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ABSTRACT

We consider the non-orthogonal multiple access (NOMA) design
for a classical two-user multiple access channel (MAC) with finite-
alphabet inputs. In contrast to the majority of existing NOMA
schemes using continuous Gaussian distributed inputs, we con-
sider practical quadrature amplitude modulation (QAM) constel-
lations at both transmitters, whose sizes are not necessarily the
same. By adjusting the scaling factors (i.e., instantaneous trans-
mitting powers) of both users, we aim to maximize the minimum
Euclidean distance of the received sum-constellation for a maxi-
mum likelihood (ML) receiver. The formulated problem is a mixed
continuous-discrete optimization problem and in general it is non-
trivial to resolve. By carefully examining the structure of the ob-
jective function, we discover that Farey sequence can be employed
to tackle the formulated problem. However, the existing Farey se-
quence is not applicable when the constellation sizes of the two
users are different. To address this challenge, we define a new type
of Farey sequence, termed punched Farey sequence. Based on this
new definition and its properties, we manage to attain a closed-
form optimal solution to the original problem by first dividing the
entire feasible region into a finite number of Farey intervals and
then taking the maximum over all the subintervals. Finally, com-
puter simulations are carried out to verify our theoretical analysis,
and to demonstrate the advantages of the proposed NOMA over
known orthogonal and non-orthogonal designs.

1. INTRODUCTION

Non-orthogonal multiple access (NOMA) has recently emerged as
a key enabling radio access technology to meet the unprecedented
requirements of the fifth generation (5G) cellular networks, due to
its inherent advantages of high spectral efficiency, massive con-
nectivity, and low transmission latency [1–3]. The basic principle
of NOMA is to serve more than one user with distinct channel
conditions simultaneously in the same orthogonal resource block
along the time, frequency, or code axes. This can be achieved
by applying the superposition coding (SC) at the transmitter side
and multiuser detector (e.g., successive interference cancellation
(SIC)) at the receiver side to distinguish the co-channel users. By
taking practical constraints on user fairness and/or radio resource
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management into consideration, NOMA has been intensively in-
vestigated in various wireless communication systems [4–9].

Up to now, we note that the vast majority of existing NOMA
designs assumed the use of Gaussian input signals [4–8, 10–19].
Although the Gaussian input is of great significance both theoret-
ically and practically, its implementation in reality will be built
on huge storage capacity, unaffordable computational complexity
and extremely long decoding delay [20, Ch. 9]. More importantly,
the actual transmitted signals in real communication systems are
drawn from finite-alphabet constellations, such as pulse amplitude
modulation (PAM), quadrature amplitude modulation (QAM), and
phase-shift keying (PSK) [21, Ch. 5]. Besides, applying the re-
sults derived from the Gaussian inputs to the signals with finite-
alphabet inputs can lead to significant performance loss [22]. In
this sense, Gaussian input serves mostly as the theoretical bench-
mark. By contrast, the NOMA design with finite-alphabet inputs
is of utmost practical importance and has attracted considerable
efforts, see e.g., [23–28] and references therein. The main princi-
ple of these efforts is to ensure that the signal originated from each
user can be uniquely decoded from the received sum-signal at the
receiver side. However, all NOMA designs provided in [23–27]
used mutual information as the performance measure, where the
solutions were numerical and limited insights on the relationship
between the sum-constellation and each user’s constellation can
thus be drawn from the obtained solutions.

Inspired by the aforementioned work, in this paper we target a
closed-form NOMA design for a classical two-user Gaussian mul-
tiple access channel (MAC) with finite-alphabet inputs and an op-
timal maximum likelihood (ML) detector at the receiver, where
the two users are allowed to transmit simultaneously in the same
frequency band. We note that the optimal power control scheme
for the Gaussian MAC with finite-alphabet inputs is still an open
problem and only numerical solutions are available [23,24,29,30].
To fill this gap, we investigate, for the first time, the optimal power
control problem for the two-user Gaussian MAC with finite square
QAM constellations that maximizes the minimum Euclidean dis-
tance of the received signals with the maximum likelihood (ML)
detector. Note that QAM signaling is more spectrally efficient than
other commonly-used constellations such as PSK signaling. The
main contributions of this paper can be summarized as follows:

1. We develop a practical NOMA design for the classical two-
user Gaussian MAC, where the two users are allowed to
adopt not necessarily the same QAM constellations.

2. Our Farey sequence-based design framework developed in
[28] can no longer be applied here due to the fact that the
two users may use different QAM constellations. To ad-
dress this challenging problem, we define a new type of
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Farey sequence, termed punched Farey sequence, which is
essential for our NOMA design with not necessarily the
same QAM constellations. This concept is even mathemat-
ically new to the best of our knowledge [31]. Based on
the punched Farey sequence and its properties, we manage
to resolve the mixed continuous-discrete optimization prob-
lem by providing a neat closed-form optimal solution.

2. SYSTEM MODEL AND PROBLEM FORMULATION

2.1. Two-User Real Gaussian Multiple Access Channel

We note that each complex Gaussian MAC with square QAM con-
stellations can be splitted into two identical parallel real-scalar
Gaussian MACs with PAM constellations, which are called the in-
phase and quadrature components [21, 23]. This fact motivates us
to consider a real-scalar Gaussian MAC with PAM constellations
directly, given as follows:

y = |h1|w1s1 + |h2|w2s2 + n, (1)

where |hk| denotes the real channel coefficient between the k-th
transmitter and the access point and it is known perfectly by all the
nodes; n ∼ N (0, σ2) is a real additive Gaussian noise term; the
information-bearing symbol sk ∈ {±(2` − 1)}Mk/2

`=1 , k = 1, 2 is
drawn from a standard PAM constellation with equal probability;
w1 and w2 are the real non-negative scalars determining the mini-
mum Euclidean distance of the actual transmitted PAM constella-
tion sets, which are referred to as the weighting coefficients. We
assume that the transmitted signals are subject to average power
constraints such that E[w2

1|s1|2] ≤ P1/2 and E[w2
2|s2|2] ≤ P2/2.

2.2. The Weighting Coefficients Design Problem

In this section, we consider the weighting coefficient design prob-
lem. For notation simplicity, we set |h̃1| =

√
3P1

2(M2
1−1)
|h1|,

|h̃2| =
√

3P2

2(M2
2−1)
|h2|, w̃1 =

√
2(M2

1−1)

3P1
w1, w̃2 =√

2(M2
2−1)

3P2
w2, such that 0 < w̃1 ≤ 1 and 0 < w̃2 ≤ 1. The

received signal in (1) can thus be re-written as:

y = |h̃1|w̃1s1 + |h̃2|w̃2s2 + n. (2)

We assume that a coherent maximum-likelihood (ML) detec-
tor is used by the access point to estimate the transmitted sig-
nals in a symbol-by-symbol fashion. Mathematically, the esti-
mated signals can be expressed as (ŝ1, ŝ2) = argmin(s1,s2)

∣∣y−
(|h̃1|w̃1s1 + |h̃2|w̃2s2)

∣∣.
By applying the nearest neighbour approximation method [21,

Ch.6.1.4] at high SNRs for ML receiver, the average error rate
is dominated by the minimum Euclidean distance of the received
constellation points owing to the exponential decaying of the
Gaussian distribution. As such, in this paper, we aim to devise the
optimal value of (w̃1, w̃2) to maximize the minimum Euclidean
distance of constellation points of the received signal. The Eu-
clidean distance between the two received signals y(s1, s2) and
y(s̃1, s̃2) at the receiver for (s1, s2) and (s̃1, s̃2) in the noise-free
case is given by |y(s1, s2) − y(s̃1, s̃2)| =

∣∣|h̃1|w̃1(s1 − s̃1) −
|h̃2|w̃2(s̃2 − s2)

∣∣.
Note that s1, s̃1, s2 and s̃2 are all odd numbers, and thus we

can let s1 − s̃1 = 2n and s̃2 − s2 = 2m, in which n ∈ ZM1−1

and m ∈ ZM2−1 with ZN , {0,±1, · · · ,±N} denoting the
set containing all the possible differences. Similarly, we also de-
fine Z2

(M1−1,M2−1) , {(a, b) : a ∈ ZM1−1, b ∈ ZM2−1}, and
N2

(M1−1,M2−1) , {(a, b) : a ∈ NM1−1, b ∈ NM2−1} where
NN , {0, 1, · · · , N}. From the definitions above, (s1, s2) 6=
(s̃1, s̃2) is equivalent to (m,n) 6= (0, 0) (i.e., m 6= 0 or n 6= 0).
To proceed, we define

d(m,n) =
1

2
|y(s1, s2)− y(s̃1, s̃2)| =

∣∣|h̃1|w̃1n− |h̃2|w̃2m
∣∣,

(m,n) ∈ Z2
(M1−1,M2−1) \ {(0, 0)}, (3)

whereA\B , {x ∈ A and x /∈ B}. We are at a point to formally
formulate the following max-min optimization problem,

Problem 1 Find the optimal (w̃∗1 , w̃
∗
2) subject to the individual

average power constraint such that the minimum Euclidean dis-
tance d∗ of the received constellation points is maximized, i.e.,

(w̃∗1 , w̃
∗
2) = arg max

(w̃1,w̃2)
min

(m,n)∈Z2
(M1−1,M2−1)

\{(0,0)}
d(m,n)

s.t. 0 < w̃1 ≤ 1 and 0 < w̃2 ≤ 1. (4)

Note that the inner optimization variable of finding the mini-
mum Euclidean distances is discrete, while the outer one (w̃1, w̃2)
is continuous. In other words, Problem 1 is a mixed continuous-
discrete optimization problem and it is in general hard to solve. To
the best of our knowledge, only numerical solutions to such kind
of problems are available in the open literature [23, 24, 29, 30]. To
optimally and systematically solve this problem, we now develop
a design framework based on the Farey sequence [31], in which
the entire feasible region of (w̃1, w̃2) is divided into a finite num-
ber of mutually exclusive sub-regions. Then, for each sub-region,
the formulated optimization problem can be solved optimally with
a closed-form solution, and subsequently the overall maximum
value of Problem 1 can be attained by taking the maximum value
of the objective function among all the possible sub-regions. We
first consider the inner optimization problem in (4) given by:

Problem 2 Finding differential pairs with the minimum Eu-
clidean distance:

min
(m,n)∈Z2

(M1−1,M2−1)
\{(0,0)}

d(m,n)

= min
(m,n)∈Z2

(M1−1,M2−1)
\{(0,0)}

∣∣|h̃1|w̃1n− |h̃2|w̃2m
∣∣. (5)

We should point out that finding the closed-form solution to the
optimal (m,n) for (5) is not trivial since the solution depends on
the values of |h̃1| and |h̃2|, which can span the whole positive real
axis. Moreover, the values of w̃1 and w̃2 will be optimized later
and cannot be determined beforehand. It is worth mentioning here
that a similar optimization problem was formulated and resolved
for a Gaussian Z channel in our previous work [28]. In [28], we
resorted to the existing Farey sequence to solve the formulated
problem. However, due to the inherent symmetric structure be-
tween numerators and denominators of the conventional Farey se-
quence, our results presented in [28] refers only to the case where
both transmitters need to use exactly identical constellation size
(i.e., the same transmission rate) and thus cannot be applied to the
problem in this paper with M1 and M2 not necessarily the same.
Motivated by this, in this paper we define a new type of Farey
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sequence, termed punched Farey sequence. In the subsequent sec-
tion, we will introduce the definition and some important prop-
erties of the original Farey sequence and the developed punched
Farey sequence.

2.3. Punched Farey Sequence

We now propose a new definition in number theory called Punched
Farey sequence which characterizes the relationship between two
positive integers as follows:

Definition 1 The punched Farey sequence PL
K is the ascend-

ing sequence of irreducible fractions whose denominators are no
greater than K and numerators are no greater than L.

Example 1 P2
5 is the ordered sequence(

0
1
, 1
5
, 1
4
, 1
3
, 2
5
, 1
2
, 2
3
, 1
1
, 2
1
, 1
0

)
.

We now develop some elementary properties of the punched
Farey sequence in line with Farey sequences [31] and the proof
can be found in [32] which is omitted due to space limitation. It is
worth pointing out that, although for some properties, we can find
the counterparts in conventional Farey sequences, the extension
to the punched Farey sequences is non-trivial and the following
results are new.

Property 1 1. If n1
m1

and n2
m2

are two adjacent terms in PL
K

(min {K,L} ≥ 2) such that n1
m1

< n2
m2

, then, 1) n1+n2
m1+m2

∈(
n1
m1
, n2
m2

)
, m1+m2

n1+n2
∈
(
m2
n2
, m1

n1

)
; 2) m1n2 −m2n1 = 1;

3) If n1 +n2 ≤ L, then m1 +m2 > K and if m1 +m2 ≤
K, then n1 + n2 > L; 4) n1 + n2 ≥ 1 where the equality
is attained if and only if n1

m1
= 0

1
and n2

m2
= 1

K
. Likewise,

m1 +m2 ≥ 1 where the equality is attained if and only if
n1
m1

= L
1

and n2
m2

= 1
0

.

2. If n1
m1

, n2
m2

and n3
m3

are three consecutive terms in PL
K with

min {K,L} ≥ 2 such that n1
m1

< n2
m2

< n3
m3

, then n2
m2

=
n1+n3
m1+m3

.

3. Let n1
m1
, n2
m2
, n3
m3
, n4
m4
∈ PL

K with min {K,L} ≥ 3. If
n1
m1

< n2
m2

< n3
m3

< n4
m4

, where n2
m2
, n3
m3

are successive in
PL

K , then n1+n3
m1+m3

≤ n2
m2

and n3
m3
≤ n2+n4

m2+m4
.

2.4. The Minimum Euclidean Distance of the Received Signal

We are now ready to solve Problem 2 to find the differential pairs
(m,n) having the minimum Euclidean distance. To this end, we
first introduce the following preliminary propositions.

Proposition 1 1. Let F2
(M1−1,M2−1) =

{(m,n) : n
m

∈ PM1−1
M2−1}. Then, we have

min (m,n)∈Z2
(M1−1,M2−1)

\{(0,0)} d(m,n) =

min (m,n)∈F2
(M1−1,M2−1)

d(m,n);

2. Let n1
m1

and n2
m2

be two terms of PM1−1
M2−1 such that

n1
m1

< n2
m2

. Then, for |h̃2|w̃2

|h̃1|w̃1
∈ ( n1

m1
, n2
m2

) and

d(m,n) =
∣∣|h̃1|w̃1n− |h̃2|w̃2m

∣∣, we have 1) If |h̃2|w̃2

|h̃1|w̃1
=

n1+n2
m1+m2

, then d(m1, n1) = d(m2, n2); 2) If |h̃2|w̃2

|h̃1|w̃1
∈(

n1
m1
, n1+n2
m1+m2

)
, then d(m1, n1) < d(m2, n2); 3) If

|h̃2|w̃2

|h̃1|w̃1
∈
(

n1+n2
m1+m2

, n2
m2

)
, then d(m2, n2) < d(m1, n1);

3. For any n1
m1
, n2
m2
, n3
m3
, n4
m4
∈ PM1−1

M2−1 with |PM1−1
M2−1| ≥ 4, if

n1
m1

< n2
m2

< n3
m3

< n4
m4

, where n2
m2
, n3
m3

are successive in

PM1−1
M2−1, we have 1) min(m,n)∈F2

(M1−1,M2−1)
d(m,n) =

d(m2, n2) = |h̃2|w̃2m2 − |h̃1|w̃1n2, if |h̃2|w̃2

|h̃1|w̃1
∈

( n2
m2
, n2+n3
m2+m3

); 2) min(m,n)∈F2
(M1−1,M2−1)

d(m,n) =

d(m3, n3) = |h̃1|w̃1n3 − |h̃2|w̃2m3, if |h̃2|w̃2

|h̃1|w̃1
∈

( n2+n3
m2+m3

, n3
m3

).

2.5. Closed-Form Optimal Solution to Problem 1

With the help of Proposition 1 presented in the previous sub-
section, we now can solve Problem 1 by restricting |h̃2|w̃2

|h̃1|w̃1
into

a certain punched Farey interval determined by the correspond-
ing Farey pair where a closed-form solution is attainable. More
specifically, we consider the punched Farey sequence given by
PM1−1

M2−1 =
(
b1
a1
, b2
a2
, · · · , bC

aC

)
, where C = |PM1−1

M2−1|. Now, as-

sume that |h̃2|w̃2

|h̃1|w̃1
∈
(
bk
ak
,
bk+1

ak+1

)
where

(
bk
ak
,
bk+1

ak+1

)
is the k-th

punched Farey interval for k = 1, . . . , C − 1, and we aim to find
the optimal (w̃∗1(k), w̃∗2(k)) such that

g
( bk
ak
,
bk+1

ak+1

)
= max

(w̃1,w̃2)
min

(m,n)∈F2
(M1−1,M2−1)

d(m,n)

s.t.
bk
ak

<
|h̃2|w̃2

|h̃1|w̃1

≤ bk+1

ak+1
, 0 < w̃1 ≤ 1 and 0 < w̃2 ≤ 1.

By applying Proposition 1, we can obtain:

Lemma 1 The optimal solution to Problem 2 is given as follows:

• If |h̃2|
|h̃1|

≤ bk+bk+1

ak+ak+1
, then g

(
bk
ak
,
bk+1

ak+1

)
= |h̃2|

bk+bk+1
and

(w̃∗1(k), w̃
∗
2(k)) =

( |h̃2|(ak+ak+1)

|h̃1|(bk+bk+1)
, 1
)
;

• If |h̃2|
|h̃1|

>
bk+bk+1

ak+ak+1
, then g

(
bk
ak
,
bk+1

ak+1

)
= |h̃1|

ak+ak+1
and

(w̃∗1(k), w̃
∗
2(k)) =

(
1,
|h̃1|(bk+bk+1)

|h̃2|(ak+ak+1)

)
.

Now, we are ready to present the closed-form optimal solution
to Problem 1 in terms of (w∗1 , w∗2) which maximizes the minimum
Euclidean distance of the sum-constellation, denoted by dnoma,
over the entire feasible region.

Theorem 1 Closed-form optimal weighting coefficients: The op-
timal solution to Problem 1 in terms of (w∗1 , w

∗
2) is given by:

1. If |h2|
|h1|

≤
√

P1(M
2
2−1)

P2M
2
2 (M2

1−1)
, then (w∗1 , w

∗
2) =(√ 3P2M

2
2

2(M2
2−1)

|h2|
|h1|

,
√

3P2

2(M2
2−1)

)
, dnoma =

√
3P2

2(M2
2−1)
|h2|;

2. If
√

P1(M
2
2−1)

P2M
2
2 (M2

1−1)
< |h2|

|h1|
≤

√
P1M

2
1 (M2

2−1)

P2M
2
2 (M2

1−1)
, then

(w∗1 , w
∗
2) =

(√
3P1

2(M2
1−1)

,
√

3P1

2M2
2 (M2

1−1)

|h1|
|h2|

)
, dnoma =√

3P1

2M2
2 (M2

1−1)
|h1|;

3. If
√

P1M
2
1 (M2

2−1)

P2M
2
2 (M2

1−1)
< |h2|

|h1|
≤

√
P1M

2
1 (M2

2−1)

P2(M
2
1−1)

, then

(w∗1 , w
∗
2) =

(√
3P2

2M2
1 (M2

2−1)

|h2|
|h1|

,
√

3P2

2(M2
2−1)

)
, dnoma =√

3P2

2M2
1 (M2

2−1)
|h2|;
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Fig. 1. Comparison between the Proposed-NOMA, CR-NOMA,
TDMA and FDMA methods where 64-QAM is used for our
case and 64-PSK is used for CR-based method: (a) (δ21 , δ

2
2) =

(1, 1), (b) (δ21 , δ22) = (1, 1/64).

4. If
√

P1M
2
1 (M2

2−1)

P2(M
2
1−1)

< |h2|
|h1|

, then (w∗1 , w
∗
2) =(√

3P1

2(M2
1−1)

,

√
3P1M

2
1

2(M2
1−1)

|h1|
|h2|

)
, dnoma =

√
3P1

2(M2
1−1)
|h1|.

3. SIMULATION RESULTS AND DISCUSSIONS

In this section, we conduct computer simulations to verify the
effectiveness of our NOMA design in comparison to the con-
stellation rotation (CR)-NOMA design proposed in [23] and the
OMA methods including time-division multiple access (TDMA)
and frequency-division multiple access (FDMA) schemes in vari-
ous channel conditions and system configurations.

Without loss of generality, we assume that P1 = P2 = 1 and
the system signal-to-noise ratio (SNR) is defined by ρ , 1/2σ2.
All channels are subject to Rayleigh distribution such that hk ∼
CN (0, 2δ2k), k = 1, 2.

We first compare the average BER of all the schemes where
the variances of the channel coefficients are the same, i.e.,
(δ21 , δ

2
2) = (1, 1) in Fig. 1(a). In the simulation, without loss of

generality, we assume that each user adopts 64-QAM for the pro-
posed NOMA design and 64-PSK is used by each user in CR-
NOMA. Meanwhile, for TDMA and FDMA methods, each user
uses 4096-QAM. As can be observed from Fig. 1(a) that, the pro-
posed NOMA design outperforms all the designs in moderate and
high SNR regimes. In addition, the FDMA method has a better
error performance than the TDMA scheme as expected. The CR-
NOMA has the highest BER due to the fact that the PSK con-
stellation has a smaller Euclidean distance under the same power
constraint compared with QAM constellation.

In the following simulation, we take the near-far effect into
consideration by letting (δ21 , δ

2
2) = (1, 1/64) as shown in

Fig. 1(b). Likewise, the proposed NOMA design has the lowest
BER compared with all the benchmark schemes. Also, we can ob-
serve that the gap between the proposed NOMA and the FDMA
as well as TDMA is larger than that in the case of equal channel
gain. For example, at the BER 10−3, the proposed NOMA has
around 5dB SNR gain in Fig. 1(a), while the SNR gain is approx-
imately 10dB in Fig. 1(b). Interestingly, we also observe that the
error performance of CR-NOMA improves substantially compared
to TDMA and FDMA in this case with near-far effect.

From both Figs. 1(a) and 1(b), we can observe that the per-
formance gain of NOMA is highly related to the relative strength
of the channel coefficients. To show this phenomenon clearly, we
now study the BER against the relative strength of the channel co-
efficients under different SNRs. More specifically, in Fig.2(a), we
set the variance of user S1 as δ21 = 1, and we plot the BER against

−10 −5 0 5 10 15 20 25 30 35
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Fig. 2. Comparison between the Proposed-NOMA with CR-
NOMA, TDMA, and FDMA methods, 64-QAM are used for
our case and 64-PSK are used for CR based method with (a)
ρ = 40dB. (b) ρ = 50dB.

the variance of user S2, i.e., δ22 , in dB. It can be observed from
Fig. 2(a) that, for ρ = 40dB (i.e., the SNR is relatively low rela-
tive to the target transmission rate), our proposed NOMA scheme
outperforms all the benchmark schemes. When δ22 is less than 1
(i.e., less than 0dB), the error performance is mainly limited by
user S1 and even if δ22 equals to 1, the BER gain of the proposed
NOMA method is still marginal. However, with the increase of δ22 ,
the BER gain of the proposed NOMA method increases and finally
gets saturated. Actually, when δ22 is extremely large, the BER of
the proposed NOMA is close to the system with one user transmit-
ting with 64-QAM in both orthogonal blocks, while for the OMA
method, it saturates as one user transmits using 4096-QAM in one
block. This validates our observation that the proposed NOMA has
a higher SNR gain when there is near-far effect. With the increase
of δ22 , the performance of CR-NOMA improves dramatically and
it eventually outperforms the OMA methods. However, the BER
performance is poor when the channel gains of the two users are
close. This is due to the fact that with the same spectral efficiency,
a PSK constellation has a smaller minimum Euclidean distance
than a QAM constellation. Moreover, the sum-constellation of two
PSK constellations at the receiver does not have a good geometric
structure. In Fig. 2(b), we can see that with the near-far effect, the
BER gain of the proposed NOMA also become more significant.
The BER gain of the proposed NOMA is evident even if δ22 = 1,
which coincides well with the phenomenon observed in Fig. 1.

4. CONCLUSIONS

In this paper, we have presented a practical design framework for
the non-orthogonal multiple access (NOMA) scheme in a classi-
cal two-user multiple access channel (MAC) with quadrature am-
plitude modulation (QAM) constellations at both users, the sizes
of which are not necessarily the same. More specifically, by us-
ing a maximum likelihood (ML) detector, we aimed to maximize
the minimum Euclidean distance of the sum-constellation at the
receiver by adjusting the instantaneous transmit power of each
user under an individual average power constraint. The design
objective was formulated into a mixed continuous-discrete opti-
mization problem. By introducing a new mathematical concept
termed punched Farey sequence and investigating its fundamental
properties, we managed to attain a compact closed-form solution
for our original optimization problem. Computer simulations were
conducted to verify our derivation under various channel configu-
rations, and the simulation results demonstrated that our proposed
NOMA scheme outperforms OMA and existing NOMA signifi-
cantly and the performance gap can be further enlarged when there
is a near-far effect between the users.
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