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ABSTRACT

This paper considers mobile computation offloading in fog-radio
access networks (F-RAN), where multiple mobile users offload their
computation tasks to the F-RAN through a number of fog nodes
[a.k.a. enhanced remote radio heads (RRHs)]. In addition to com-
munication capability, the fog nodes are also equipped with com-
putational resources to provide computing services for users. Each
user chooses one fog node to offload its task, while each fog node
may simultaneously serve multiple users. Depending on computa-
tional burden at the fog nodes, the tasks may be completed at the fog
nodes or further offloaded to the cloud via fronthaul links with lim-
ited capacities. To complete all the tasks as fast as possible, a joint
optimization of radio and computational resources of F-RAN is pro-
posed to minimize the maximum latency of all users. This problem
is formulated as a mixed integer nonlinear program (MINP). We first
show that the MINP can be reformulated as a continuous optimiza-
tion problem with a difference-of-convex (DC) objective. Then, an
inexact DC algorithm is proposed to handle the min-max problem
with stationary convergence guarantee. Simulation results show that
the proposed algorithm outperforms the minimum distance-based
and the random-based offloading strategies.

Index Terms— Fog-radio access networks, computation offload-
ing, DC programming

1. INTRODUCTION

The fifth generation wireless communication systems are expected
to provide ubiquitous connections for massive heterogenous devices
with high speed and low latency. The current cloud-computing-
based network infrastructure is facing challenges to meet these re-
quirements, because massive heterogenous requests with different
data sizes and latency requirements need to be forwarded to and
processed at the central baseband processing units (BBUs), and this
could cause heavy burden on the fronthaul and incur intolerable la-
tency for some delay-critical missions. For example, in some in-
teractive applications, e.g., virtual reality, industrial automation and
vehicle-to-vehicle communications, the roundtrip delay may be re-
quired below a few tens of millisecond [1]. To meet the critical la-
tency requirement and alleviate the pressure on the fronthaul, a fog-
computing-based radio access network (F-RAN) has recently been
considered as a promising solution [2]. The concept of F-RAN is de-
veloped from the fog computing, which was originally proposed by
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Cisco [3]. By shifting certain amount of computing, storage and net-
working functions from the cloud to the edge of networks, F-RAN
is able to provide more prompt responses to users’ requests with less
fronthaul bandwidth occupation.

Evolving from cloud-computing-based RAN (C-RAN) to F-RAN,
the wireless access point (AP) is endowed with more capabilities
and functions. In this work, we focus on the computational aspect
of F-RAN, and investigate how the enhanced APs (also called fog
nodes in the rest of the paper) near the mobile users can help im-
prove the latency performance in computation offloading applica-
tions. Specifically, we consider multiple low-performance mobile
user equipments (UEs), each of which has a computing-intensive
task to be offloaded to F-RAN. Each UE can access F-RAN through
one of the fog nodes, and the tasks can be performed at the fog nodes
or the cloud (BBU), depending on the computational loads and the
fronthaul capacities at the fog nodes. Due to limited communication
and computation resources of F-RAN, UEs are competing with each
other. To guarantee fairness, we adopt a min-max latency criterion to
optimize the communication and computation resources (including
the UE-Fog association, transmit beamforming at UEs, computation
tasks distribution between fogs and the cloud, computation resources
and the fronthaul capacity allocations), so that the worst latency of
all UEs induced by transmission and computation is as small as pos-
sible. This min-max latency optimization problem is formulated
as a mixed integer nonlinear program (MINP). We show that the
MINP can be reformulated as a continuous optimization problem.
By employing the difference-of-convex (DC) programming [4] and
the weighted MMSE (WMMSE) method [5], we develop an itera-
tive algorithm to compute a solution for the min-max problem with
stationary convergence guarantee.

There are some related works worth mentioning. The works [6]
and [7] consider a joint optimization of radio and computational re-
sources for energy minimization with latency constraints in single
cell and multicell networks, respectively, where all the computation
is done at the cloud and the UE-BS association is prefixed. In [8,9], a
cooperative computation model is considered, but their focus is more
on choosing appropriate number of fog nodes for each task, given the
communication resource constraints. In [10, 11], Chen et’al studied
the energy-plus-delay minimization for computation offloading with
multiple UEs, one computing AP (or fog node) and a cloud server.
Since there is only one computing AP, no UE-AP association opti-
mization is needed, and moreover transmit beamforming is not in-
cluded in their model. Recently, the work [12] deals with a similar
problem as [10, 11] under the setting of one UE and multiple APs
without considering further computation offloading from the AP to
the cloud.

3754978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider an F-RAN, consisting of K multi-antenna mobile users,
L fog nodes and a cloud server. Each user has a computation task,
however, due to limited computational capability at the users, all the
tasks have to be offloaded to the F-RAN via the fog nodes. Sup-
pose that user k’s task Tk is described by a two-tuple of (Dk, Bk)
integers, where Dk denotes the number of CPU cycles needed for
completing Tk, and Bk represents the number of bits needed for en-
coding Tk. In other words, to offload the task to F-RAN, user k has
to send the Bk bits to the fog nodes through wireless links. For sim-
plicity, we assume that each user gets access to F-RAN through one
fog node, while each fog node may simultaneously provide access
for multiple users. The association between the fog nodes and the
users is not prefixed and needs to be jointly optimized with other ra-
dio and computational resources. To highlight this, we introduce a
binary variable αk,� ∈ {0, 1} to reflect the association relationship.
In particular,

αk,� =

{
1, if user k is served by fog node �,

0, otherwise,

and
∑L

�=1 αk,� = 1, ∀ k ∈ K � {1, . . . ,K}.
Now, the offloading process can be described in the following

two stages:
Stage 1: Wireless Transmissions from Users to Fog Nodes. For

ease of exposition, let us assume that user k is associated with some
fog node � ∈ L � {1, . . . , L}, i.e., αk,� = 1 and αk,�′ = 0, ∀�′ �=
�. Let vk ∈ C

Nk be the transmit beamformer of user k with Nk

being the number of antennas at user k. Then, the received signal at
the fog node � is given by1

y�(t) = HH
k,�vksk(t) +

∑
j �=k H

H
j,�vjsj(t) + n�(t),

where Hj,� ∈ C
Nj×M� is the channel between user j and fog node

� with M� being the number of antennas at fog node �; sj(t) ∈ C is
the encoded signal of task Tj , and n�(t) ∼ CN (0, σ2

�I) is additive
white Gaussian noise. The communication rate between user k and
fog � is given by

Rk,� = W log
(
1+vH

k Hk,�

(
σ2
�I+

∑
j �=k

HH
j,�vjv

H
j Hj,�

)−1
HH

k,�vk

)
,

(1)
where W (Hz) is the bandwidth of the wireless transmission. The
corresponding wireless transmission delay may be calculated as

τT
k,� =

Bk

Rk,�
. (2)

Stage 2: Computing at Fog Nodes or Cloud. After reception, the
fog node � needs to determine whether user k’s task should be pro-
cessed by itself or further offloaded to the cloud based on its current
computation load and the complexity of Tk. There are two cases:

1. Computing at the fog node. In such a case, let fF
k,� (in cy-

cles/second) be the number of CPU cycles allocated to exe-
cute Tk in every second. Then, the time delay induced by
computation is given by

τF
k,� =

Dk

fF
k,�

. (3)

1For simplicity, single data stream is assumed for each user, and the gen-
eralization to multiple data streams is straightforward.

2. Computing at the cloud. In such a case, the processing delay
consists of two parts. One is the transmission delay from the
fog node to the cloud, and the other is the computing time
at the cloud. We consider that fog � is connected with the
cloud via fronthaul with limited capacity C�,max (bits/s). Let
Ck,�(≤ C�,max) be the fronthaul capacity allocated by fog �
to further offload Tk to the cloud. Then, the total processing
delay at the cloud may be expressed as

τC
k,� =

Bk

Ck,�
+

Dk

fC
k

, (4)

where fC
k (in cycles/second) is the CPU cycles allocated by

the cloud to execute Tk in every second.

To differentiate the above two cases, we introduce a binary vari-
able βk ∈ {0, 1} to indicate where the computation is performed.
In particular,

βk =

{
0, if fog performs computation,

1, if the cloud performs computation.

Based on the above offloading model, our goal is to optimize
the communication and computational resources, including the UE-
Fog association αk,�, the task distribution βk, the beamforming vk,
the fronthaul link capacity allocation Ck,� and the CPU cycles fF

k,�

and fC
k , so that the worst transmission-plus-computation latency is

minimized:2

min
{vk,f

C
k ,βk}k,

{fF
k,�,Ck,�,αk,�}k,�

max
k∈K

L∑
�=1

αk,�

(
τT
k,� + (1− βk)τ

F
k,� + βkτ

C
k,�

)

s.t. fF
k,� ≤ αk,�(1− βk)F�,max, ∀ k, �, (5a)

K∑
k=1

fF
k,� ≤ F�,max, fF

k,� ≥ 0, ∀ k, �, (5b)

fC
k ≤ βkFC,max, ∀ k, (5c)

K∑
k=1

fC
k ≤ FC,max, fC

k ≥ 0, ∀ k, (5d)

Ck,� ≤ αk,�βkC�,max, ∀k, �, (5e)

K∑
k=1

Ck,� ≤ C�,max, Ck,� ≥ 0, ∀ k, �, (5f)

‖vk‖2 ≤ Pk, ∀ k, (5g)

αk,� ∈ {0, 1},
L∑

�=1

αk,� = 1, ∀ k, (5h)

βk ∈ {0, 1}, ∀ k, (5i)

where F�,max and FC,max are the maximum CPU cycles per second
of fog � and the cloud, respectively. The constraints (5a)-(5b) corre-
spond to the computation resource allocation at fog �. In particular,
(5a) implies that fog � will allocate CPU cycles for user k only if
αk,� = 1 and βk = 0, i.e., user k is associated with fog �, and mean-
while the task Tk is processed at fog �. Similarly, the constraints
(5c)-(5d) correspond to the computational resource allocation at the

2We consider a situation where the computing outputs contain very few
bits, and thus can be delivered to users with negligible time.
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cloud. The constraints (5e)-(5f) are introduced to account for the fi-
nite capacity of fronthaul, and (5g) limits the peak transmit powers
at the users.

Problem (5) is a mixed integer nonlinear program (MINP), which
is generally hard to solve. In the next section, we show that prob-
lem (5) can be reformulated as a discrete-variable-free form, and
continuous optimization algorithms can be employed to handle it.

3. A TRACTABLE APPROACH TO PROBLEM (5)

Theorem 1 The MINP problem (5) is equivalent to the following
continuous optimization problem:

min
{vk,f

C
k }k,

{fF
k,�,Ck,�,θ

F
k,�,θ

C
k,�}k,�

max
k∈K

L∑
�=1

(θFk,�(τ
T
k,� + τF

k,�)+θCk,�(τ
T
k,� + τC

k,�))

(6a)

s.t. θFk,� ≥ 0, θCk,� ≥ 0, ∀ k, �, (6b)

L∑
�=1

θFk,� + θCk,� = 1, ∀ k, (6c)

(5b), (5d), (5f) and (5g) satisfied. (6d)

Proof. Due to the page limit, we just give a sketched proof here. We
first show that problem (6) is a relaxation of problem (5), i.e., every
feasible solution of problem (5) is feasible for problem (6). Next, we
show that for any optimal solution of problem (6), we can convert it
into an optimal solution of problem (5) with the same optimal value,
thereby establishing the equivalence of the two problems. �

In view of Theorem 1, we consider solving problem (6). Let
us denote θk = [θFk,1, . . . , θ

F
k,L, θ

C
k,1, . . . , θ

C
k,L]

T ∈ R
2L and τk =

[τT
k,1+τF

k,1, . . . , τ
T
k,L+τF

k,L, τ
T
k,1+τC

k,1, . . . , τ
T
k,L+τC

k,L]
T ∈ R

2L.
Problem (6) is rewritten as

min
{vk,f

C
k ,τk,θk}k,

{Rk,�,f
F
k,�,Ck,�}k,�

max
k∈K

θT
k τk (7a)

s.t. Rk,� ≤ φk,�(V ), ∀ k, �, (7b)

τT
k,� ≥ Bk

Rk,�
, τF

k,� ≥ Dk

fF
k,�

, τC
k,� ≥ Bk

Ck,�
+

Dk

fC
k

,

∀ k, �, (7c)

(5b), (5d), (5f), (5g), (6b) and (6c) satisfied. (7d)

where V � {vk}k and φk,�(V ) � W log
(
1 + vH

k Hk,�

(
σ2
�I +∑

j �=k H
H
j,�vjv

H
j Hj,�

)−1
HH

k,�vk

)
. Notice that in (7b) and (7c)

we have changed the equalities in (1)-(4) as inequalities. This does
not incur any loss of optimality because the inequalities in (7b) and
(7c) must be active at the optimal solution; otherwise we can fur-
ther decrease τX

k,�, X ∈ {T, F,C} and increase Rk,� to get a lower
objective value.

The constraints (7c) and (7d) are convex, but the objective (7a)
and the constraint (7b) are still nonconvex. Since the objective can
be written as the following DC form

θT
k τk =

‖θk + τk‖2 − (‖θk‖2 + ‖τk‖2)
2

, (8)

DC programming can be employed to handle problem (7). Specifi-
cally, let X � {vk, f

C
k , τk,θk, Rk,�, f

F
k,�, Ck,�} be a collection of

optimization variables, and (θ
(0)
k , τ

(0)
k ) be some starting point. The

DC programming repeatedly performs the following updates

(θ
(t+1)
k , τ

(t+1)
k )

= argmin
X

max
k∈K

‖θk + τk‖2
2

− (θ
(t)
k )Tθk − (τ

(t)
k )T τk

s.t. (7b)− (7d) satisfied,

(9)

for t = 0, 1, 2, . . . until some stopping criterion is satisfied.
According to the classical DC convergence result [4], we have

that every limit point of the iterates generated by (9) is a stationary
point of problem (7). However, this convergence result holds un-
der the premise that each DC subproblem is optimally solved. As
for the considered problem (9), it may be hard to do so due to the
nonconvex constraints (7b). To circumvent this difficulty, we ap-
ply the WMMSE method [5] to find an approximate solution for (9).
Specifically, define uk,� ∈ C

M as the receive beamformer employed
at node � to receive user k’s signal. Then, the rate function φk,�(V )
can be represented as the following WMMSE form:

φk,�(V ) = max
uk,�,wk,�≥0

fk,�(uk,�, wk,�,V ) (10)

where fk,�(·) is defined as

fk,�(uk,�, wk,�,V ) = W (−wk,�ek,�(uk,�,V ) + log(wk,�) + 1)

and ek,�(uk,�,V ) is the MSE of estimating user k’s signal at fog �
with receive beamformer uk,�, which takes the following form:

ek,�(uk,�,V )

=‖1− uH
k,�H

H
k,�vk‖2 +

∑
j �=k

‖vH
j Hj,�uk,�‖2 + σ2

�‖uk,�‖2.

(11)
By substituting the WMMSE reformulation (10) into (9), the DC
subproblem is equivalently written as

min
X ,{uk,�,wk,�}k,�

max
k∈K

‖θk + τk‖2
2

− (θ
(t)
k )Tθk − (τ

(t)
k )T τk

s.t. Rk,� ≤ fk,�(uk,�, wk,�,V ), ∀ k, �,
(7c)− (7d) satisfied,

(12)
which can be efficiently handled by block coordinate descent (BCD)
method. In particular, given V the optimal uk,� and wk,� for (12) is
given by [5]

uk,� = (σ2
�I +

∑K
j=1 H

H
j,�vjv

H
j Hj,�)

−1HH
k,�vk, (13a)

wk,� = e−1
k,�(uk,�,V ). (13b)

Given (uk,�, wk,�), problem (12) is convex with respect to the re-
maining variables, and thus can be optimally solved, e.g., by CVX [13].
Theoretically speaking, the above BCD procedure needs to be per-
formed sufficiently large number of rounds in order to obtain a good
approximate solution for problem (9). However, this could incur
high computational complexity for each DC update. To tradeoff
the solution quality and the computational complexity, we propose
a computationally-cheap inexact DC algorithm for problem (7); see
Algorithm 1, where for the tth DC iteration, we perform only a small
number J(t) rounds of BCD update to compute an approximate solu-
tion for problem (9). The parameter J(t) controls the solution quality
for each DC iteration. Although Algorithm 1 performs DC itera-
tions with approximate solutions, the following theorem reveals that
the same convergence result as the exact DC (i.e., using the optimal
solution of (9) to perform DC iterations) holds.
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Theorem 2 Every limit point generated by the inexact DC is a sta-
tionary point of problem (7).

The idea of proving Theorem 2 is that the inexact DC update (even
for the case of J(t) = 1, ∀ t) is sufficient to provide certain improve-
ment for the objective (7a). By accumulating these improvements,
the DC iterations will finally reside at a stationary point of prob-
lem (7). The detailed proof is omitted due to the page limit.

Algorithm 1 An Inexact DC Algorithm for Solving Problem (7)

1: Initialize a feasible point (θ(0), τ (0),V (0)), a set of small posi-

tive integers {J(t)}t=0,1,... and set t = 0
2: repeat
3: Set V (t0) = V (t);
4: for j = 0, 1, . . . , J(t) do
5: Update u

(tj)

k,� according to (13a) with V = V (tj);

6: Update wk,� according to (13b) with (V ,uk,�) =

(V (tj),u
(tj)

k,� );

7: Update V (tj+1) by solving (12) with fixed

(uk,�, wk,�) = (u
(tj)

k,� , w
(tj)

k,� );
8: end for
9: Set V (t+1) = V (tj+1);

10: t← t+ 1
11: until some stopping criterion is satisfied
12: Output X (t).

4. SIMULATION RESULTS

In this section, we test the performance of Algorithm 1 by simula-
tions. The following simulation settings are used: Nj = 4, M� =
8, ∀ j ∈ K, � ∈ L, Pk = 103, ∀ k ∈ K, σ2

� = 1, ∀ � ∈
L, W = 20MHz and J(t) = 1, ∀ t. There are four fog nodes
and ten users which are randomly distributed in a cell with radius
1Km. The channels are randomly generated according to distance
model; the channel coefficients between user k and fog � are mod-
eled as zero mean circularly symmetric complex Gaussian vector
with (2000/dk,�)

3βk,� as variance for both real and imaginary di-
mensions, where 10 log 10(βk,�) ∼ CN (0, 64) is a real Gaussian
random variable modeling the shadowing effect.

Fig. 1 shows the convergence behavior of the proposed inexact
DC algorithm, where we have set FC,max = 2 × 103 (Giga cy-
cles/second), F1:4,max = [3, 4, 4, 5] × 102 (Giga cycles/second),
C1:4,max = [30, 35, 40, 50] (Mbps), D1:10 = [2, 2, 2, 6, 6, 6, 6, 8,
8, 8]×102 (Mega cycles) and B1:10 = [20, 20, 20, 40, 40, 40, 40, 60,
60, 60] (Kilobits). From Fig. 1 we see that the maximum delay
decreases monotonically and converges after 25 iterations. Fig. 2
shows the corresponding UE-Fog association and the task distribu-
tion after convergence of Fig. 1. The solid black line means that
the computation is performed at the fog, whereas the blue broken
line means that at the cloud. From the figure we see that the UE-
Fog association is not solely determined by the distance, and most
of the users offload tasks to the fourth fog node, which has the most
powerful communication and computational capabilities.

Fig. 3 studies the relationship between the number of users and
the maximum latency for different offloading strategies. Two UE-
Fog association strategies are compared, namely the minimum dis-
tance based association and the random-based association, under
which the fog nodes equally allocate their resources for their served
users. The number of users increases from 2 to 11 according to the

settings in Figs. 1-2. We see from Fig. 3 that the proposed inexact
DC outperforms the other offloading strategies, due to the optimized
UE-Fog association as well as more balanced task distributions be-
tween fog nodes and the cloud.

5. CONCLUSIONS

We have studied a multiuser computation offloading problem in fog-
radio access networks. To guarantee the worst delay performance
of all users, a joint communication and computational resource allo-
cation problem is formulated as a min-max mixed integer nonlinear
program. By leveraging a continuous reformulation, we develop an
efficient iterative solution for the min-max problem with stationary
convergence guarantee. Simulation results corroborate the effective-
ness of our proposed method.
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