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ABSTRACT

A joint beamforming and remote radio head (RRH)-user association

design for downlink of cloud radio access networks (CRANs) is con-

sidered. The aim is to maximize the system energy efficiency subject

to constraints on users’ quality-of-service, capacity of fronthaul links

and transmit power. Different to the conventional power consump-

tion models, we embrace the dependence of baseband signal process-

ing power on the data rate, and the dynamics of the power amplifiers’

efficiency. The considered problem is a mixed Boolean nonconvex

program whose optimal solution is difficult to find. As our main con-

tribution, we provide a discrete branch-reduce-and-bound (DBRnB)

approach to solve the problem globally. We also make some modi-

fications to the standard DBRnB procedure. Those remarkably im-

prove the convergence performance. Numerical results are provided

to confirm the validity of the proposed method.

Index Terms— Energy efficiency, CRAN, limited fronthaul,

nonlinear power amplifier, discrete branch-reduce-and-bound.

1. INTRODUCTION

Cloud radio access network (CRAN) is a novel network architecture

which effectively supports the low-latency deployments such as joint

transmission coordinated multipoint [1, 2]. In CRANs, the function-

ality of the conventional base stations is divided into two entities

called baseband units (BBUs) and remote radio heads (RRHs). The

BBUs including the signal processing functionalities are located at

a central cloud computing platform, while the RRHs placed close to

the antennas are responsible for wireless interface of the network.

This architecture allows CRANs to alleviate the strict synchroniza-

tion requirements among RRHs, and also to leverage powerful com-

puting capabilities for full cooperation. One of the main challenges

in CRAN design is to deal with the limited capacity of the fronthaul

links, the means of transporting baseband signals between BBU and

RRHs [3].

An effective and widely used method overcoming the problem

of the limited fronthaul is to select a set of users that can be served by

a RRH [4–7]. The approach gives rise to the RRH-user association

problems modeled by a set of binary preference variables. As a re-

sult, the problems are cast as mixed binary integer programs whose

optimal solutions are difficult to derive.
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Due to a growing concern over the power consumption in mobile

networks, recent research in wireless communications has shifted

its focus on energy efficiency (EE). The problem of energy effi-

ciency maximization (EEmax) has been studied in many prior publi-

cations [8–13] for different contexts. The mentioned works and other

related studies assume that signal processing power is independent

of the data rate and the efficiency of the power amplifiers (PAs) can

be modeled as a constant factor. However, these assumptions are

not true in reality. In fact, signal processing power increases propor-

tionally with the data rates [14–17], and PA’s efficiency is dynamic

depending on the output power [18–20].

In this paper, we focus on EE downlink transmission in CRANs.

Specifically, we jointly design transmit beamforming and RRH-user

association with the objective of maximizing the network EE un-

der the constraints of per-RRH fronthaul capacity, transmit power

budget and user’s quality-of-service (QoS). Our contribution is four-

fold: i) we include the rate-dependent signal processing power and

the dynamics of PA’s efficiency in the total power consumption

model; ii) we develop a globally optimal solution to the problem of

interest, which is a mixed Boolean nonconvex program, based on the

general discrete branch-reduce-and-bound (DBRnB) framework in-

troduced in [21]; iii) special modifications are made to the standard

DBRnB procedure to improve the convergence performance; and iv)

the numerical results assessing the proposed method are provided.

2. SYSTEM MODEL AND PROBLEM FORMULATION

We consider downlink transmission of a multiuser multiple-input

single-output (MISO) wireless system consisting a set of B RRHs,

denoted by B , {1, . . . , B}, each equipped with I antennas, and

a set of K single-antenna users, denoted by K , {1, . . . , K}. The

BBU pool is assumed to have perfect channel state information of

the network. A specific user can simultaneously receive data from

multiple RRHs. Let hb,k ∈ C
1×I be the channel between RRH b

and user k, dk denote the normalized data symbol intended for user

k, and wb,k ∈ C
I×1 be the beamforming vector from RRH b to user

k. Assuming channels are flat, the received signal at user k is

yk =
(

∑

b∈B

hb,kwb,k

)

dk +
∑

j∈K\k

(

∑

b∈B

hb,kwb,j

)

dj + nk (1)

where nk ∼ CN (0, σ2
k) is the additive white Gaussian noise. For

notational convenience, let hk , [h1,k,h2,k, . . . ,hB,k] ∈ C
1×IB

and wk , [wT
1,k,w

T
2,k, . . . ,w

T
B,k]

T ∈ C
IB×1,∀k. Also, let w

denote the beamforming vector stacking all wk. Assuming single-

user decoding, the SINR at user k is written as

γk(w) ,
|hkwk|2

∑

j∈K\k|hkwj |2 + σ2
k

. (2)
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Let rk be the achievable data rate transmitted to user k. Then by

Shannon’s coding theory, we have

rk ≤ log(1 + γk(w)),∀k ∈ K. (3)

In reality, the fronthaul link from the BBU pool to RRH b has

a finite capacity, denoted by C̄b. For the problem formulation pur-

pose let us introduce Boolean variables {xb,k}b,k such that xb,k = 1
indicates that user k receives data from RRH b and xb,k = 0 other-

wise. Then the total data rate transmitted by the wireless interface

of RRH b is
∑

k∈Kxb,krk, and thus, for feasible transmission we

should have
∑

k∈Kxb,krk ≤ C̄b,∀b ∈ B. (4)

Power Consumption Model: The power consumption in the net-

work can be divided into three parts: rate-independent power con-

sumption, power for signal processing, and power consumed in PAs

[20, 22–24]. Details of these parts are presented below.

The rate-independent power consumption is modeled as [22,24]

PI , KPms + POLT +
∑

b∈B(sb(P
active
RRH + P active

FH )

+ (1− sb)(P
sleep
RRH + P sleep

FH )). (5)

In (5), Pms is the circuit power consumed by a user device, P active
RRH

and P sleep
RRH are the power consumption at a RRH corresponding to

the active and sleep modes, respectively [22]. It is assumed that all

RRHs connect to the BBU through a passive optical network which

consists of an optical line terminal (OLT) and a set of network units

(NUs) [23]. The OLT is always active and consumes a fixed power,

denoted by POLT; NUs are switchable between the active or sleep

mode, each consuming an amount of power denoted by P active
FH and

P sleep
FH , respectively. We introduce Boolean variables {sb}b such that

sb = 1 indicates RRH and NU b are active and sb = 0 otherwise.

The relationship between sb and xb,k can be represented as

sb = max
k∈K

{xb,k} ⇔
{

sb ≥ xb,k,∀k ∈ K
sb ≤ ∑

k∈K xb,k

,∀b ∈ B. (6)

For RRH b, the power consumed by the signal processing func-

tions is measured by a continuous function of the fronthaul rate r̃b,

denoted by ψb(r̃b) where r̃b ,
∑

k∈Kxb,krk [14–16]. According

to [14], ψb(r̃b) is linearly scaled w.r.t. r̃b, i.e.

ψ(r̃b) = pSPr̃b (7)

where pSP is a constant coefficient in (W/(Gnats/s)).
In reality, the efficiencies of the PAs depend on the output power

modeled as ǫb,i({wb,k}k) , 1
ǫ̃

√

∑

k∈K |[wb,k]i|2,∀k ∈ K, b ∈
B, i = 1, ..., I , where ǫ̃ ,

√
Pa/ǫmax, and Pa and ǫmax ∈ [0, 1]

are the maximum power of the PA and the maximum PA’s efficiency,

respectively [20]. Let φb({wb,k}k) measure the amount of power

consumed by the PAs at RRH b. Then we have

φb({wb,k}k) =
I

∑

i=1

∑

k∈K |[wb,k]i|2
ǫb,i({wb,k}k)

= ǫ̃
∑I

i=1||w̃b,i||2 (8)

where w̃b,i , [[wb,1]i; [wb,2]i; ...; [wb,K ]i] ∈ C
K×1.

Let us define x , {xb,k}b∈B,k∈K, s , {sb}b∈B, and r ,

{rk}k. Based on the above discussions, the total consumed power

in the considered system, denoted by fP(w,x, r, s), is expressed as

fP(w,x, r, s) , PI +
∑

b∈B(ψ(r̃b) + φb({wb,k}k))
=

∑

b∈B(ǫ̃
∑I

i=1||w̃b,i||2 + pSP

∑

k∈Kxb,krk + sb∆P ) + Pconst

(9)

in which Pconst , B(P sleep
RRH + P sleep

FH ) + KPms + POLT and ∆P ,

P active
RRH + P active

FH − P sleep
RRH − P sleep

FH are constants.

Problem Formulation: We jointly design beamforming and

RRH-user association such that the overall network EE is maxi-

mized. The problem of interest reads

maximize
w,x,s,r

∑

k∈K rk

fP(w,x, r, s)
(10a)

subject to rk ≥ r0, ∀k ∈ K (10b)
∑

k∈K‖wb,k‖22 ≤ P̄b, ∀b ∈ B (10c)

||w̃b,i||22 ≤ Pa, ∀b ∈ B, i = 1, ..., I (10d)

‖wb,k‖22 ≤ xb,kP̄b, ∀k ∈ K, b ∈ B (10e)
∑

b∈Bxb,k ≥ 1, ∀k ∈ K (10f)

x ∈ {0, 1}BK , s ∈ {0, 1}B (10g)

(3), (4), (6). (10h)

The constraints in (10b), (10c) and (10d) represent users’ QoS,

the total transmit power and per antenna power constraints at each

individual RRH, respectively. Constraint (10e) guarantees that

‖wb,k‖22 = 0 if RRH b does not serve user k. Constraint (10f)

implies that each user is served by at least one RRH (due to QoS).

3. GLOBALLY OPTIMAL SOLUTION BY DISCRETE

MONOTONIC OPTIMIZATION

Problem (10) is a mixed Boolean nonconvex program (MBNP) gen-

erally known to be NP-hard. Although numerous wireless communi-

cations nonconvex problems can be solved using general monotonic

optimization (GMO) [12,13,25,26], the GMO principle is inapplica-

ble to MBNP since it outputs only approximate solutions of discrete

variables [27]. Here we globally solve (10) based on the so-called

discrete monotonic optimization (DMO) [21]. We follow the defi-

nitions of box, increasing function, and normal cone in [21]; [a;b]
denotes the box with lower and upper vertices a and b.

The standard procedure solving a DMO problem is DBRnB [21].

It is an iterative procedure performing three basic operations at each

iteration: branching, reduction, and bounding. Starting from origi-

nal box [a;b], we iteratively divide it into smaller and smaller ones,

remove boxes that do not contain an optimal solution, search over

remaining boxes for an improved solution until an error tolerance

is met. During the branching and reduction steps, elements corre-

sponding to discrete constraints are adjusted to stay in the discrete

set. Details of using DBRnB to solve (10) are presented next.

The current form of (10) is not a (standard) DMO problem since

the objective in (10a) is not an increasing function w.r.t. the involved

variables. Thus we need to reformulate (10) as

maximize
η,w,x,s,r,t

η (11a)

subject to ηf̃P(x, s, r, t)−
∑

k∈Krk ≤ 0 (11b)
∑I

i=1||w̃b,i||2 ≤ tb, ∀b ∈ B (11c)

(10b) − (10h) (11d)

where η and t , {tb}b are the newly introduced variables and

f̃P(x, s, r, t) ,
∑

b∈B(ǫ̃tb + sb∆P + pSP

∑K

k=1 xbkrk) + Pconst.

The equivalence between (10) and (11) in terms of optimal solution

set can be easily proved since (11) is indeed the epigraph of (10), i.e.

at the optimum constraints (11b), (11c) are active. We now have a

useful observation to solve (11). Let (x∗, s∗, r∗, t∗) be an optimal
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solution to (11). Then we have η∗ =
∑K

k=1
r∗k

f̃P(x∗,s∗,r∗,t∗)
, and an optimal

beamforming vector w∗ can be computed as

w
∗ = find{w|(3), (10c) − (10e), (11c)} (12)

in which we replace (s,x, r, t) by (s∗,x∗, r∗, t∗). This implies that

w
∗ and η∗ can be determined easily if (x∗, s∗, r∗, t∗) are known.

Moreover, we observe that constraints (4), (6), (10f), (11b), and

(11c) are monotone w.r.t. (s,x, r, t), and thus, the branching step

can be done over (s,x, r, t). The proposed DBRnB-based algorithm

is outlined in Alg. 1. Details of the main steps are as follows.

Let S be the feasible set of problem (11), i.e.,

S ,
{

{s,x, r, t}|(3), (6), (10b), (10d) − (10g), (11b),
∑

k∈Kxb,krk ≤ sbC̄b,
∑

k∈K‖wb,k‖22 ≤ sbP̄b,
∑I

i=1||w̃b,i||22 ≤ sbtb,∀b ∈ B
}

.

Remark that we have equivalently rewritten (4), (10c) and (11c) by

multiplying their right hand sides by sb to improve the proposed

algorithm’s efficiency. In other words, if sb = 0, we can skip ex-

amining the constraints involving sb. Since S is upper bounded by

the power and backhaul constraints, it satisfies the normal and fi-

nite properties. At the initialization stage, we need to find a box

[a;b] ∈ R
B(K+2)+K
+ such that S ⊆ [a;b], where a , [s,x, r, t]

and b , [s,x, r, t]. Obviously, sb = 0, sb = 1, xb,k = 0, xb,k =

1, tb = 0 and tb = I
√
Pa. We also have rk = r0 due to (10b),

and rk ≤ min{C̄b, log(1 + |hkwk|2/WN0)} ≤ min{C̄b, log(1 +
BP̄b‖hk‖22/WN0)} = rk, since |hkwk|2 ≤ ‖hk‖22‖wk‖22 (the

Cauchy-Schwarz inequality) and ‖wk‖22 ≤ BP̄b. Notation ηbest de-

notes the best current objective value, and set R contains the can-

didate boxes which includes only red([a;b]) at starting stage; here

red([a;b]) denotes the box returned by the reduction operation (over

[a;b]) presented following.

Reduction: A box [a′;b′] possibly contains segments either

infeasible to (11) or resulting in an objective smaller than ηbest. Re-

duction refers to removing those portions, thus reducing the search

space in the next iterations, i.e. we create [a′′;b′′] ⊆ [a′;b′] such

that an optimal solution (if exists in [a′;b′]) must be contained in

[a′′;b′′]. Mathematically, we can replace a
′ by a

′′ ≥ a
′ where

a
′′ = b

′ −∑B(K+2)+K

j=1 ejαj(b
′
j − a′j) and αj = sup{α |0 ≤ α ≤

1, b′ − α(b′j − a′j)ej ∈ [a;b]\S , η(b′ − α(b′j − a′j)ej) ≥ ηbest},

for each j; here η(a) denotes the value of η at vertex a, and

ej is the jth unit vector. Similarly, vertex b
′ is replaced by

b
′′ ≤ b

′ where b
′′ = a

′′ +
∑B(K+2)+K

j=1 βj(b
′
j − a′′j )ej and

βj = sup{β |0 ≤ β ≤ 1, a′′ + β(b′j − a′′j )ej ∈ S}, for each j.
The values of {αj} and {βj} can be found by the bisection method.

Note that for the case of Boolean variables, the reduction can be

simplified as follows. If a′j , b
′
j ∈ {0, 1} and b′j − a′j = 1, we can

quickly set that a′′j = 1 if b′−ej ∈ [a;b]\S and a′′j = 0 otherwise.

If a′′j = 0, we obtain b′′j = 1 if a′′ + ej ∈ S and b′′j = 0 otherwise.

Branching: At each iteration, a box in R is selected and split into

two new equal size boxes. To be bound improving, the box with the

largest upper bound of η is picked denoted by [ã; b̃] for convenience.

Let k , argmaxj(b̃j− ãj). Then the two new smaller boxes [ã; b̃′]

and [ã′; b̃] are created where b̃′j = b̃j and ã′j = ãj for all j 6= k,

b̃′k =
⌊

b̃k − (b̃k − ãk)/2
⌋

Z
and ã′k =

⌈

ãk + (b̃k − ãk)/2
⌉

Z
for the

case of Boolean variables, and b̃′k = b̃k − (b̃k − ãk)/2 and ã′k =

ãk+(b̃k−ãk)/2 for the case of continuous variables; notations ⌈p⌉Q
and ⌊p⌋Q denote the upper and lower nearest neighbor elements of

Algorithm 1 The proposed DBRnB-based algorithm solving (11)

1: Initialization: Determine a, b such that S ⊆ [a;b]. Set ηbest =
0 and R = red([a;b]).

2: repeat

3: Branching: select [ã; b̃], then create [ã; b̃′] and [ã′; b̃].

R := R \ {[ã; b̃]}.

4: Reduction: determine V1 = red([ã; b̃′]), V2 = red([ã′; b̃])
5: Bounding: For each box Vn, n = 1, 2, not violating (13)

6: if (14) is feasible then

7: Calculate t
∗ and extract x∗from the optimal solution of

(14) (w∗,u∗).
8: Update t := t

∗ then calculate ηup(Vn) using (16).

9: Check x
∗ with (18), if true, calculate ηlow(Vn) using

(17) then update ηbest := max{ηlow(Vn), η
best}, otherwise

ηlow(Vn) =
∑

k∈K
rk

f̃P(s,x,r,t)
.

10: Find the set of boxes which do not contain optimal solution

R̃ = {Vi ∈ R|ηup(Vi) < ηbest}.
11: Update R := {Vn|ηup(Vn) ≥ ηbest} ∪ R \ R̃.
12: end if

13: until Convergence

p in set Q, respectively. Note that for the case ãk, b̃k ∈ {0, 1}, if

b̃k−ãk = 1,
⌊

b̃k−(b̃k−ãk)/2
⌋

Z = 0 and
⌈

ãk+(b̃k−ãk)/2
⌉

Z = 1.

Bounding: Bounding is applied to ensure the convergence for

DBRnB via improving the upper and lower bounds of η. Due to

the monotonicity, the upper and lower bounds of η correspond-

ing to box [a′;b′] , [s,x, r, t; s,x, r, t] can be easily found as

ηup([a
′;b′]) ,

∑
k∈K

rk

f̃P(s,x,r,t)
and ηlow([a

′;b′]) ,
∑

k∈K
rk

f̃P(s,x,r,t)
, respec-

tively. These bounds are then used to update ηbest and remove the

boxes whose upper bound is smaller than ηbest [21].

A DBRnB algorithm basically stores sequences of boxes until an

optimal solution is found which requires some memory capacity. To

reduce the memory requirement we can remove boxes which contain

no feasible point. For (11), we make a simple feasibility condition

based on the fronthaul constraints given as
∑

k∈Krk ≤ ∑

b∈BsbC̄b, (13)

i.e. if a box does not satisfy (13), it contains no feasible point. Here

(13) is due to
∑

b∈B sbC̄b ≥ ∑

b∈B

∑

k∈K xb,krk ≥
∑

k∈K rk
∑

b∈B xb,k ≥ ∑

k∈K rk where the last inequality fol-

lows (10f).

The standard DBRnB procedure would require a large number

of iterations for convergence. In the following, we provide some

modifications derived based on the specific structure of (11), which

significantly improve the convergence performance.

Improved Convergence Modifications

Improved Branching: For (11), we can skip branching on t. Specifi-

cally, let us consider the following second-order-cone program

minimize
w,u

∑

b∈B

∑I

i=1ub,i (14a)

subject to ℜ(hkwk) ≥
√

(erk − 1)(
∑K

j 6=k
|hkwj |2 + σ2) (14b)

||w̃b,i||2 ≤ ub,i, sbtb ≤ ∑I

i=1ub,i ≤ sbtb (14c)

||w̃b,i||22 ≤ sbPa, ‖wb,k‖22 ≤ xb,kP̄b, b ∈ B (14d)
∑

k∈K‖wbk‖22 ≤ sbP̄b ∀b ∈ B (14e)
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which can be viewed as minimizing the power consumption subject

to minimum users’ rate requirement r. Let u∗ denote the optimal

solution (if (14) is feasible), and t
∗ , {∑I

i=1 u
∗
b,i}b. Obviously

1
T
t
∗ (where 1 is the all-one vector) is the minimum power required

to achieve r, and it holds t ≤ t
∗. In addition, t∗ is unique since

the objective is the epigraph of
∑

b∈B

∑I

i=1 ||w̃b,i||2 [28, Chap. 3].

Hence we can replace t by t
∗ to obtain a tighter lower bound of t.

Therefore, we can only branch (s,x, r), since t∗ is always improved

with r.

Improved Branching Order: We can potentially reduce the com-

putational complexity if we opt to branch s first due to its depen-

dency on other factors. Intuitively, the number of active RRHs pro-

vides the degree-of-freedoms that can make the desired data rate r

achievable. Moreover, we immediately obtain xb,k = 0, ∀k ∈ K
whenever sb = 0. Therefore by first keeping branching on s until

s = s , we can quickly remove combinations of {sb}b infeasible to

(11). This is done by solving (14) with given s and target rate r0.

Improved Bounds: We now present a way to obtain tighter

upper and lower bounds of η. Let us consider box [a;b] =

[s,x, r, t; s,x, r, t]. An upper bound of f̃P(x, s, r, t) is

f
P
(x, s, r, t∗) , ǫ̃1T

t
∗ +∆P max{1,∑b∈Bsb}

+ pSP max{∑
k∈Krk,

∑

b∈B

∑

k∈Kxb,krk}+ Pconst

(15)

where t
∗ is determined via (14) (if feasible); the second term is

due to the fact that at least one RRH is active; and the third term

is achieved by the following inequality
∑

b∈B(
∑

k∈K xb,krk) ≥
∑

k∈K rk(
∑

b∈B xb,k) ≥ ∑

k∈K rk. Obviously, f̃P(x, s, r, t) ≤
f
P
(x, s, r, t∗), and replacing f̃P(s,x, r, t) by f

P
(x, s, r, t∗) does

not remove any feasible solution. Thus, a tighter upper bound of η
over [a;b] can be calculated as

ηup([a;b]) =

∑

k∈K rk

f
P
(x, s, r, t∗)

. (16)

Similarly, suppose (ŝ, x̂, r, t̂) to be some feasible point within [a;b].
We can easily check that fP(ŝ, x̂, r, t̂) ≤ fP(s,x, r, t) due to the

monotonicity property. Then an improved lower bound of η over

[a;b] can be obtained as

ηlow([a;b]) =

∑

k∈K rk

f̃P(ŝ, x̂, r, t̂)
. (17)

Note that if ηlow([a;b]) > ηbest, we update ηbest := ηlow([a;b]) and

remove boxes whose upper bound are smaller than ηbest (i.e. Step

11 in Alg. 1). Thus, obtaining a feasible point is vital to improving

the algorithm’s efficiency. For this purpose we propose a simple

heuristic trick which may quickly find a feasible point in [a;b]. First,

we note that a feasible point (ŝ, x̂, r, t̂) must satisfy two conditions:

r is achievable by (ŝ, x̂, t̂); and

x̂ ∈ {x | ∑
b∈Bxb,k ≥ 1, k ∈ K,∑

k∈Kxb,krk ≤ C̄b, b ∈ B}(18)

Second, it is easily seen that the point returned by solving (14) al-

ways satisfies the first condition. Consequently, we can extract x̂

from the optimal solution of (14), and then verify (18).

4. NUMERICAL RESULTS

We consider a simulation model as follows. The distance between

the RRHs is 200 m; the channel hb,k between RRH b and user k is

generated as hb,k ∼ CN (0, ρb,kII ), where ρb,k represents the large-

scale fading and is calculated as ρb,k[dB] = 30 log10(db,ij ) +38+
N (0, 8) (db,ij is the distance in meters); the system bandwidth is

10
0

10
1

10
2

10
3

10
4

10
5

0

0.3

0.6

0.9

Iteration index

E
n
er

g
y

ef
fi

ci
en

cy
(n

at
/J

/H
z) Optimal

Upper bound

Lower bound

(a) Convergence of the upper and lower bounds.

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

Iteration index

G
ap

to
th

e
o
p
ti

m
u
m

(n
at

/J
/H

z)

Alg. 1

Alg. 1 w/o impr. Br.

Alg. 1 w/o impr. Br.O.

Alg. 1 w/o impr. Bo.

(b) Convergence speed with and without the proposed mofica-
tions.

Fig. 1. Convergence behavior of Algorithm 1 for one channel real-

ization.

10 MHz; the noise power is -143 dBW; we take B = 3, K = 4,

P̄ = P̄b = IPa = 30 dBm and C̄b = C̄ = 10 nats/s/Hz,∀b; other

parameters are set as follows: P active
RRH + P active

FH = 10.65 W [22, 23],

P sleep
RRH + P sleep

FH = 5.05 W [22, 23], Pms=0.1 W, ǫmax = 0.55 [20],

pSP = 10 W/(Gnats/Hz), I = 2, and r0 = 1.

Fig. 1 plots convergence performance of Alg. 1 for a random

channel realization. Particularly, Fig. 1(a) depicts the upper and

lower bounds over iterations. It is seen that the bounds monotoni-

cally converge to the optimal value. Fig. 1(b) shows the convergence

speed via the gap between the upper bound and the optimal value. In

this figure we also provide the performance of other schemes to con-

firm the effectiveness of the proposed modifications. Specifically,

the schemes labelled ‘w/o. impr. Br.’, ‘w/o. impr. Br-O.’, ‘w/o. impr.

Bo.’ represent for Alg. 1 without applying improved branching, im-

proved branching order and improved bounding, respectively. The

results clearly demonstrate that applying the proposed modifications

remarkably improves the convergence performance.

5. CONCLUSION

We have studied the joint design of beamforming and RRH-user as-

sociation in CRANs which maximizes the system EE subject to per-

RRH fronthaul capacity, transmit power budget and per-user QoS.

We have adopted the power consumption model wherein the im-

pacts of rate-dependent signal processing power and the dynamics

of the PA’s efficiency are included. To investigate the optimal per-

formance we have developed the new globally optimal method based

on the DBRnB framework. We have also provided the useful modi-

fications which improve the algorithm’s efficiency. Numerical eval-

uations have been provided to confirm the effectiveness of the pro-

posed algorithm. The algorithm can be implemented in small-scale

networks or serve as benchmark in evaluating low-complexity sub-

optimal solutions, which are considered in our future work.
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