
ON ERROR RESILIENT DESIGN OF PREDICTIVE SCALABLE CODING SYSTEMS

Ahmed ElShafiy, Tejaswi Nanjundaswamy, Sina Zamani, Kenneth Rose

Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
{a elshafiy, tejaswi, sinazmn, rose}@ece.ucsb.edu

ABSTRACT

Scalable coding is potentially useful in content distribution over un-
reliable channels, as it enables meaningful reconstruction when the
hierarchical bitstream is only partially received. However, its de-
ployment in conjunction with predictive coding may result in con-
siderable performance degradation when errors due to packet loss
propagate through the prediction loop. Despite this, most existing
predictive scalable coding techniques employ components whose de-
sign completely ignores the effects of unreliable channel conditions.
This paper proposes an efficient design technique for predictive scal-
able coding systems, which effectively accounts for: i) all available
information at a given layer by optimizing its prediction parameters
within an estimation-theoretic framework; ii) the uncertainty due to
packet loss via estimation and minimization of end-to-end distor-
tion. It further leverages an asymptotic closed loop design technique
for the predictor and quantizer modules, which provides the stability
benefits of open-loop design, while ultimately optimizing the sys-
tem for closed-loop operation. Experimental results provide com-
pelling evidence for the effectiveness of the approach, with consid-
erable performance gains over existing design techniques, in terms
of end-to-end signal-to-noise ratio.

Index Terms— Scalable Coding, End-to-End Distortion, Asymp-
totic Closed Loop design, Linear Prediction

1. INTRODUCTION

In many applications, it is beneficial to compress the source infor-
mation into a scalable bitstream. This paper focuses on scalability in
receiver signal-to-noise ratio (SNR), which allows decoding at dif-
ferent SNR quality levels. The scalable coding framework generates
multiple streams at differing target rates, such that a lower infor-
mation bitstream is embedded into a higher information bitstream
in a way that minimizes redundancy. The lowest information layer
is called the base layer (B-layer), while higher information layers
are called enhancement layers (E-layers). Unlike the wasteful al-
ternative of encoding each layer independently at the desired target
rate [1], scalable coding exploits the redundancies across layers. In
[2, 3, 4], each E-layer simply compresses the reconstruction error
of the preceding (lower) layer. However, the information provided
by previous reconstructed samples at the current E-layer is ignored.
In [5], both the B-layer and E-layer predictions are based on the
previous E-layer reconstructed samples, but since the B-layer de-
coder does not have access to E-layer reconstructed samples, this
results in a drift between encoder and decoder at the B-layer. The
estimation-theoretic (ET) approach was developed in our lab [6] to
effectively combine all available information, wherein E-layer pre-
diction is based on previous E-layer reconstructions, while also ac-
counting for the quantization interval specified by the B-layer. Note
that none of the above design techniques account for the effects of
packet loss in the network. When predictive compression systems

are deployed over lossy networks, a packet loss results in significant
error propagation through the prediction loop and may seriously de-
grade the quality of the reconstructed signal. Another early contri-
bution of our lab [7], in the area of video networking, is an optimal
technique to iteratively estimate, at pixel level precision, the end-to-
end distortion (EED) experienced at the decoder. The EED estimate
is then used to optimize encoder decisions including switching be-
tween inter/intra-modes. For a single-layer (non-scalable) setting,
we recently proposed in [8, 9] techniques to design a first order
predictor and quantizer to minimize EED. This paper proposes a
framework to accurately estimate and minimize EED for the scal-
able coder setting. Note that the scalable coder setting poses major
additional EED challenges given the complex inter-layer dependen-
cies, and the non-linear operations required for optimal prediction at
enhancement layers, which must all be accounted for to exploit all
available information.

Predictor and quantizer design for predictive coding, is an old
problem for which many techniques have been developed [10, 11,
12]. The open-loop (OL) approach computes the prediction error
training sequence, used to design the quantizer, based on the original
source sequence, while the closed-loop (CL) approach uses decoder
reconstructed samples as reference for prediction in an iterative man-
ner. OL suffers from mismatch between the statistics used for train-
ing and statistics seen during operation. CL suffers from instability
in the predictor and quantizer design procedure, often causing con-
siderable performance degradation, especially at low bit rates. The
asymptotic closed-loop (ACL) design [12], which we leverage in this
work, employs a subterfuge to leverage the advantages of both OL
and CL, where the prediction sequence is based on the reconstructed
samples generated at a previous iteration. Hence, in each iteration
the ACL quantizer is effectively designed in a stable OL fashion,
while at convergence the reconstructed samples are unchanged from
iteration to iteration, i.e., ACL is asymptotically equivalent to CL.
Therefore, ACL design enjoys the stability of OL approach as well
as ultimately optimizing the system for CL operation.

In summary, this paper proposes a novel technique for designing
scalable coder predictors and quantizers at all layers, which accounts
for potential packet loss by estimating and minimizing EED. The E-
layer predictor effectively combines all available information by em-
ploying the ET paradigm, and ACL quantizer design is employed to
circumvent CL instabilities. Experimental results in Section 5 show
considerable performance gains over existing design methods, which
grow with increase in packet loss rate. The remaining of this paper
is organized as follows; the scalable coding framework and problem
statement are discussed in Section 2. Relevant background is briefly
reviewed in Section 3. Section 4 provides a detailed description of
the proposed scalable coding framework. Experimental results and
conclusions are presented in Sections 5 and 6, respectively.

3729978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



Fig. 1. High level Architecture of Scalable Coder.

2. PROBLEM STATEMENT

Without loss of generality, a two-layer predictive scalable coding
framework is considered (as shown in Fig. 1). The source sequence
is denoted by xn, 0 ≤ n < N . The B-layer structure follows [8, 9]
to account for potential packet loss. Let (An, Bn) be the quantizer
interval corresponding to êbe,n, the B-layer quantized prediction er-
rors. Throughout this paper, superscripts specify the relevant layer:
B-layer (b) or E-layer (e), and subscripts are used to specify location:
encoder (e) or decoder (d). B-layer packets are assumed to be lost
independently with probability pb. If the packet is lost, an error con-
cealment method is assumed where êbe,n is set to zero. The available
information at the E-layer includes the B-layer current reconstructed
sample x̂bd,n, as well as the previous E-layer reconstructed samples(
x̂ed,n−1, x̂

e
d,n−2, . . .

)
. The E-layer encoder combines the available

information to generate the predicted sequence x̃ee,n. The prediction
errors are quantized into êee,n and the indices of E-layer quantizer
intervals (Cn, Dn) are transmitted over the channel. The E-layer
packets are dropped independently with probability pe. The E-layer
decoder combines the available information from the received pack-
ets to generate the reconstructed sequence x̂ed,n. Considering the
uncertainty due to packet loss, similar to [7], the EED at the E-layer
can be computed according to

E {D} =

N−1∑
n=0

E
{(
xn − x̂ed,n

)2}
=

N−1∑
n=0

x2n − 2xnE
{
x̂ed,n

}
+ E

{(
x̂ed,n

)2} · (1)

Note that due to the lossy nature of the channel, x̂ed,n is viewed as
a random variable by the encoder. The problem at hand is to design
the scalable coder components (predictors and quantizers) to mini-
mize EED experienced at each layer, while effectively utilizing all
the information available at that layer.

3. RELEVANT BACKGROUND

3.1. Scalable Coding

In scalable coding, the B-layer structure is similar to a standard pre-
dictive compression system. The more challenging problem is that
of how to combine the available information at the E-layer to min-
imize the reconstruction distortion. An optimal ET approach was
proposed in [6] for the case of an ideal channel, where encoder and
decoder are fully synchronized. The ET approach is optimal in the
sense that it minimizes the mean square prediction and reconstruc-
tion errors. Given the B-layer current quantizer interval (An, Bn)
and the previous E-layer reconstructed samples {x̂en−1, x̂

e
n−2, . . . },

the predicted sequence at the E-layer is calculated according to

x̃en =E
{
xn|xn∈

(
x̃bn+An, x̃

b
n+Bn

)
, x̂en−1, x̂

e
n−2, . . .

}
, (2)

where x̃bn is the current sample prediction at B-layer. The E-layer
prediction error is quantized, and let (Cn, Dn) be the E-layer quan-
tizer interval. Thus, all the available information can be compactly
represented by,

En = max
[
x̃bn +An, x̃

e
n + Cn

]
,

Fn = min
[
x̃bn +Bn, x̃

e
n +Dn

]
,

(3)

xn ∈ (En, Fn) . (4)

Therefore, the optimal E-layer reconstruction is obtained as,

x̂en = E {xn|xn∈(En, Fn) , x̂en−1, x̂
e
n−2, . . . } · (5)

3.2. End-to-end distortion estimation and prediction

In [7], an iterative approach was proposed to accurately estimate the
decoder distortion at pixel level precision in the presence of packet
loss in video coding applications. EED (1) is computed for pixel j
in frame n, based on the first and second moments of the decoder
reconstruction, i.e., E{xjd,n}, E{(x

j
d,n)2}. In [8, 9] we showed how

EED can be estimated and minimized for a first order linear predic-
tive system when operating over unreliable channels. Specifically,
the prediction at the encoder side is based on the first moment of the
decoder reconstructed samples, i.e.,

x̃be,n = αbE
{
x̂bd,n−1

}
. (6)

The first and second moments were iteratively calculated accounting
for possible packet loss as follows

E
{
x̂bd,n

}
=(1− pb)êbe,n + αbE

{
x̂bd,n−1

}
,

E
{(

x̂bd,n

)2}
=(1− pb)

(
êbe,n + 2αbE

{
x̂bd,n−1

})
+

α2
bE
{(

x̂bd,n−1

)2}
,

(7)

where αb is the prediction coefficient. It was shown that the optimal
prediction coefficient, minimizing EED, is

α∗b =

N−1∑
n=0

E
{
x̂bd,n−1

} (
xn − (1− pb)êbe,n

)
N−1∑
n=0

E
{(

x̂bd,n−1

)2} · (8)

4. PROPOSED SCALABLE CODING FRAMEWORK

4.1. Base layer operation

To account for potential packet loss, the B-layer employed in our
design is similar to the error resilient predictive compression system
of [8]. The prediction coefficient used at the B-layer is calculated
according to (8). The architecture of the B-layer is shown in Fig. 2.
The ACL design technique is used at both layers to estimate the pre-
dictors and quantizers parameters.

4.2. Enhancement layer encoder operation

At the E-layer the encoder predictor that combines all the informa-
tion provided by the current sample B-layer quantizer interval as well
as the first moments of the previous E-layer reconstructed samples,
is given by
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Fig. 2. Architecture of the Proposed Scalable Coder.

x̃ee,n =E
{
xn|xn ∈

(
x̃be,n +An, x̃

b
e,n +Bn

)
,

E
{
x̂ed,n−1

}
,E
{
x̂ed,n−2

}
, . . .

}
·

(9)

The expression in (9) can be rewritten as first order linear predic-
tion based only on previous E-layer reconstructed sample, plus an
innovation term as follows

x̃ee,n=αeE
{
x̂ed,n−1

}
+

E
{
ke,n|ke,n∈(L1, R1) ,E

{̂
xed,n−1

}
,E
{̂
xed,n−2

}
, . . .

}
,

L1 =x̃be,n +An − αeE
{
x̂ed,n−1

}
,

R1 =x̃be,n +Bn − αeE
{
x̂ed,n−1

}
,

(10)
where αe is the E-layer linear prediction coefficient. The sequence
ke,n is the encoder residual errors after linear prediction operation,
i.e.,

ke,n = xn − αeE
{
x̂ed,n−1

}
. (11)

The prediction errors eee,n = xn − x̃ee,n are quantized, and the E-
layer quantizer intervals (Cn, Dn) are obtained. The decoder re-
ceives the base and enhancement layers’ packets with probabilities
(1− pb), and (1− pe) respectively. Let

Ee,n = max
[
x̃be,n +An, x̃

e
e,n + Cn

]
,

Fe,n = min
[
x̃be,n +Bn, x̃

e
e,n +Dn

]
.

(12)

Thus, all the available information at the decoder can be summarized
as

xn ∈ (Ee,n, Fe,n) · (13)
Note that even if the current sample packets were received, the de-
coder is not guaranteed to compute correctly the interval (Ee,n, Fe,n)
due to the possible prediction mismatch between encoder and de-
coder. The decoder is not expected to be perfectly synchronized
with the encoder in unreliable networks.

4.3. Enhancement Layer decoder operation
The proposed E-layer reconstruction can be obtained according to

x̂ed,n =E
{
xn|xn∈(Ed,n, Fd,n), x̂ed,n−1, x̂

e
d,n−1, . . .

}
,

Ed,n = max
[
x̃bd,n +An, x̃

e
d,n + Cn

]
,

Fd,n = min
[
x̃bd,n +Bn, x̃

e
d,n +Dn

]
,

(14)

with

x̃bd,n=αbx̂
b
d,n−1,

x̃ed,n=αex̂
e
d,n−1+

E
{
ke,n|ke,n∈ (L2, R2) , x̂ed,n−1, x̂

e
d,n−2, . . .

}
,

L2 =x̃bd,n +An − αex̂
e
d,n−1,

R2 =x̃bd,n +Bn − αex̂
e
d,n−1·

(15)

Rewriting the reconstruction expression as a linear prediction term
plus an innovation term we obtain

x̂ed,n=αex̂
e
d,n−1+

E
{
kd,n|kd,n∈ (L3, R3) , x̂ed,n−1, x̂

e
d,n−2, . . .

}
,

L3 =Ed,n − αex̂
e
d,n−1,

R3 =Fd,n − αex̂
e
d,n−1,

(16)

where kd,n is the decoder residual errors after linear prediction op-
eration, i.e.,

kd,n = xn − αex̂
e
d,n−1. (17)

For the ease of notation denote the centroid of the conditional PDF
of kd,n in the interval (L− αex̂

e
d,n−1, R− αex̂d,n−1) as

k̄
(L,R)
d,n =E

{
kd,n|kd,n∈

(
L−αex̂

e
d,n−1, R−αex̂

e
d,n−1

)
,

x̂ed,n−1, x̂
e
d,n−2, . . .

}
,

(18)

where L,R ∈ R. Therefore, if both layers’ packets are received,
combining (16) and (17) leads to

x̂ed,n=αex̂
e
d,n−1 + k̄

(Ed,n,Fd,n)

d,n . (19)

Next we consider the operation of the decoder when packets are
dropped. If the B-layer packet is lost, the interval (Ed,n, Fd,n) can-
not be computed by the decoder, and a simple error concealment is
assumed where (Ed,n, Fd,n) is set to (−∞,∞), i.e., no informa-
tion about xn is available. If only the E-layer packet is lost, then
(Ed,n, Fd,n) is set to (x̃bd,n + An, x̃

b
d,n + Bn), which captures the

information provided by the B-layer. Define

(Ad,n, Bd,n) = (x̃bd,n +An, x̃
b
d,n +Bn). (20)

Hence, denoting “with probability” by w.p., we write:

x̂ed,n=


αex̂

e
d,n−1 + k̄

(Ed,n,Fd,n)

d,n w.p. (1−pb)(1−pe)

αex̂
e
d,n−1 + k̄

(Ad,n,Bd,n)

d,n w.p. (1−pb)pe
αex̂

e
d,n−1 + k̄

(−∞,∞)
d,n w.p. pb

(21)

4.4. End-to-end distortion and prediction coefficient estimation

It is worth noting that the encoder does not have access to x̂ed,n in
unreliable networks, and must treat it as a random variable. The first
and second moments of x̂ed,n are investigated in the following anal-
ysis. Considering (21), the first moment of the E-layer reconstructed
samples can be obtained as

E
{
x̂ed,n

}
=αeE

{
x̂ed,n−1

}
+ E

{
pbk̄

(−∞,∞)
d,n

}
+

E
{
pe(1− pb)k̄

(Ad,n,Bd,n)

d,n

}
+

E
{

(1− pb)(1− pe)k̄
(Ed,n,Fd,n)

d,n

}
.

(22)
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The expectation of k̄(L,R)
d,n over the statistics of the reconstructed E-

layer samples can be approximated as

E
{
k̄
(L,R)
d,n

}
≈

E
{
kd,n|kd,n∈

(
L−αeE

{
x̂ed,n−1

}
, R−αeE

{
x̂ed,n−1

})
,

E
{
x̂ed,n−1

}
,E
{
x̂ed,n−2

}
, . . .

}
,

(23)
which is a reasonable approximation if k̄(L,R)

d,n is assumed to have
locally linear dependence on previous reconstructed samples. For
ease of notation, define

k̂d,n =pbE
{
k̄
(−∞,∞)
d,n

}
+ pe(1−pb)E

{
k̄
(Ad,n,Bd,n)

d,n

}
+ (1−pe)(1−pb)E

{
k̄
(Ed,n,Fd,n)

d,n

}
·

(24)

Furthermore, the centroids k̄(L,R)
d,n are assumed to be statistically un-

correlated with the previous E-layer reconstructed sample x̂ed,n−1.
Hence, the second moment of the E-layer reconstructed samples can
be written as

E
{(
x̂ed,n

)2}
=α2

eE
{(
x̂ed,n−1

)2}
+ E

{
pb
(
k̄
(−∞,∞)
d,n

)2}
+ E

{
pe(1−pb)

(
k̄
(Ad,n,Bd,n)

d,n

)2}
+ E

{
(1−pb)(1−pe)

(
k̄
(Ed,n,Fd,n)

d,n

)2}
+ 2αeE

{
x̂ed,n−1

}
k̂d,n.

(25)

The EED at the E-layer is given by

E {D} =

N−1∑
n=0

x2n − 2xnE
{
x̂ed,n

}
+ E

{(
x̂ed,n

)2}
. (26)

It follows that the prediction coefficient that minimizes the EED is

α∗e =

N−1∑
n=0

E
{
x̂ed,n−1

}(
xn − k̂d,n

)
N−1∑
n=0

E
{(

x̂ed,n−1

)2} · (27)

To obtain these initial results, dependence between k̄(L,R)
d,n and αe

was neglected when deriving the expression in (27). While rigor-
ous analysis of such possible dependence is currently underway, the
validity of the approximations in this section is strongly supported
by the experimental results of Section 5, where the proposed ap-
proach provides considerable performance gains. The architecture
of the scalable coder is depicted in Fig. 2. The EED block com-
putes E

{
x̂ed,n

}
as shown in (22). The E-layer predictor is denoted

as PE and it operates according to (10). Additionally, the function
of the pre-processing block at the E-layer decoder (PRE) is to com-
pute k̄(L,R)

d,n , where (L,R) depends on the current channel event as
shown in (21).

5. EXPERIMENTAL RESULTS

The experimental dataset consisted of the 6 speech files available
in the EBU SQAM database [13]. About 75% of the speech files
was used in the training phase and the remaining 25% was used as
test data. It should be noted that although experimental results are
presented for speech files, the approach is general and applicable to
any source with memory. Lloyd’s Algorithm was used to design the
Entropy Constrained Scalar Quantizer (ECSQ). In our simulations,
we compared the following three different scalable coders:

Probability of Packet Drop at B-Layer pb −→

0.05 0.075 0.1 0.125 0.15 0.175 0.2

S
N
R

(d
B
)
−
→

6

8

10

12

14

16

18

C3 B-Layer
C2 B-Layer
C1 B-Layer
C3 E-Layer
C2 E-Layer
C1 E-Layer

Fig. 3. SNR performance of the proposed scalable coder design (C3)
compared to existing design techniques (C1 and C2). Dashed lines
represent B-layer performance, while solid lines correspond to E-
layer. The average rates at B-layer and E-layer for all coders are 0.8
bits/sample and 1.6 bits/sample, respectively.

C1: The B-layer coder’s predictor design completely ignores
packet losses, similar to [11]. The E-layer coder employs
direct quantization on the B-layer reconstruction errors, i.e,
employ residual coding (e.g. [2, 3]). We consider CL ap-
proach to obtain the training sequence for designing ECSQs
at both layers. This coder is the typical implementation of the
scalable predictive coder.

C2: The B-layer here is similar to C1. However, the E-layer oper-
ation follows the ET approach in [6]. ACL design approach
is used at both layers. Hence, this coder adds ET and ACL
components to C1.

C3: The proposed approach discussed in Section 4. This coder
adds EED estimation and minimization framework to C2.

The performance of the scalable coders is evaluated in terms of SNR
observed at the decoder, thus accounting for quantization errors,
packet loss and error propagation. The SNR is averaged over 20
different packet loss patterns. The loss patterns are generated inde-
pendently for the two layers, while the probability of packet loss at
E-layer layer is assumed to be twice the probability of packet loss
at B-layer, i.e., pe = 2pb. The B-layer and E-layer quantizers in all
scalable coders were designed to maintain 0.8 average bits per sam-
ple. The number of quantizer levels was allowed to vary, in order to
achieve the target rate. Samples of the the sequences ke,n and kd,n
were obtained during the training process; these samples were used
to compute the conditional centroids in (10) and (18). Fig. 3 depicts
the SNRs achieved by the competing methods versus packet loss
rate. Clearly, the proposed approach consistently outperforms its
competitors, offering up to 2.2 dB and 3.3 dB gains in SNR over C2
and C1, respectively. The SNR gains grow with increase in packet
loss rate (pb), as the ability to fully account for loss in the network
becomes critical.

6. CONCLUSION
In this paper, a new design technique for predictive scalable coders
is proposed, which effectively utilizes all available information at
enhancement layers, circumvents instability challenges in the design
of predictor and quantizer parameters, and incorporates optimal end-
to-end distortion estimation to fully account for potential loss in the
network. Experimental results show consistent and substantial gains
over existing techniques, providing compelling evidence for the util-
ity of the approach.

3732



7. REFERENCES

[1] B. Girod, U. Horn, and B. Belzer, Scalable Video Coding With
Multiscale Motion Compensation And Unequal Error Protec-
tion, Multimedia Communications and Video Coding, 1996.

[2] N. S. Jayant and P. Noll, Digital Coding of Waveforms: Princi-
ples and Applications to Speech and Video, Englewoods Cliffs,
NJ: Prentice-Hall, 1984.

[3] R. Aravind, M.R. Civanlar., and A.R. Reibman, “Packet loss
resilience of MPEG-2 scalable video coding algorithms,” IEEE
Transactions on Circuits for Video Technology, vol. 6, pp. 426–
435, 1996.

[4] D. Wilson and M. Ghanbari, “Transmission of SNR scalable
two layer MPEG-2 coded video through ATM networks,” in
Proc. 7th Int. Workshop Packet Video, 1997, pp. 426–435.

[5] M. Ghanbari and V. Seferidis, “Efficient H.261-based two-
layer video codecs for atm networks,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 5, pp. 171–
175, 1995.

[6] K. Rose and S.L. Regunathan, “Toward optimality in scalable
predictive coding,” IEEE Transactions on Image Processing,
vol. 10, pp. 965–976, 2001.

[7] R. Zhang, S.L. Regunathan, and K. Rose, “Video coding with
optimal inter/intra-mode switching for packet loss resilience,”
IEEE Journal on Selected Areas in Communications, vol. 18,
pp. 966–976, 2000.

[8] S. Zamani, T. Nanjundaswamy, and K. Rose, “Asymptotic
closed-loop design of error resilient predictive compression
systems,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2016.

[9] B. Vishwanath, T. Nanjundaswamy, S. Zamani, and K. Rose,
“Deterministic annealing based design of error resilient predic-
tive compression systems,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2017.

[10] V. Cuperman and A. Gersho, “Vector predictive coding of
speech at 16 kbits/s,” IEEE Transactions on Communications,
vol. 33, pp. 685–696, 1985.

[11] P.-C. Chang and R. Gray, “Gradient algorithms for designing
predictive vector quantizers,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 34, pp. 679–690, 1986.

[12] H. Khalil, K. Rose, and S.L. Regunathan, “The asymp-
totic closed-loop approach to predictive vector quantizer de-
sign with application in video coding,” IEEE Transactions on
Image Processing, vol. 10, pp. 15–23, 2001.

[13] G Waters, “Sound quality assessment material recordings for
subjective tests,” Tech. Rep., European Broadcasting Union
(EBU), 1988.

3733


