−1,i|
2
}

= diag{|β̃l̄,i|
2}2K

l=1 (11)

where we define

β̃l,i ,
√

dl,idl̄,iβl̄,i, for l ∈ {1, 2, . . . , 2K} (12)

and l̄ ∈ {1, 2, . . . , 2K} is defined as

l̄ ,

{
l + 1, if l ∈ {1, 3, . . . , 2K − 1}
l − 1, if l ∈ {2, 4, . . . , 2K}

. (13)

Using (10) and (11), Pr can be rewritten as

Pr =

nr∑

i=1

tr(
(
M3PDi + σ2M2I

)

︸ ︷︷ ︸
diagonal matrix

CH
i DiCiDi︸ ︷︷ ︸

diagonal matrix

)

=

nr∑

i=1

2K∑

l=1

(
M3pl̄dl̄,i + M2σ2) |β̃l,i|

2. (14)

Defining fl,[
√

dl,1

√
dl,2 ∙ ∙ ∙

√
dl,nr ]T, Fl,diag(fl�fl), and β̃l ,

[β̃l,1 β̃l,2 ∙ ∙ ∙ β̃l,nr ]T , and using (4) and (14), the total transmit
power, PT can be rewritten as

PT =
2K∑

l=1

(
pl̄ +M2β̃

H

l (Mpl̄Fl̄ + σ2I)β̃l

)
. (15)

We can use (6) and (7) to write yl, the signal received at Transceiver
l, for l ∈ {1, 2, ∙ ∙ ∙ , 2K}, as

yl =

nr∑

i=1

hT
l,iH

∗
iCiH

H
i HiP

1/2s+

nr∑

i=1

hT
l,iH

∗
iCiH

H
i ni+ηl

=M2
nr∑

i=1

dl,iβl,idl̄,i

√
pl̄sl̄+M

nr∑

i=1

dl,iβl,ih
H
l̄,ini+ηl. (16)

Note that under the assumption of the orthogonality of the chan-
nel vectors, the received signal, yl, contains only the signal from
Transceiver l̄. Using (16), the SNR at Transceiver l can be written as

SNRl =

M4pl̄

∣
∣
∣
∣
∣

nr∑

i=1

√
dl,idl̄,iβ̃l,i

∣
∣
∣
∣
∣

2

M3σ2
nr∑

i=1

∣
∣
∣
√

dl,iβ̃l,i

∣
∣
∣
2

+σ2

, for l∈{1, 2, . . . ,2K} (17)

1The k-th block of the product CH
i DiCiDi can be written as

[
0 β∗

2k,i
β∗
2k−1,i 0

][
d2k−1,i 0

0 d2k,i

][
0 β2k−1,i

β2k,i 0

][
d2k−1,i 0

0 d2k,i

]

=

[
d2k−1,id2k,i|β2k,i|2 0

0 d2k−1,id2k,i|β2k−1,i|2

]

.
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where we have used the approximation E{|hH
l̄,ihl̄,i|} ≈ Mdl̄,i, and

E{nH
i ni} = σ2IM , along with (6). Using the following definition:

gl , fl � fl̄, for l ∈ {1, 2, . . . , 2K} (18)

we can rewrite SNRl in (17) as

SNRl =
M4pl̄|g

T
l β̃l|

2

σ2(1+M3β̃
H

l Flβ̃l)
, for l∈{1, 2, . . . , 2K}. (19)

It is worth emphasizing that (15) and (19) are obtained under the
assumption that the channel vectors are asymptotically orthogonal
as in (6). In reality, inter- and intra-pair interference will exist for
finite values of M . It is however expected that as M is increased
inter- and intra-pair interference vanish.

3. TOTAL POWER MINIMIZATION

We aim to find the beamforming matrices and the transceivers’ trans-
mit powers such that the total transmit power PT is minimized, while
the SNR at Transceiver l is maintained above given threshold γl, for
l ∈ {1, 2, . . . , 2K}. This power minimization problem can be ex-
pressed as

min.
P,A

PT s.t. SNRl ≥ γl, for l ∈ {1, 2, . . . , 2K} (20)

where P , {pl}2K
l=1 is the set of transceivers’ transmit powers and

A , {Ai}
nr
i=1 is the set of relays’ beamforming matrices. Using

(15) and (19), the power minimization problem for the MRC/MRT-
based scheme in (20) can be recast as

min.
P,B

2K∑

l=1

(
pl̄ + M2β̃

H

l (Mpl̄Fl̄ + σ2I)β̃l

)

s.t.
M4pl̄|g

T
l β̃l|

2

σ2(1+M3β̃
H

l Flβ̃l)
≥γl, for l∈{1, 2, . . . , 2K} (21)

where B,{β̃l}
2K
l=1 is the set of vectors β̃l, each with size nr × 1. A

closer look at (21) shows that the total transmit power minimization
problem can be decoupled into a set of 2K total power minimization
problems each of which written as

min.
β̃l,pl̄

pl̄ + M2β̃
H

l (Mpl̄Fl̄ + σ2Inr )β̃l

s.t.
M4pl̄|g

T
l β̃l|

2

σ2(1 + M3β̃
H

l Flβ̃l)
≥ γl. (22)

Indeed, the minimization problem (22) amounts to minimizing the
total power consumed to guarantee a received SNR at Transceiver l.
We can rewrite the optimization problem in (22) as

min.
pl̄

pl̄ + min
β̃l

M2β̃
H

l (Mpl̄Fl̄ + σ2Inr )β̃l

s.t. M3β̃
H

l (Mpl̄g
∗
l g

T
l − σ2γlFl)β̃l ≥ σ2γl. (23)

To solve (23), one can first fix pl̄ and solve the inner minimization
problem over β̃l. It can be shown that the inner problem in (23) is
feasible if and only if pl̄ > σ2γl/(M‖fl‖

2), and that the solution to
the inner minimization problem can be written as

β̃
opt

l =μl M2(σ2γlMFl + λl(Mpl̄Fl̄ + σ2Inr ))−1gl
︸ ︷︷ ︸

,ul

(24)

μl =

√
σ2γl

λlM2uH
l (Mpl̄Fl̄ + σ2Inr )ul

. (25)

Here, β̃
opt

l is the optimal value of β̃l while pl̄ and λl, must satisfy
the following two nonlinear equations:

σ2γl

p−2
l̄

− λlM
3uH

l Fl̄ul

λ2
l u

H
l (M3pl̄Fl̄ + M2σ2Inr )ul

= 1 (26)

pl̄M
2gH

l (Mσ2γlFl + λl(Mpl̄Fl̄ + σ2Inr ))−1gl = 1 (27)

and pl̄ ∈ (σ2γl/(M‖fl‖
2), +∞) must hold true. We now explain

how pl̄ and λl can be obtained from (26) and (27). To do so, note

that for any given value of z ∈ (
σ2γl

M‖fl‖2
, +∞), one can prove that

the following nonlinear equality

zM2gH
l (Mσ2γlFl + λ(MzFl̄ + σ2Inr ))−1gl = 1 (28)

renders a unique positive solution for parameter λ. That is, in (28),
the parameter λ can be viewed as a function of z. As such, the
function

σ2γl
z−2 − λM3uH

l Fl̄ul

λ2uH
l (zM3Fl̄ + σ2M2Inr )ul

− 1 (29)

can be considered as a function of only z, where λ is obtained, for

any value of z ∈ (
σ2γl

M‖fl‖2
, +∞), from (28). Hence, the parameter

pl̄ is the provably unique root of (29), and one can use a bisection
method to find this root. Note that in this bisection method, the
function in (29) has to be evaluated for intermediate values of z.
As such, to obtain a value of λ corresponding to an intermediate
value of z, one has to solve (28) using another bisection technique.
Once pl̄, the root of (29), is obtained, the corresponding value of λ
is indeed λl. Once pl̄ and λl are obtained, the value of the objective
function in (23) is given by (pl̄ + σ2γl/λl). Based on (21)-(23), the
minimum value of the total transmit power can be obtained as

PT =
2K∑

l=1

(pl̄ +
σ2γl

λl
). (30)

Using the values obtained for pl̄ and λl, the optimal vector β̃
opt

l is

obtained from (24) and (25). Once β̃
opt

l , [β̃opt
l,1 β̃opt

l,2 ∙ ∙ ∙ β̃opt
l,nr

]T is

obtained, the optimal values of βopt
l,i can be calculated from (12) as

βopt
l,i = β̃opt

l̄,i
/
√

dl,idl̄,i, for i ∈ {1, 2, . . . , nr}. Replacing β2k−1,i

and β2k,i in (9), respectively, with βopt
2k−1,i and βopt

2k,i, the optimal

value of Bki, denoted as Bopt
ki , can be obtained. Replacing blocks

Bki for k ∈ {1, 2, . . . , K} in (8), with the so-obtained set of blocks
{Bopt

ki }K
k=1, the effective beamforming matrix of i-th relay, denoted

as Copt
i , can be formed. Finally, the optimal beamforming matrix of

the i-th relay for MRC/MRT-based scheme, denoted as Aopt
i , can be

calculated as Aopt
i = H∗

i C
opt
i HH

i .
Although not proven here, one can prove that when M is very

large, the minimum total transmit power decreases as M−1.

4. NUMERICAL RESULTS

In our numerical examples, the small-scale channel coefficients are
modeled as complex Gaussian random variables with zero mean
and unit variance. We adopt the combined path-loss and shadowing
model introduced in [14], as the large-scale fading model. Here, the
path-loss exponent is 3.8, and the standard deviation of the shadow-
ing effect is 8 dB, whereas the noise variance is σ2 = −130 dBm.
In Fig. 1, we show the cumulative distribution function (CDF) of
the achievable signal-to-interference-plus-noise-ratios (SINRs) ver-
sus required SNR threshold for networks with different numbers of
antennas per relay (i.e., M = 50, 100, 200, 1000). It is seen that
for SNR threshold equal to 0 dB, increasing the number of antennas
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Fig. 1. The CDF of the achievable SINR values versus SNR thresholds, for K = 4, nr = 4, and M = 50, 100, 200, 1000.
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Fig. 2. The minimum total transmit power vs. the minimum required
SNR at the transceivers for ideal scenario and the actual minimum
total transmit power vs. actual SINR, for K = 4 and nr = 4.

per relay from M = 50 to M = 1000, leads to an increase in the
CDF slope and a shrink in the SINR range (from 2.54 dB to 0.29
dB). Moreover, when the required SINR threshold is increased from
0 dB to 15 dB, the CDF slope is increased whereas the range of the
achievable SINRs is extended.

In Fig. 2, the performance of the network is evaluated once under
the assumption that channel vectors are orthogonal as in (6) (i.e., the
ideal condition), and once under no such assumption (i.e., the actual
condition). This figure shows that the average total transmit power
required for a network to achieve a certain SNR threshold in the
actual condition is higher than that in the ideal condition. For a very
large number of relay antennas the performance gap between ideal

and actual conditions is significantly small. For instance, to achieve
an SNR threshold equal to 15 dB, increasing the number of relay
antennas from M = 50 to M = 1000, reduces the gap between the
the SNR threshold and the actual SINR from 7.80 dB to 1.45 dB,
and at the same time, the actual power is reduced by 14 dB.

5. CONCLUSION

We studied a two-way network of multiple multi-antennas relays
which enable multiple pairs of transceivers to establish pairwise
communications. Each relay is equipped with a very large number
of antennas leading to the transceiver-relay channel vectors being
approximately orthogonal. As a result, intra- and inter-pair inter-
ference will be negligible. Aiming to maintain the signal-to–noise
ratio (SNR) at receiver front-end of each transceiver above a cer-
tain threshold, we obtained the relay beamforming matrices and
the transceiver powers such that the total transmit power consumed
in the entire network is minimized. To do so, we assume that the
channel vectors between each relay and different transceivers are
asymptotically orthogonal. For such power minimization problem,
we derive computationally efficient solutions. Our simulation re-
sults show that as the number of relay antennas is increased, the gap
between signal-to-interference-plus-noise ratio (SINR) and SNR
threshold as well as the minimum total transmit power are reduced.
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