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ABSTRACT

Wireless networks are growing in the value of application
in many areas, in which accurate clock synchronization is
required when tasks are performed in a collaborative fashion
among nodes. Especially, cooperative synchronization tech-
niques lead to significant performance improvement com-
pared with traditional methods. However, the correlation
among agents renders the performance analysis of cooper-
ative network synchronization difficult. In this paper, we
introduce the concept of information coupling intensity to the
analysis of interaction between agents. Our approach enables
us to derive closed-form asymptotic expressions under spe-
cific network topologies, and relate them to various network
parameters.

Index Terms— Cooperative network synchronization,
Cramér-Rao bound (CRB), information coupling intensity,
random walk.

1. INTRODUCTION

Due to their great value of application in diverse areas such as
geolocation [1–4], industrial control [5] and surveillance [6],
wireless networks (WNs) are gaining interest like never be-
fore. To avoid the resource-consuming routing process, there
is a recent trend of performing tasks in a collaborative and
distributed fashion over the network [7–10], which requires
all agents operate under a common clock over the network.
However, the clocks in agents suffer from various imperfec-
tions caused by both internal and environmental issues, mak-
ing clock synchronization procedures a fundamental building
block in WNs.

Traditional methods are typically performed in a layer-
by-layer fashion, taking advantage of the tree-like structures
in the networks. Reference Broadcast Synchronization [11]
(RBS) and Time synchronization Protocol for Sensor Net-
work [12] (TPSN) are the most well-known ones. These
methods are essentially non-cooperative, requiring high
topology maintaining overhead and are sensitive to abrupt
link failures. Recently, distributed variational Bayesian infer-
ence methods have been introduced to the cooperative clock
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synchronization problem, such as Belief Propagation [13]
(BP) and Variational Message Passing [14] (VMP). These
methods fully utilize the correlation between agents, and re-
sult in excellent performance compared with aforementioned
methods.

Although numerous algorithms have been proposed for
the cooperative synchronization problem, only a small num-
ber of works are devoted to the performance analysis of these
algorithms. At the physical level of the problem, the per-
formance limits of phase synchronization has been discussed
in [15]. Nevertheless, the cooperation between agents in-
troduces correlation not only pairwise, but over the entire
network. This correlation is tightly associated with the net-
work topology and is nontrivial to calculate. Existing works
have provided some complicated expressions without closed
form [16–18]. Understanding the performance limits of co-
operative clock synchronization problem, especially the cor-
relation among agents, can lead to better algorithm designs,
and can also bring improvement to the network deployment
techniques.

In this paper, we propose the concept of information cou-
pling intensity (ICI) to characterize the strength of informa-
tion coupling among agents, which is defined based on a gen-
eral form of the performance limit for the cooperative network
clock synchronization problem. We also propose a random
walk interpretation of ICI which relates it to the properties
of Markov chains. Furthermore, we analyze ICI in infinite
lattice networks, and provide asymptotic expressions as the
maximum communication range increases quantifying the re-
lation between ICI and network topology.

2. SYSTEM MODEL

Consider a network with Ns agents constituting a set S =
{1, · · · , Ns}. Each of the agents has an unknown clock
offset θi, i ∈ S. Additionally, there exists a set R =
{Ns + 1, · · · , Ns +Nr} of reference nodes without clock

offset. The network is embedded in R
2, in which node i

locates at pi = [pxi pyi]
T

. Two nodes can only communicate
with each other if the Euclidean distance between them is less
than the maximum communication range Rmax. We denote
the relation “node i and j can communicate with each other”
as i ∼ j, and the set of all nodes k satisfying i ∼ k as Ni.

The first-order model of the clock synchronization prob-
lem is adopted here, which can be expressed as follows

ci(t) = t+ θi, i ∈ S (1)
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where t is the reference time and ci(t) is the local clock time
of the ith agent.

The two-way timing procedure has been discussed exten-
sively in the literature [16], which is illustrated in Fig. 1. The
procedure is initiated by node i by first sending a message

containing its clock reading ci

(

t
(1)
i,T

)

at time t
(1)
i,T. Node j re-

ceives this message at time t
(1)
j,R, and replies with a message

containing cj

(

t
(1)
j,R

)

and cj

(

t
(1)
j,T

)

at time t
(1)
j,T, which will be

received by node i at time t
(1)
i,R. In next round, node i add its

clock reading ci

(

t
(1)
i,R

)

in the message. After N rounds, N

observations are collected at each node
{

T
(n)
ij

}N

n=1
as

T
(n)
ij = cj

(

t
(n)
j,R

)

− ci

(

t
(n)
i,T

)

+ cj

(

t
(n)
j,T

)

− ci

(

t
(n)
i,R

)

. (2)

The relation of the clock readings in (2) and signal propaga-
tion is modeled as

cj

(

t
(n)
j,R

)

− ci

(

t
(n)
i,T

)

= θj − θi + dij + ωn (3a)

cj

(

t
(n)
j,T

)

− ci

(

t
(n)
i,R

)

= θj − θi − dij − ω′
n (3b)

where dij is the deterministic part of message delay and ωn

and ω′
n denote the stochastic counterpart. We assume that ωn

andω′
n are independently, identically distributed (i.i.d.) Gaus-

sian variables. Following these assumptions, the observations
can be rewritten as

T
(n)
ij = 2(θj − θi) + ξn (4)

where ξn = ωn −ω′
n is zero-mean Gaussian random variable

with variance σ2. The joint likelihood function can thus be
obtained as

p(Tij |θi, θj)

=
1

(2πσ2)
N
2

exp

{

− 1

2σ2

N
∑

n=1

[

T
(n)
ij − 2(θj − θi)

]2
}

(5)

where Tij ,

[

T
(1)
ij , · · · , T (N)

ij

]T

. For the simplicity of

further derivation, we further stack Tij ’s into a set T =
{Tij : i ∼ j}.

Furthermore, we assume that each node has some a priori
knowledge on their clock offsets, modeled as prior distribu-
tions pθi(θi). Based on (5), the joint distribution of T and

θ = [θ1, · · · , θNs ]
T

is given by

p(T , θ) =
∏

i∈S

p(θi)
∏

j∈S∪R
i∼j

p(Tij |θi, θj)

∝ exp

{

− 1

2σ2

∑

i∈S

∑

i∼j

N
∑

n=1

[

T
(n)
ij − 2(θj − θi)

]2
}

×
∏

i∈S

pθi(θi).

(6)
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Fig. 1. Illustration of the two-way timing procedure.

3. PERFORMANCE LIMITS AND INFORMATION
COUPLING INTENSITY

It is well-known that the a lower bound on the variance of
any unbiased estimators for deterministic unknown parame-
ters is given by the Cramér-Rao bound (CRB) [19]. Bayesian
Cramér-Rao bound (BCRB) can be used instead for stochas-
tic parameters. The BCRB for the cooperative clock synchro-
nization problem can be given using the Fisher information
matrix (FIM) defined as

Jθ = Eθ,T

{

[∇θ ln p(T , θ)] [∇θ ln p(T , θ)]T
}

. (7)

The following proposition characterizes the specific structure
of the FIM.

Proposition 1 (Structure of the FIM) The matrix Jθ takes
the following form

Jθ =
2N

σ2
(Dθ +DR

θ −Aθ) + JP
θ (8)

where

[Aθ]i,j =

{

1, i ∼ j;
0, otherwise,

Dθ = diag (deg(1), . . . , deg(Ns))

DR
θ
= diag (degR(1), . . . , degR(Ns)) ,

JP
θ = diag (ξP,1, . . . , ξP,Ns)

and deg(i) = |S ∩ Ni| is the number of agents in the neigh-
borhood of node i, degR(i) = |R ∩ Ni| is the number of

neighboring reference nodes of node i, JP
θ

denotes the FIM
from the a priori information of θ.

With the FIM Jθ given in Proposition 1, we can bound

the MSE of estimator θ̂ of θ using

ET ,θ

{

(

θ − θ̂
)(

θ − θ̂
)T

}

� J−1
θ

.

The following theorem provides some intuition for the entries

of J−1
θ

.
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Theorem 1 (Structure of Inverse FIM) The (i, j)-th entry

in J−1
θ

can be expressed as follows

[

J−1
θ

]

i,j
=







1+∆ii
2N
σ2 (deg(i)+degR(i))+ξP,i

, i = j;

∆ij
2N
σ2 (deg(j)+degR(j))+ξP,i

, i 6= j,
(9)

with ∆ij ≥ 0 defined as

∆ij ,

∞
∑

n=1

[

(

(

DC
θ +DR

θ +
σ2

2N
JP
θ

)−1
Aθ

)n
]

i,j

.

Definition 1 (Cooperative Dilution Intensity (CDI)) The
term ∆ii in (9) is defined as the Cooperative Dilution Inten-
sity of node i.

Definition 2 (Information Coupling Intensity (ICI)) The
quantity ∆ij (i 6= j) is referred to as the ICI between agent i
and agent j.

Remark 1 Note that for an estimator θ̂(o) attaining the

BCRB, the BCRB matrix J−1
θ

coincides with its covariance

matrix, i.e., [J−1
θ

]i,j = Cov{θ̂(o)i , θ̂
(o)
j }. The ICI, ∆ij , is pro-

portional to the covariance between two random variables,
which quantifies the strength of the coupling between θi and
θj .

Now we consider a network with FIM denoted as Jθ . If
agent i is turned into a reference node, using Corollary 1 in
[20], the BCRB under the constraint “θi = 0” can be written
as

([Jθ ]̄i)
−1

= J−1
θ

− J−1
θ

vi

(

vT
i J

−1
θ

vi

)−1
vT
i J

−1
θ

(10)

where vi =
[

0T
i−1 1 0T

Na−i

]T ∈ RNa . Therefore the MSE

lower bound of agent j is given by

[

([Jθ ]̄i)
−1

]

j,j
=
[

J−1
θ

]

j,j
−

∆2
ij

1 + ∆ii

×
2N
σ2 (degA(i)+degR(i))+ξP,i

(

2N
σ2 (degA(j)+degR(j))+ξP,j

)2 .

(11)
It can be seen from (11) that turning an agent i into a reference
node leads to a MSE reduction for any other agent j that is
accessible from i. The amount of MSE lower bound reduction
is characterized by the neighborhood structure of agent i and
agent j, as well as the CDI ∆ii and the ICI ∆ij .

With Theorem 1, we can also give random walk interpre-
tations of both CDI and ICI.

Theorem 2 (Random Walk Interpretation) ∆ij can be ex-
pressed as the following summation

∆ij =

∞
∑

n=1

p(Xn = j|X0 = i) (12)

where p(Xn = j|X0 = i) is the N-step transition probability
of a Markov chain with following one-step transition proba-
bility

p(Xk = b|Xk−1 = a) =

[

J
θ̃

]

a,b
[

J
θ̃

]

a,a

. (13)

where J
θ̃

is obtained by treating reference nodes as agents
with infinite a priori information [21]. Especially, a is an
absorbing state of the Markov chain if a ∈ R.

Remark 2 From Theorem 2, ICI ∆ij can be interpreted as
the sum of N-step transition probabilities of a Markov chain.
Furthermore, once the chain reaches a reference node or a
virtual reference node, its state will change no further, and
thus the corresponding path will not contribute to ICI. There-
fore, reference nodes can be recognized as the “coupling ab-
sorbers” in the network.

4. ANALYSIS ON INFINITE LATTICE NETWORKS

For a certain agent in a wireless network, ICI characterizes
the strength of information coupling among agents. Unfortu-
nately, its calculation is generally intractable since the N-step
transition probabilities of Markov chains have no closed-form
expressions in general. In this section, we develop an asymp-
totic expression of ICI under a specific network topology,
namely, infinite lattice networks. In the derivation henceforth,
if not otherwise stated, we make following assumptions:

• There is no explicit reference node in the network, i.e.,
degR(i) = 0, ∀i ∈ S. The a priori information of
agents serve as virtual reference nodes.

• All agents have the same amount of a priori informa-
tion, i.e., ξP,i = ξP, ∀i ∈ S.

In infinite lattice networks, there are infinite number of
agents, whose positions cover all lattice points (points with
integer coordinates) in the space R2. Under previous assump-
tions, ∆ij can be expressed as

∆ij =

∞
∑

n=1

[

An
θ,IG

]

i,j
(

d̄+Np

)n . (14)

where d̄ is the number of neighboring agents of a agent, which
is identical for all agents. According to the random walk in-
terpretation in Theorem 2, ∆ij can now be expressed as

∆ij =

∞
∑

n=1

p
(n)
ij

(

d̄

d̄+Np

)n

(15)

where p
(n)
ij , p(Xn = j|X0 = i) is the N-step transition

probability of the a Markov chain with following one-step
transition probability

p(Xk = j|Xk−1 = i) =
I(i ∈ Nj)

d̄
. (16)

With the help of previous results, we can derive an asymp-
totic expression of ICI. Thanks to the properties of infinite
lattice networks, instead of the Markov chain defined by (16),

we can obtain p
(n)
ij by considering the following stochastic

process
xk = xk−1 + yk
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where xk is the state (location) at time k, yk is a random
variable with following distribution

pyk
(y) =

1

d̄
· I(‖y‖ ∈ (0, Rmax])I(y ∈ Z

2) (17)

and {yk} are i.i.d. random variables.
Now note that yk’s are i.i.d. random variables. According

to the local central limit theorem [22], we can approximate
the corresponding probability mass function as Gaussian so
that

pxk|x0
(x) =

1

2πkσ2
R

exp

{

− 1

kσ2
R

‖x− x0‖2
}

+
1

k
E1(k, ‖x− x0‖)

(18)

where σ2
R is chosen such that Cov(px1|x0

(x)) = σ2
RI2, and

E1(k, ‖x− x0‖) is an error term tends to zero as k → ∞ for
all x. From (18) we have the following estimate on the order
of the ICI ∆ij .

Proposition 2 (Asymptotic ICI) For a given Rmax, the ICI
∆ij (i 6= j) of infinite lattice networks has the following
asymptotic behavior

∆ij ∼

(

2 ln
d̄+Np

d̄

)− 1
4

√
2πσ2

R

√

σR

‖pi − pj‖

× exp

(

−

√

2 ln
d̄+Np

d̄
· ‖pi − pj‖

σR

)

(19)

as ‖pi − pj‖ → +∞.

Remark 3 (Exponential Decay of ICI) Proposition 2 indi-
cates that, for a given Rmax, when agent i and agent j are
sufficiently distant from each other, the ICI ∆ij (i 6= j) de-
creases with the distance between them at a rate slightly faster
than exponential decreasing. Furthermore, the rate of ICI de-
cay grows with the amount of a priori information, i.e., ξP.

5. NUMERICAL RESULTS

In this section, our previous analytical results are illustrated
and validated using numerical examples. Without loss of gen-
erality, we consider networks with lattice size of 1m2.

We first consider the behavior of ICI as a function of the
distance between two agents in infinite lattice networks. The
maximum communication range is set as Rmax = 10m. Fig-
ure 2 shows the numerical result with Np = 10−2, 1, and 5.
It can be seen that the asymptotic values and the numerical
results agrees well even for small distances. All curves drop
exponentially for large distances as Proposition 2 states.

Next we consider the MSE lower bound reduction for a
given agent j, when another agent i is turned into a refer-
ence node. Np is set as Np = 0.5, 0.1, and 0.01. As can
be seen from 3, the MSE lower bound reduction of agent j is
determined by the distance between agent i and j, and drops
approximately exponentially as the distance increases. This
can be understood by observing (11), which indicates that the
MSE lower bound reduction is proportional to ICI - a quantity
that decays exponentially as the distance grows.
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Fig. 2. ICI as a function of the distance between two agents
in infinite lattice networks, with Rmax = 10m and different
number of equivalent observations for prior distributions Np.
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Fig. 3. The MSE lower bound reduction for agent j caused
by turning an agent i into a reference node, as a function of
distance between agent i and j.

6. CONCLUSIONS

In this paper, we have proposed the general expression of the
inverse FIM, based on which the concept of ICI is introduced.
We also provide a random walk interpretation of ICI. To illus-
trate our framework, we have derived asymptotic expressions
of ICI in infinite lattice networks, which reflect the relation
between ICI and network topology. Our analysis provides
new insights into the network synchronization problem from
a network-level point of view, and can be useful in algorithm
design as well as network optimization.
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