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ABSTRACT

To support multiple on-demand services over several fixed commu-
nication networks, the network operators must allow flexible cus-
tomization and fast provision of their network resources. One ef-
fective approach is network virtualization, whereby each service is
mapped to a virtual subnetwork providing dedicated on-demand sup-
port. In practice, each service consists of a prespecified sequence
of functions, called a service function chain (SFC). Moreover, each
function in a SFC can only be provided by some given network n-
odes. Thus, to support a given service, we must select network func-
tion nodes according to the SFC, and determine the routing strategy
through the function nodes in the specified order. A crucial prob-
lem that needs to be addressed is how to optimally allocate the net-
work resources while satisfying multiple service requirements speci-
fied by the service function chains, subject to link and node capacity
constraints. In this paper, we formulate the problem as a mixed bi-
nary linear program and establish its NP-hardness. Furthermore, we
propose an efficient penalty successive upper bound minimization
algorithm to solve the problem. We also present simulation results
to demonstrate the effectiveness of the proposed algorithm.

Index Terms— Software Defined Network, Network Function
Virtualization, Resource Allocation.

1. INTRODUCTION

Today’s communication networks are increasingly required to sup-
port multiple services with diverse characteristics and requirements.
Network function virtualization (NFV) [1] is an important technolo-
gy that enables the service providers intelligently integrate a variety
of network resources owned by different operators to establish a ser-
vice customized virtual network (VN) for each service request. In
practice, each service consists of a sequence of service functions that
can only be provided by certain specific nodes, called NFV-enabled
nodes. As all of the VNs share a common resource pool, it is crucial

THIS WORK IS PARTIALLY SUPPORTED BY NSF GRANTS CCF-
1526434 AND CCF-1526078 AND PARTIALLY SUPPORTED BY NSFC
GRANTS 61571384, 61571385, 11671419 AND 11631013.

978-1-5386-4658-8/18/$31.00 ©2018 IEEE

3769

to allocate the network resources economically while meeting the
diverse service requirements, and satisfying the capacity constraints
at NFV-enabled nodes and over network links.

Recently, reference [2] proposed a novel 5G wireless network
architecture MyNET and an enabling technique called SONAC
(Service-Oriented Virtual Network Auto-Creation). In SONAC,
there are two key components: software defined topology (SDT),
and software defined resource allocation (SDRA). SDT determines
the VN graph and the VN logical topology for each service. The
determination of the VN logical topology, also called VN graph
embedding, maps the service functions onto the physical NFV-
enabled infrastructures, so that each function on the corresponding
SFC is realized. SDRA maps the logical topology to physical net-
work resources, including both communication and computational
resources.

In software defined networks, centralized traffic control enables
joint VN gragh embedding and resource allocation. Specifically, it
controls the flow routing such that each flow gets processed at some
NFV-enabled nodes in the order of the service functions defined
in the corresponding service function chain (SFC). In recent years,
there are some works on the related problem of joint node selection
and routing [3, 4, 5, 6, 7]. References [3, 4] simplified “routing” by
only considering one-hop routing or selecting paths from a predeter-
mined path set. Reference [5] considered the so-called consolidated
middleboxes where a flow could receive all the required functions.
It also proposed a two-stage heuristic algorithm to route each flow
through its single associated function node. Such formulation is not
applicable to the case where multiple functions are provided in se-
quence at nodes. An important common assumption in [4, 6, 7] is
that the instantiation of a service function for a traffic flow can be
split over multiple nodes. The functional splitting assumption sig-
nificantly simplifies the problem since no binary variable needs to
be introduced in the problem formulation. However, this might re-
sult in high coordination overhead in practice, especially when the
number of service requests is large.

In this paper, we consider joint VN graph embedding and re-
source allocation, where a set of service requests in a given network
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are simultaneously routed and processed. Our considered problem
differs from the previously mentioned works in that we require each
service function of a given SFC to be provided at exactly one NFV-
enabled node (or function node). We formulate the problem as a
novel mixed binary linear program. We show that checking the fea-
sibility of this problem is NP-hard in general. Moreover, we propose
an efficient iterative algorithm to solve the problem. The proposed
algorithm solves a linear program (LP) at each iteration. Our simula-
tion results show that the proposed algorithm can find a high-quality
(near-optimal) solution of the problem.

2. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the model and present a formulation of
the joint VN graph embedding and resource allocation problem.

We consider a communication network represented by a graph
G = (V, L), where V = {v;} is the set of nodes and £ = {l;;} is
the set of directed links. Denote the subset of nodes that can pro-
vide the service function f as V. Each function node 4 has a known
computational capacity p;, and we assume that processing one unit
of data flow requires one unit of computational capacity. Suppose
that there are K data flows, each requesting a distinct service in the
network. The requirement of each service is given by a service func-
tion chain F (k), consisting of a predefined set of functions that have
to be performed in sequence by the network. Different from previ-
ously mentioned works [4, 6, 7], we require that each service func-
tion in F (k) must be instantiated at exactly one NFV-enabled node,
i.e., all data packets of flow k should be directed to the same func-
tion node to get processed. Notice that it is possible that a common
function requested by different SFCs is provided by different nodes.
The source-destination pair of flow k is given as (S(k), D(k)), and
arrival data rate of flow k is given as A(k). The joint VN graph em-
bedding and resource allocation problem is to determine the routes
and the rates of all flows on the routes while satisfying the SFC re-
quirements and the capacity constraints of all links and nodes.

Let 7;; (k) be the rate of flow k on link (7, 7). The capacity of
link (4, j) is assumed to be known as C;; which is a fixed constant.
This assumption is reasonable when the channel condition is stable
during the considered period of time. The total flow rates on link
(2,7) is then upper bounded by capacity C;, i.e.,

> rij(k) < Cig, Y (i,4) € L. 2.1)
k

To describe the SFC requirement, we introduce binary variables
for the function nodes. Let x;, s (k) be the binary variable indicating
whether or not node ¢ provides function f for flow k (i.e., z;, (k) =
1 if node 4 provides function f for flow k; otherwise z; ¢ (k) = 0).
To ensure each flow k is served by exactly one node for each f €
F(k), we have the following constraint

> wip(k) =1, f € F(k), Vk.

i€V

(2.2)

Suppose that the function chain of flow k is F(k) = (ff —
¥ = .- = fF). To ensure flow k goes into the function nodes in
the exact order of the functions in F(k), we introduce new virtual

flows labelled (k, f): flow k just after receiving the service function
f is labelled (k, f). We let (k, f&) denote flow k just coming out
of the source node S(k) without receiving any service function. See
Fig. 1 for an illustration. Let 7;; (k, f) be the rate of flow (k, f) over
link (%, 7). Then the following flow conservation constraints hold for
allnodestand s =1,...,n:

flow (k, fz)

= path
. NFV-enabled node
Fig. 1. An illustration of the virtual flow.
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where (2.3) and (2.4) imply that if Ty gk = 1, then flow (k, ff_l)
going into node 7 and flow (k, f¥) coming out of node 7 both have
rate A(k); otherwise each virtual flow (k, f¥) coming out of node 4
and going into node ¢ are with the same rate; (2.5) and (2.6) ensure
that flow & coming out of S(k) and going into D (k) both have rate
A(k). These constraints guarantee that each flow k goes into the
nodes which provide functions in F(k) sequentially and with the
required data rate \(k).
By the definitions of r;; (k, f) and r;; (k), we have
rij(k) = Y ri(k, f), Vk, V(i,j) € L.
FeF(k)
We also assume that each function node provides at most one

2.7)

function for each flow:

> wip(k) <1, VE, Vi
feF(k)
This assumption is without loss of generality. This is because, if

(2.8)

a NFV-enabled node can provide multiple services for a flow, we
can introduce virtual nodes such that each virtual node provides one
function for the flow and all these virtual nodes are connected with
each other.

Since processing one unit of data flow consumes one unit of
computational capacity, the node capacity constraint can be ex-

pressed as
DD AR)wi s (k) < i, Vi
fok

Now we present our joint VN graph embedding and resource

(2.9)

allocation formulation to minimize the total link rates g(r) :=
2k, (i, Tii (k). which can avoid cycles in choosing routing paths:
min - g(r) = > ri;(k)

rx k. (0.3

st (2.1)—(2.9),
ri; (k) >0, VEk, ¥ (i,5) € L,
rij(k, f) >0,V f € F(k), Yk, ¥V (i,5) € L,
zip(k) € {0,1}, Vi e Vi, V f € F(k), VE,

(2.10)
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where r := ({ry;}, {ri;(k)}), x := {@i,¢(k)}. The objective can
also be others, such as the cost of the consumed computational re-
sources and the number of activated function nodes.

Problem (2.10) is a mixed binary linear program which turns out
to be NP-hard. The proof is based on a polynomial time reduction
from the 3-dimensional matching problem [8]. We omit the proof
due to space limitation.

Theorem 2.1 Checking the feasibility of problem (2.10) is NP-
complete, and thus solving problem (2.10) itself is NP-hard.

3. THE PROPOSED PSUM ALGORITHM

Since problem (2.10) is NP-hard, it is computationally expensive to
solve it to global optimality. In this section, we propose an efficient
penalty successive upper bound minimization (PSUM) algorithm to
solve it approximately. The basic idea of our proposed algorithm is
to relax the binary variables in problem (2.10) to real ones and add
penalty terms to induce binary solutions.

Notice that problem (2.10) becomes an LP when we relax the
variables {x; ¢(k)} to be continuous. Problem (2.10) and its re-
laxation problem are generally not equivalent (in the sense that the
solution x of the relaxation problem is not binary). The following
Theorem 3.1 provides some conditions under which the two prob-
lems are equivalent.

Theorem 3.1 Suppose j1; > fifor all i, and Cyi; > C for all (i, j),
where

fi=>_Ak), C=> AE)(|F(k)+1),

and | F (k)| denotes the number of functions in F (k). Then the relax-
ation problem of (2.10) always has a binary solution of {z; r(k)}.
Moreover; the lower bounds in the above are tight in the sense that
there exists an instance of problem (2.10) such that its relaxation
problem does not have a binary solution of {x; ¢(k)} if one of the
lower bounds is violated.

Theorem 3.1 suggests that, if the link and node capacity are suf-
ficiently large, then problem (2.10) and its relaxation problem are
equivalent.

To solve the general problem (2.10), our basic idea is to add an
L, penalty term in the objective of the relaxation problem of (2.10)
to promote the binary solutions.

Let x¢ (k) = {z4,7(k) }icv, . Then, we can rewrite (2.2) as

Ixs (k)| =1, VfeFk), Vk. 3.1
We have the following fact [9].
Fact: For any k and any f € F(k), consider
min  [|x7(k) +€l|l5 = 3 (2o s (k) +€)”
xg (k) i€V 3.2)
st lxg(R)[h =1,
zir(k) €10,1], Vi € Vy,

where p € (0, 1) and € is any positive constant. The optimal solution
of problem (3.2) is binary, that is, only one element is one and all
= (14 ¢)P +
(JV¥] — 1)€P. Moreover, the objective function of problem (3.2) is

the others are zero, and its optimal value is cc,y

differentiable with respect to each element z; ;(k) € [0, 1].

Motivated by the above fact, we propose to solve the following
penalized problem

min  g(r) + o Pe(x)

r,x

stt.  (2.1) = (2.9),

rii(k) >0, Yk, ¥ (i,j) € L, G
rij(k, f) 20,V f € F(k), VEk, V(i,j) € L,
zi (k) €10,1], Vie Vi, ¥V f € F(k), VEk,
where ¢ is the penalty parameter, and
Px)=>" 3" (Ixs(k) + el — e p). (3.4)

k fer(k)

For ease of presentation, we define z = (r,x), g-(z) = g(r) +
oP.(x), P* = P.(x"), and g* = g(r"). Theorem 3.2 reveals the
relationship between the solutions of problems (2.10) and (3.3).

Theorem 3.2 For any fixed ¢ > 0, let z* be a global minimizer
of problem (3.3) with the objective function ¢o,(z). Suppose the
positive sequence {o+} is monotonically increasing and oy — +00.
Then any limit point of {z'} is a global minimizer of (2.10).

t

Proof. Since z" is a global minimizer of (3.3) with the objective

function g, (z), it follows that

9oy (Zt) < oy (Zt+1)7 9oy (Zt-H) < Goia (Zt): vi.
Combining the above with the assumption o; < 0¢41, we obtain
o (P'— Py < g1 gt < oy (P — PP, v

which shows that {g"} is increasing and { P*} is decreasing.

Suppose that z* is a global minimizer of problem (2.10). Then
P.(z*) = 0. By the definition of z*, we have g, (z") < g, (2*) =
g(z™), which further implies that

0<g' + 0P <g(z"). (3.5)

This, together with the facts that g* > 0, P* > 0, and 6 — +oo0,
shows that o, P* — 0 and P* — 0 as t — +o0.

Let z = (T, %) be any limit point of {z*}, and {z'} 7 be a subse-
quence converging to z. Since P* — 0, we have P(X) = 0, which
shows that Z is feasible for problem (2.10). Furthermore, taking lim-
it along 7 in (3.5), we have g(z) < g(z"). Therefore, Z is a global
minimizer of problem (2.10). O

Theorem 3.2 suggests that the penalty parameter o should go to
infinity to guarantee that the solution x of problem (3.3) is binary. In
practice, however, the parameter o only needs to be large enough so
that the values of {z; s (k)} are either close to zero or one. Then, a
(feasible) binary solution of (2.10) can be obtained by rounding.

Solving problem (3.3) directly is not easy since it is a linearly
constrained nonlinear program. To efficiently solve problem (3.3),
we apply the SUM (Successive Upper bound Minimization) method
[10, 11], which solves a sequence of approximate objective functions
which are lower bounded by the original objective function. Due to
the concavity of P.(x), the first order approximation of P, (x) is an
upper bound of itself, i.e., P.(x) < P.(x") + VP.(x")T (x — x'),
where x' is the current iterate. At the (¢ 4 1)-st iteration, we solve
the following problem
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g(r) + or11 VP(x") " x

(2.1) — (2.9),

T‘ij(k') >0, rij(k, f) >0,Vf, VEk, V(l,]) eL,
xi (k) €10,1], Vi € Vy, V f € F(k), VEk.
Notice that each subproblem (3.6) is an LP which can be efficient-
ly solved to global optimality. The proposed PSUM algorithm for

min
r,x

s.t. (3.6)

solving problem (2.10) is described in Algorithm 1, where ~ and 7
are two predefined constants satisfying 0 < n < 1 < . We remark
that (1) the parameter e is adaptively updated as the iteration number
increases, which turns out to be very helpful in improving numeri-
cal performance of the algorithm [12]; (2) reference [13] proposed
a Penalty-BSUM algorithm which relaxes some equality constraints
and applies Block-SUM to solve the penalized problem, while our
PSUM algorithm enforces the relaxed variables being binary.
Algorithm 1 PSUM Algorithm for Solving Problem (2.10)

0. Solve (3.3) with ¢ = 0, and obtain solution z° = (r°,x%);

1. Initialize €1, 01, tmax, and let t = 0;

2. While ¢t < ¢4z Do

Solve problem (3.6) with ¢ = o¢41 and € = €41, and obtain
t+1 _ (rt+1 Xt+1)

solution z

If x'*1 is binary, stop; otherwise set t = ¢ + 1, and let o¢41 =
YOt, €41 = M€t
End

4. NUMERICAL EXPERIMENTS

In this section, we present some numerical results to illustrate the ef-
fectiveness of the proposed algorithm. More simulation results can
be found in [15]. We shall compare the PSUM algorithm with the
heuristic algorithm proposed in [6]. To solve problem (2.10), the al-
gorithm is slightly modified, as shown in Algorithm 2. In Algorithm
2, we denote the set of binary variables {x; s(k)} as S, the set of
{z:,7(k)} taking value of 1 as Sy, and those taking value of 0 as S.
All LP subproblems are solved by the solver Gurobi 7.0.1 [14].

We consider a mesh network with 100 nodes and 684 direct-
ed links. There are in total 5 service functions {f1,..., f5} and
|V¢| = 10 candidate nodes for each function. We consider K = 30
flows with demands A\(k) = 1 for all k. The SFC F(k) = (ff —
15 and (S(k), D(k)) are uniformly randomly chosen for each flow
(ff # f5,S(k),D(k) ¢ Vir,s = 1,2). The link capacity Ci; is
uniformly randomly chosen in [0.5, 5.5], and the node capacity p; is
uniformly randomly chosen in [0.5, 8]. For the PSUM algorithm, we
set tmaz = 20, 01 = 2, €1 = 0.001, v = 1.1, n = 0.5. For the
heuristic algorithm, we set 1 = 0.1, 02 = 0.9, Trnez = 19.

We randomly generate 50 instances of problem (2.10) and apply
the two algorithms to solve them. Simulation results show that the
PSUM algorithm successfully finds the feasible binary solution 48
times while the heuristic algorithm only succeeds 9 times. The left
figure in Fig. 2 shows the averaged number of fractional components
of the solutions returned by the two algorithms as the number of it-
erations increases. We can easily observe that the solutions returned

Averaged Number of Fractional Components

Algorithm 2 Modified Heuristic Algorithm [6]
Fort =1:Thnas
Solve (2.10) with relaxed binary variables and with z; ¢ (k) € S1
being fixed to be one. Let the solution be {z} ;(k)} and set
St = {00, £, k) | &5 (k) > 621},
Sh= {0, £, k) | 21 (k) < 01 );
Update S by checking constraints (2.9), i.e.,
let z; ¢ (k) = 1 forall (4, f, k) € Sy, check whether
X5 Zk:(i,f,k)esg A(k)xs, r (k) < p; holds for all 4, remove
those from S that participate in the violated inequalities;
Let S = S{, So = S(l), and S’ = S\ (31 @] So).
End
For each (i, f, k) € &', solve the relaxation problem with
x;, (k) = 0; if the problem is infeasible, add the index into S1;
For x;, s (k) whose being assigned to zero leads to the maximum

decrease or least increase in the objective, add the index into So;
Re-solve the problem with variables in S; and Sy being fixed.

40 — 50,
——Heuristic Alg.
——PSUM Alg. w0
30 @
S
% 30
20 @
5
£20
£
E
10
10|
0 0
0 5 10 15 20 1 1.02 1.06 1.08

104
13

Iteration

Fig. 2. Left: the average number of fractional components of the
solutions returned by the two algorithms versus the number of itera-
tions; Right: the number of simulations where the ratio gpsum/grp
is less than or equal to £ € [1,1.09].

by the heuristic algorithm quickly get stuck (at some uninteresting
points after about 6 iterations), while the solutions returned by our
proposed algorithm gradually converge to some feasible binary so-
lutions. To measure the optimality of the obtained solution, we com-
pute the ratio of the objective value of problem (2.10) returned by
PSUM (gpsum) and the optimal value of the relaxation LP (g;p). No-
tice that the optimal value of the relaxation LP is a lower bound of
the optimal value of our interested problem (2.10). The right figure
in Fig. 2 shows the number of simulations with ratios at or below
&, where £ € [1,1.09]. The ratios in all 50 simulations are below
1.09. This shows that the returned solutions by the PSUM algorithm
are of good quality, which are close to global optimality. Notice that
the complexity of both the two algorithms can be measured by the
number of solved LP subproblems, and the sizes of the LPs in the
two algorithms are close. We can see that the PSUM algorithm gives
much better solutions with fewer LP subproblems being solved.

In summary, our simulation results demonstrate that the pro-
posed PSUM algorithm can approximately solve problem (2.10) by
returning a feasible (binary) solution with good quality. In addition
to its good numerical performance, the PSUM algorithm is easily
implemented and converges very fast, i.e., it usually takes no more
than 20 iterations to terminate.
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