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ABSTRACT

This work introduces a new approach to solve the joint precoding
and power allocation for sum rate maximization problem in the
downlink multiuser MIMO by a combination of random matrix
theory and optimization theory. The new approach results ina sim-
plified problem that, though non-convex, obeys a simple separable
structure. The sum rate maximization problem is decomposedinto
different single-variable optimization problems that canbe solved in
parallel. A water-filling-like solution is found, which canbe applied
under some mild conditions on the SNRs of the users. The proposed
scheme provides large gains over heuristic solutions when the num-
ber of users in the cell is large, which suggests the applicability in
massive MIMO systems.

Index Terms— Beamforming, Multiuser MIMO, Massive MI-
MO, Optimization, Deterministic Equivalence

1. INTRODUCTION

Multi-antenna techniques are key for achieving high spectral effi-
ciency in the next generation cellular networks (5G). Employing
multiple antennas at the base station (BS) to serve multipleusers
in the same time and frequency resource can lead to a linear increase
in the sum channel capacity with respect to the number of users. To
achieve this, precoding, also known as digital beamforming, has to
be used at the BS. The capacity-achieving precoding for the broad-
cast channels is the dirty-paper coding scheme [1]. However, it is a
non-linear technique which requires high computational complexity
at the BS which prohibits it from practical implementation.

In practice, linear beamforming techniques are preferred.The
design of optimal linear beamformers is of interest particular as they
perform well at low computational complexity. The problem of
finding optimal transmit beamforming had received great attentions
[2–8]. These work focused on minimizing the transmit power while
satisfying certain quality-of-service (QOS) targets at the users such
as the rate requirement. For general systems, maximizing different
utilities based on the QOS is preferable as the SINR targets might
not be known. Among different utilities, sum rate is the one of main
interest as it characterizes the total throughput of the system.

1.1. Related Work

The algorithmic solution for the power minimization problem with
QOS targets is found in [2–4]. Recently, large-system analysis was
applied to investigate the optimal structure of the algorithmic so-
lution [5–8]. Considering the sum rate maximization problem, there
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are less analytic results available. In general, the sum rate maximiza-
tion problem was shown in [9] to be NP-hard except in some special
cases [10]. Most previous works focus on finding local optimal solu-
tions and have no guarantee for global optimality [11–13]. Another
line of work is applying global optimization techniques, but this suf-
fers from high complexity and therefore only act as benchmarks for
small-scale systems [14].

1.2. Contributions of this Paper

1. We propose a novel beamforming design that makes use of
recent results from large-system analysis. This greatly re-
duces the complexity of the sum rate problem, while provid-
ing global optimality in the large-system limit.

2. The proposed optimization procedure only needs to be per-
formed when the large-scale fading parameters change, and
only some scalar parameters need to be calculated. The re-
sulting optimization has almost the same complexity as zero-
forcing (ZF) applied together with the water-filling algorithm,
which is feasible for practical use.

3. The spirit of the proposed method, which exploits a combina-
tion of random matrix theory and optimization theory, sheds
light on how large optimization problems can be easier to
solve than small problems.

2. SYSTEM MODEL

Consider a single-cell multi-user MIMO system withM antennas
at the BS servingK ≤ M single-antenna users in the down-
link. The BS performs multiuser beamforming to serve theK
users in the same time and frequency resource block. Denote by
gk ∼ CN (0, βkIM ) the channel realization between the BS and
userk, whereβk represents the large-scale fading. The downlink
system model for the transmission to userk can be written as

yk = g
H
k Ws+ nk, k = 1, . . . ,K, (1)

wheres = [s1, . . . , sK ]T ∈ C
K×1, sk denotes the information

symbol intended for userk, nk ∼ CN (0, σ2) represents i.i.d. ad-
ditive white Gaussian noise, andW = [w1, . . . ,wK ] is the beam-
forming matrix wherewk ∈ C

M×1 is the beamformer of userk.
With perfect CSI at the BS and at the users, the instantaneous

achievable rate in b/s/Hz for userk can be written as

Rk = log2(1 + SINRk), k = 1, . . . , K, (2)

whereSINRk represents the signal-to-interference-plus-noise-ratio
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(SINR) at userk, given by

SINRk =
|gH

k wk|2
∑K

i=1,i6=k |gH
k wi|2 + σ2

. (3)

From a system design perspective, the beamformer matrixW

is optimized to maximize a certain utilityU(SINR1, . . . ,SINRK)
characterized by the SINR values. In this work, we choose to maxi-
mize the sum rate in the cell. This corresponds to choosing

U(SINR1, . . . ,SINRK) =
K
∑

k=1

log2(1 + SINRk). (4)

The optimization problem that we are interested in solving is

maximize
{wk},{γk≥0}

K
∑

k=1

log2(1 + γk)

subject to
K
∑

k=1

‖wk‖2 ≤ Q

SINRk ≥ γk,∀k,

(5)

whereQ is the maximum transmit power.

3. OPTIMAL LINEAR BEAMFORMING

In this section, we present the general form of the optimal linear
beamforming vectors and how they converge in the asymptotic
regime whereK,M → ∞ with a fixedc = K

M
∈ (0, 1]. We start

by reviewing the solution to the power minimization problemand
then apply it to the problem in (5).

3.1. Optimal Beamforming for Power Minimization

We first review results for a closely related problem, namelythe
power minimization problem with SINR targets, which was thefo-
cus of many previous works (see [15] and references therein).

The power minimization problem is formulated to find the min-
imum powerPo satisfying SINR constraints:

Po , min
{wk}

K
∑

k=1

‖wk‖2

subject to
|gH

k wk|2
∑K

i=1,i6=k
|gH

k wi|2 + σ2
≥ γk, ∀k.

(6)

The structure of the optimal linear precoder matrixWo =
[w1, . . . ,wK ] is given by

Wo =

(

K
∑

k=1

λkgkg
H
k +MIM

)−1

GP
1

2 , (7)

whereG = [g1, . . . , gK ] denotes the channel matrix from the BS to
all theK users andλ1, . . . , λK are the optimal Lagrange multipliers
given by the positive unique fixed-points of the equations:

(

1 +
1

γk

)

λk =
1

gH
k

(

∑K

i=1
λigigH

i +MIM

)−1

gk

. (8)

The optimal power allocation is a diagonal matrixP =
diag(p1, . . . , pK) given by the vectorp = [p1, . . . , pK ]T

p = σ2
A

−1
1 (9)

with the(k, i)th element ofA being

Ai,j =

{

1

γk
|gH

k ck|2, k = i

−|gH
k ci|2, k 6= i

(10)

whereck is thekth column of

C =

(

K
∑

k=1

λkgkg
H
k +MIM

)−1

G, (11)

which can be interpreted as the beamforming direction to user k, p is
chosen such that all the SINR constraints are satisfied with equality,
and1 is a vector with all entries being1. We see that for any fi-
niteM andK, the optimal beamforming vectors are parameterized
by λ1, . . . , λK andp1, . . . , pK for which the optimal values are ob-
tained through solving equations (8) and (9). Particularly, the opti-
mal{λk} are found through solving fixed-point equations, therefore
no insights into the solution to (5). Nevertheless, in the large-system
regime whereK, M → ∞ with K/M = c ∈ (0, 1], recent result-
s from random matrix theory can be used to obtain the asymptotic
values ofλ1, . . . , λK andp1, . . . , pK [7]. These are as follows:

max
k

|λk − λ̄k| a.s.→ 0, max
k

|pk − p̄k| a.s.→ 0 (12)

where
a.s.→ denotes the almost sure convergence, andλ̄k and p̄k are

“deterministic equivalents” forλk andpk given by

λ̄k =
γk
βkη

, p̄k =
γk

βkη2

(

Po +
σ2

βk

(1 + γk)
2

)

(13)

and

η = 1− c

K

K
∑

k=1

γk
1 + γk

, Po =
cσ2

ηK

K
∑

k=1

γk
βk

. (14)

3.2. Optimal Beamformer for Sum Rate Maximization

We have seen that, for any given SINR targets, the minimal power is
asymptotically given byPo in (14). Moreover, at the optimal point,
all SINR targets are satisfied with equality. For any given set of γk,
Po is the minimum power that can achieve these SINR targets. As
a result,Po can be written as a function ofγ1, . . . , γK and we can
transform problem (5) into the following form:

maximize
{γk≥0}

K
∑

k=1

log2(1 + γk)

subject to Po =
cσ2

ηK

K
∑

k=1

γk
βk

≤ Q.

(15)

Problem (15) is asymptotically equivalent to (5), but we will now use
it as a large-scale approximation for finiteM andK. We observe
that Po depends on{γk} in a complicated way. To simplify the
problem we rewrite the constraint by first observing thatη is always
positive sinceK ≤ M :

K
∑

k=1

cσ2

Kβk

γk ≤ Q− cQ

K

K
∑

k=1

γk
1 + γk

. (16)
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Then we divide both sides of (16) withcQ/K to get

K
∑

k=1

akγk ≤ M −
K
∑

k=1

γk
1 + γk

(17)

where we have defined

ak =
σ2

βkQ
, k = 1, . . . ,K, (18)

which can be interpreted as the inverse signal-to-noise-ratio (SNR)
at the users. Finally, we have rewritten (15) as

maximize
{γk≥0}

K
∑

k=1

log2(1 + γk)

subject to
K
∑

k=1

(

akγk +
γk

1 + γk

)

≤ M.

(19)

We see that with the use of deterministic equivalents, we obtain the
large-system approximation (19) of problem (5) and the approxima-
tion is tight whenM andK are large. Moreover, (19) has a clear
interpretation: we are allocating SINR values to parallel channels
with a total cost constraint where the cost of allocating a particular
SINR valueγk to userk is akγk + γk

1+γk
.

4. SUFFICIENT OPTIMALITY CONDITIONS

In this section, we characterize the optimality conditionsfor problem
(19), based on which we develop a water-filling-like algorithm to
find the optimal solution.

4.1. Sufficient Condition for Global Optimality

The optimal solution does not change if we change the base oflog2
to ln in the objective function and this makes the calculations sim-
pler. Define the Lagrange multiplierµ ≥ 0, then the Lagrangian
function of (19) is

L(γ1, . . . , γK , µ)

=
K
∑

k=1

ln(1 + γk)− µ

(

K
∑

k=1

(

akγk +
γk

1 + γk

)

−M

)

.
(20)

We are ready to present the optimality conditions:

Lemma 1. The vectorγγγ∗ = [γ∗
1 , . . . , γ

∗
K ]T is the optimal solution

to (19) if γγγ∗ is feasible and there existsµ∗ ≥ 0 such that the follow-
ing conditions are satisfied:

γγγ∗ = argmax
γγγ≥0

L(γγγ, µ∗) (21)

µ∗

(

K
∑

k=1

(

akγ
∗
k +

γ∗
k

1 + γ∗
k

)

−M

)

= 0. (22)

Proof. For any feasibleγγγ, we have the following chain of inequali-
ties

K
∑

k=1

ln(1 + γ∗
k) = L(γγγ∗, µ∗) ≥ L(γγγ, µ∗)

≥
K
∑

k=1

ln(1 + γk).

(23)

The equality in (23) is due to the condition in (22). The first inequal-
ity holds asγγγ∗ is the maximizer of the Lagrangian function. The
last inequality holds as the Lagrangian is always an upper bound on
the original objective function of a maximization problem for any
feasibleγγγ. Optimality follows sinceγγγ∗ is feasible and the result-
ing objective function is larger than or equal to any other feasible
point.

From Lemma 1 and the fact that the objective function is sepa-
rable in theK optimization variables, we have

max
γγγ≥0

L(γγγ, µ) =

K
∑

k=1

max
γk≥0

(

ln(1 + γk)− µ

(

akγk +
γk

1 + γk

))

+ µM.
(24)

As µM is a constant that does not depend onγγγ, the optimization
problem (19) can be decomposed intoK single-variable subprob-
lems in the following form:

max
γk≥0

(

ln(1 + γk)− µ

(

akγk +
γk

1 + γk

))

. (25)

The solution to (25) can be found for a givenµ as given by the fol-
lowing theorem.

Theorem 1. The optimalγk for (25) for a givenµ is

γk(µ) =

{

0, µ > 1/(1 + ak)
1−2µak+

√
1−4µ2ak

2µak

, µ ≤ 1/(1 + ak)
(26)

whenak ≥ 1 and

γk(µ) =

{

0, µ > α(ak)
1−2µak+

√
1−4µ2ak

2µak

, µ ≤ α(ak)
(27)

whenak < 1, whereα(ak) is the solution of the following equation
in µ:

ln

(

1 +
1− 2µak +

√

1− 4µ2ak

2µak

)

= µ(1−ak)+
√

1− 4µ2ak.

(28)

Proof Sketch.The solution is obtained by solving for the stationary
points in (25), identifying the right one corresponding to the maxi-
mum, and comparing to the boundary points. The detailed proof is
omitted here due to limited space, but will be provided in thejournal
version of this work.

After applying Theorem 1, what remains is to find theµ such
that equality is met in the following equation:

K
∑

k=1

(

akγk(µ) +
γk(µ)

1 + γk(µ)

)

= M. (29)

This can be done via the bisection method asγk(µ) is a monoton-
ically decreasing function inµ. This leads to a water-filling-like
algorithm of finding the “water level”µ which can be implemented
efficiently and can be computed in parallel.

4.2. Sufficient Conditions for Strong Duality

The main drawback of our new approach to solve the sum rate max-
imization problem is that the optimality condition is only sufficient
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Fig. 1. CDF of the sum rate withM = 100, K = 60, R = 500 m
for ZF beamforming and the proposed beamforming.

but not necessary. There exist cases whereµ satisfying (29) does
not exist, sinceγk(µ) is not continuous whenak < 1. When such
µ exist, strong duality holds and it is called thegeometric multipli-
er [16]. In the following we provide an analytic sufficient condition
for which strong duality holds.

Proposition 1. Denote the number of users withak < 1 asKh,
then strong duality holds whenKh ≤ M/3 + 1.

Proof Sketch.The proof consists of three main steps. First we show
that forai ≤ ak we always haveγi(µ) ≥ γk(µ). Second, we prove
thatα(ak) > 1/(1 + ak). In the last step, we denoteamax as the
maximumak such thatak < 1 and assumeµ > 1/(1 + amax), we
then find an upper bound of the total cost as

K
∑

k=1

(

akγk(µ) +
γk(µ)

1 + γk(µ)

)

≤ 3(Kh − 1). (30)

Then under conditionKh ≤ M/3 + 1, the existence of a geometric
multiplier µ is guaranteed as we are ensured to be in the continuous
regime ofγk(µ) for all k for (29) to hold.

This sufficient condition generally holds in cellular networks as
most users have rather low SNRs, which implies largeaks. More-
over, in practice, there is interference from other cells, so the re-
sulting received SINR will be lower, which increasea1, . . . , aK and
makes the condition easier to be satisfied.

5. SIMULATION RESULTS

In this section, we present simulation results to demonstrate the ben-
efits of our proposed algorithms and compare the performancewith
the ZF beamforming, which is generally considered to be close to
optimal in massive MIMO. Consider a scenario withM = 100 an-
tennas. The power optimization of the ZF scheme is performedby
water-filling to optimize the sum rate. The users are assumedto be
uniformly and randomly distributed in a cell with radiusR = 500
m and no user is closer to the BS than100 m. The path-loss model
is chosen asβk = zk/r

3.8
k whererk is the distance of userk from
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Fig. 2. Average sum rate withM = 100, R = 500 m and varyingK
from 10 to 60 for ZF beamforming and the proposed beamforming.

the BS andzk is log-normal distributed with a standard deviation of
8 dB and represents the independent shadowing effect. We choose
Q = 10−0.5 · R3.8 such that the median SNR at the cell edge is−5
dB. The Monte-Carlo simulation is run for1000 realizations, where
the user locations and channels are random in each realization.

In Fig. 1, we plot the CDF of the sum rate for different random
user locations the proposed scheme and ZF withK = 60. From the
figure we observe that there is a significant gap between the proposed
beamformer and ZF beamforming. For example, at the90 percentile,
there is a gain of about20 b/s/Hz with the proposed scheme.

In Fig. 2, we plot the average sum rate for differentK. From the
figure we see that whenc = K/M is small, ZF is good enough and
performs close to the proposed scheme. However asc increases, the
gap between the proposed scheme and ZF increases significantly.

6. CONCLUSION

We introduced a new approach to solve the sum rate maximization
problem in the downlink multiuser MIMO by exploiting a large-
system approximation from random matrix theory and optimization
theory. A water-filling-like semi-closed form solution is found. We
draw the following conclusions:

1. The sum rate maximization problem can be simplified to a
separable programming problem which, though non-convex,
canbe solved efficiently thanks to the specific structure.

2. The performance comparison with ZF beamforming showed
that the proposed scheme is beneficial when the number of
users in the cell is large, which suggests the applicabilityin
massive MIMO systems.
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