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ABSTRACT

1-bit Delta-Sigma-based transmitters enable constant envelop

transmissions. This paper synthesizes a stable 1-bit Delta-

Sigma modulator that minimizes the mean squared quantiza-

tion error at the output of a Delta-Sigma-based transmitter.

The 1-bit Delta-Sigma modulator is designed by solving con-

vex optimization problems, which can be solved numerically.

A numerical example is provided to demonstrate our synthe-

sis.

Index Terms— Delta-Sigma modulator, quantizer, con-

stant envelop

1. INTRODUCTION

Efficient power amplifiers (PAs) are essential for modern

wireless communications. For example, the massive multiple-

input multiple-output (MIMO) system, which has been at-

tracting much attention as one of the technologies for 5G

wireless communication systems [1], utilizes a large num-

ber of antennas and then requires a large number of radio-

frequency (RF) chains including power amplifiers. Reason-

able amplifiers are necessary for the deployment of massive

MIMO systems [2].

To capture the variation of a signal, the peak to average

power ratio (PAPR) of a signal is defined as the peak power

divided by its average power. For signals with large PAPR,

the efficiency of the power amplifier is low, since the power

amplifier has to be operated in a backed off. Moreover, the

power amplifier should be linear up to the maximum input

power to avoid distortion. The large backoff and the linearity

increase the complexity of the power amplifier, which also

increases its implementation cost.

After encoding an analog signal to a digital signal, one

may utilize phase shift-keying (PSK), which is well-known

as a constant envelop transmission. However, the high-order

PSK modulation exhibits a poor bit error rate (BER) perfor-

mance. Another possible remedy is the transmission with

Delta-Sigma (ΔΣ) modulators [3], where the information sig-

nal is encoded to a signal which takes only a few discrete val-

ues. If the signal is encoded to a bi-level signal, the power

amplifier works at its maximum efficiency without any power

backoff.

In a 1-bit ΔΣ modulator, which consists of a 1-bit uni-

form quantizer and a feedback filter, the information signal is

oversampled and is fed back. The quantization error of the

1-bit quantizer is processed with an error feedback filter and

then the filtered error is added to the input signal, which is

fed into the 1-bit quantizer. (see Fig. 2 in Section II). Then,

the output of the ΔΣ modulator is carrier-modulated and is

amplified. Finally, the signal is filtered by a bandpass filter

to reconstruct the information signal and to reduce the ef-

fect of the quantization error. Since ΔΣ modulators can be

implemented digitally, all-digital transmitter is possible with

ΔΣ-based transmitters [4, 5], which is also suitable to realize

software defined radios.

One of the main disadvantages of ΔΣ-based transmitters

is the quantization noise. The quantization noise is amplified

along with the information signal, which implies that a ΔΣ-

based transmitter is not energy efficient. Moreover, although

the filtered quantization noise is located outside of the pass-

pand of the information signal, it should be reduced by a sharp

bandpass filter to avoid affecting to adjacent bands. For ΔΣ-

based transmitters, the coefficient of a second-order feedback

filter is designed in [6] to reduce the effect of the quantization

noise. However, it does not consider the overloading of the

1-bit quantizer. Once an overloading occurs, the ΔΣ modula-

tor becomes unstable and the system may suffer from a burst

error. Thus, the overloading should be avoided.

This paper designs a stable 1-bit ΔΣ modulator that mini-

mizes the mean squared error (MSE) of the transmitted signal.

Under a condition for the no-overloading of the 1-bit quan-

tizer, the finite impulse response (FIR) filter of the ΔΣ modu-

lator is optimized. Then, the stability of our ΔΣ-based trans-

mitter is guaranteed. The 1-bit ΔΣ modulator is designed

by using convex optimization problems. Simulations are pro-

vided to see the performance of our designed modulator.

Notations: The z transform of a sequence (or a vector) h =
{hk}∞k=0 is denoted as H[z] =

∑∞
k=0 hkz

−k. The output

sequence y of an linear and time-invariant (LTI) system H[z]
with the input sequence x (i.e. y = h ∗ x where ∗ denotes

the convolution) is expressed as y = H[z]x. The l∞ signal

space is defined as the set of all vectors x = {xk}∞k=0 with

real components xk such that ‖x‖∞ := supk |xk| < +∞.

The l1 norm of an single-input and single-output system H[z]
is defined as ‖H[z]‖ =

∑∞
k=0 |hk|.
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Fig. 1: ΔΣ-based transmitter.

2. ΔΣ-BASED TRANSMITTERS

Fig. 1 shows a simplified schematic diagram for a ΔΣ-

based transmitter. The discrete-time complex-valued input

s to the ΔΣ modulator is assumed to be bandlimitted in

[−π/OSR, π/OSR], where OSR is the oversampling ratio

which is a positive integer.

The orthogonal quadrature components of s are indepen-

dently quantized by two 1-bit ΔΣ modulators. Then, they are

upconverted to the carrier frequency fc. After the RF signal is

amplified by the power amplifier (PA), the signal is processed

by a band-pass filer (BPF) to reconstruct the information sig-

nal as well as to remove the effects of the quantization error.

We only consider the in-phase component of the infor-

mation symbol, since the orthogonal quadrature components

are processed independently in two ΔΣ modulators. We can

assume without loss of generality that the input signal has a

symmetric magnitude limitation described as

‖x‖∞ ≤ Lx. (1)

Fig. 2 illustrates a ΔΣ modulator, where Q(·) stands for

the 1-bit quantizer, x = {x0, x1, . . . , } and v = {v0, v1, . . . , }
are the input and the output of the ΔΣ modulator, respec-

tively. Let L > 0 be the saturation (or equivalently quantiza-

tion) level. Then, the 1-bit quantizer is defined as

Q(u) =

{
L, u ≥ 0
−L, u < 0.

(2)

The overloading occurs if |u| > 2L. The round-off error of

the 1-bit quantizer is defined as w = v − u. If there is no

overloading, the round-off error w is bounded such as

‖w‖∞ ≤ L. (3)

Let us denote the filter R[z] as R[z] =
∑

k rkz
−k, whose

first coefficient r0 is 1. The round-off error is filtered by the

error feedback filter R[z] − 1. The filtered round-off error is

fed back to the input to the 1-bit quantizer. Then, the input to

the 1-bit quantizer can be expressed as u = x+ (R[z]− 1)w.

It follows that the output and the quantization error e of the

ΔΣ modulator are respectively given by v = x + R[z]w and

e = v − x = R[z]w.

� �+ �� Q(·) ��

� ��

�R[z]− 1

�
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Fig. 2: ΔΣ modulator.

After being processed by 1-bit ΔΣ modulators, the or-

thogonal quadrature components are modulated to a RF sig-

nal, which is amplified by a power amplifier. Since the out-

puts of 1-bit ΔΣ modulators only take two values, the RF

signal has a constant envelop and hence its the peak to av-

erage power ratio (PAPR) is a unit. Thus, we can utilize a

reasonable and efficient power amplifier. On the other hand,

since the quantization noise has to be amplified along with the

information signal, the energy efficiency is degraded.

Assuming that the power amplifier is linear, we denote the

baseband equivalent discrete-time channel from the output of

the ΔΣ modulator to the transmit antenna as H[z]. Then, the

transmitted signal y can be expressed in the baseband as

y = H[z]x+ ε (4)

where ε it the filtered quantization noise given by

ε = H[z]e = H[z]R[z]w. (5)

The filter R[z] is called a noise shaping filter or a noise trans-

fer function [7]. The filter H[z] should not change the input

signal s except for a delay D, that is, it should be a lowpass

filter that satisfies H[z]x ≈ z−Dx.

When an overloading occurs, the round-off error w may

take a large value. Since the round-off error w is fed back, the

input to the 1-bit quantizer can take a large value, which may

result in another overloading. Successive overloading may

unstabilize the ΔΣ modulator and lead to a burst error at the

receiver. Contrary, if there is no overloading, the round-off

error w is bounded. Thus, we can summarize that:

Proposition 1. The 1-bit ΔΣ modulator is bounded-input
and bounded-output stable if there is no overloading.

It is easy to see from the triangle inequality ‖x+ η‖∞ ≤
‖x‖∞ + ‖η‖∞ that if

Lx + ‖R[z]− 1‖1L ≤ 2L, (6)

then no-overloading happens at the 1-bit quantizer. On the

other hand, to regulate the power of the quantization noise

e = R[z]w, we impose

‖R[z]w‖∞ = ‖R[z]‖1L ≤ Ce (7)
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for a positive ce ≥ L. We note that ‖R[z]−1‖1 = ‖R[z]‖1−1,

since the first coefficient of R[z] is 1. Then, it follows from

(6) and (7) that a sufficient condition for the stability is given

by

‖R[z]− 1‖1 ≤ min (2− Lx/L,Ce/L− 1) . (8)

3. DESIGN OF ΔΣ MODULATORS

We would like to design the error feedback filter and find the

optimal value for L. However, it is difficult to simultaneously

deal with them, since there is the product ‖R[z]−1‖1L in the

constraint (6).

To obtain a reasonable feedback filter and a reasonable

value for L, let us assume that:

Assumption 1. The quantization error signal w is a white
random signal with a zero mean and a variance σ2

w and un-
correlated with the input of the uniform quantizer.

Assumption 1 approximately holds true for uniform quan-

tizers having sufficiently small quantization interval and suf-

ficiently large number of quantization levels. It is often as-

sumed also for ΔΣ modulators, although it is not always sat-

isfied for ΔΣ modulators [8]. Resorting to Assumption 1, let

us first design the optimal feedback filter that minimizes the

mean squared value for the quantization error ε for a given L.

Under Assumption 1, the mean squared error (MSE) of

(5) is given by

‖H[z]R[z]‖22σ2
w (9)

where the L2 norm ‖ · ‖2 is defined as

‖G[z]‖22 =
1

2π

∫ π

−π

G∗[ejω]G[ejω]dω (10)

with c∗ being the complex conjugate of c. The optimal feed-

back filter that minimizes the MSE is developed in [9]. How-

ever no-overloading is not guaranteed.

To minimize the quantization noise, the quantization level

L should be set to be its smallest value under the constraint

(6). Then, we have

L =
Lx

2− ‖R[z]− 1‖1 . (11)

If the quantization noise is uniformly distributed, the MSE

can be expressed as

L2
x

3

‖H[z]R[z]‖22
(2− ‖R[z]− 1‖1)2 . (12)

We cannot minimize the MSE directly. Instead, let us con-

sider the minimization of ‖H[z]R[z]‖22 under the constraint

‖R[z]− 1‖1 ≤ γη, (13)

which can be formulated as

min
R[z]∈RH∞,με,γη

με (14)

subject to R[∞] = 1, (8) and

‖H[z]R[z]‖22 < με (15)

where RH∞ is the set of stable proper rational functions with

real coefficients.

Still, the problem cannot be solved, since the l1 norm can-

not be evaluated easily. To design noise shaping filters, we

restrict R[z] to have a finite impulse response (FIR) and cast

the design problem into a convex optimization, which can be

solved numerically.

Let R[z] be an FIR filter of order n, which we denote as

R[z] = 1+
∑n

k=1 rkz
−k. The composite system H[z]R[z] can

be expressed as a state-space realization whose state-space

matrices are

A =

[
Ar BrCh

0 Ah

]
, B =

[
Br

Bh

]
(16)

C =
[
Cr DrCh

]
, D = Dh, (17)

where (Ah, Bh, Ch, Dh) are state-space matrices of H[z] and

(Ar, Br, Cr, Dr) are state-space matrices of R[z] given by

Ar =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Br =

⎡
⎢⎢⎢⎣
0
...

0
1

⎤
⎥⎥⎥⎦ (18)

Cr =
[
rn, rn−1, · · · r1

]
, Dr = 1. (19)

For a given H[z], the parameters to be optimized are only

(r1, . . . , rn).
The inequality (15) can be expressed by linear matrix in-

equalities (LMIs). It is known that (15) holds true if and only

if there exits a positive definite matrix P that satisfy [10]⎡
⎣ P PA PB

ATP P 0
BTP 0 1

⎤
⎦ 	 0 (20)

⎡
⎣ με C D

CT P 0
DT 0 1

⎤
⎦ 	 0.. (21)

On the other hand, the constraint (8) can be written as

n∑
k=1

|rk| ≤ γη. (22)

Introducing non-negative auxiliary variables r̄k ≥ 0 for k =
1, . . . , n such that r̄k = |rk|, we can express (22) as in [11]

n∑
k=1

r̄k ≤ γη (23)

− r̄k ≤ rk ≤ r̄k for k = 1, . . . , n (24)

r̄k ≥ 0 for k = 1, . . . , n. (25)
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Fig. 3: Frequency responses of H[z] and R[z].

Since the constraints are convex, the problem is cast into

the following convex optimization:

min
r1,...,rn,r̄1,...,r̄n,με,γη

με (26)

subject to (20), (21), (23), (24), and (25).

Now, to minimize the MSE (12), we utilize the optimiza-

tion above. For a fixed upper bound γη for ‖R[z] − 1‖1, we

can obtain the minimum H2 norm for H[z]R[z] by solving

the optimization problem. Changing γη from 0 to min(2 −
Lx/L,Ce/L−1) with a small step size and solving the prob-

lem with each value for γη , we can numerically find the rela-

tionship between ‖R[z] − 1‖1 and ‖H[z]R[z]‖2, from which

we can obtain the minimum MSE and L that achieves the

minimum MSE.

4. DESIGN EXAMPLE

For our lowpass filter H[z], we utilize a 5th-order lowpass

Butterworth filter with normalized cutoff frequency 0.05. Fig.

3 depicts the frequency response H[z] when sampling fre-

quency is 100 Hz.

We generate a lowpass signal by filtering a white noise

with an 8th-order lowpass Butterworth filter with normalized

cutoff frequency 0.025. The l∞ norm of the lowpass signal is

normalized to be unit, that is, Lx = 1 and the length of the

FIR filter R[z] is set to be 15. We set Ce = 2 in (7) and then

the range of the saturation level L is given by [1/2, 2] from

(8). Accordingly, the range of γη is [0, 1].

We change the value of γη from 0 to 1 with a step size of

0.1. For each value, we solve the optimization problem (26)

by CVX [12], a package for specifying and solving convex

programs. Fig. 4 shows the MSE as a function of ‖R[z] −
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Fig. 4: MSE as a function of ‖R[z]− 1‖1.
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Fig. 5: Output signal H[z]x and error ε in (4).

1‖1. We find that γη = 1 or, equivalently, L = 1 gives the

minimum MSE.

We input the lowpass signal x to the designed ΔΣ mod-

ulator with L = 1 that attains the minimum MSE. Fig. 5

depicts the output signal H[z]x and the error ε in (4). We

can conclude that our ΔΣ modulator successively suppress

the error due to quantization.

5. CONCLUSION

We have designed an optimal stable 1-bit ΔΣ modulator that

minimizes the mean squared quantization error at the output

of a ΔΣ-based transmitter by solving convex optimization

problems. An example is provided to demonstrate our design.
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