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ABSTRACT
This work introduces a new approach to solve the joint praxpd

are less analytic results available. In general, the suemnaiimiza-
tion problem was shown in [9] to be NP-hard except in someiapec

and power allocation for sum rate maximization problem ia th €ases [10]. Most previous works focus on finding local optiseéu-

downlink multiuser MIMO by a combination of random matrix
theory and optimization theory. The new approach resulgssim-
plified problem that, though non-convex, obeys a simple redpa
structure. The sum rate maximization problem is decompoaged
different single-variable optimization problems that t&solved in
parallel. A water-filling-like solution is found, which cdre applied
under some mild conditions on the SNRs of the users. The pegpo
scheme provides large gains over heuristic solutions wiemam-
ber of users in the cell is large, which suggests the appligam
massive MIMO systems.

Index Terms— Beamforming, Multiuser MIMO, Massive MI-
MO, Optimization, Deterministic Equivalence

1. INTRODUCTION

Multi-antenna techniques are key for achieving high speeffi-

ciency in the next generation cellular networks (5G). Emiplo

multiple antennas at the base station (BS) to serve multipées
in the same time and frequency resource can lead to a ling@aise
in the sum channel capacity with respect to the number osuJer
achieve this, precoding, also known as digital beamforminag to
be used at the BS. The capacity-achieving precoding for thads
cast channels is the dirty-paper coding scheme [1]. Howéviera
non-linear technique which requires high computationahgiexity

at the BS which prohibits it from practical implementation.

In practice, linear beamforming techniques are preferfEe
design of optimal linear beamformers is of interest patdicas they
perform well at low computational complexity. The problerh o
finding optimal transmit beamforming had received greardibns
[2—-8]. These work focused on minimizing the transmit powéilev
satisfying certain quality-of-service (QOS) targets & tisers such
as the rate requirement. For general systems, maximizifeyatit
utilities based on the QOS is preferable as the SINR targahtm
not be known. Among different utilities, sum rate is the ofienain
interest as it characterizes the total throughput of theegys

1.1. Related Work

The algorithmic solution for the power minimization proivlevith
QOS targets is found in [2-4]. Recently, large-system aiahyas
applied to investigate the optimal structure of the aldwnic so-
lution [5-8]. Considering the sum rate maximization prof)¢here
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tions and have no guarantee for global optimality [11-13jother
line of work is applying global optimization techniquest this suf-
fers from high complexity and therefore only act as benchs&or
small-scale systems [14].

1.2. Contributions of this Paper

1. We propose a novel beamforming design that makes use of
recent results from large-system analysis. This greatly re
duces the complexity of the sum rate problem, while provid-
ing global optimality in the large-system limit.

2. The proposed optimization procedure only needs to be per-
formed when the large-scale fading parameters change, and
only some scalar parameters need to be calculated. The re-
sulting optimization has almost the same complexity as-zero
forcing (ZF) applied together with the water-filling algimin,
which is feasible for practical use.

3. The spirit of the proposed method, which exploits a combin
tion of random matrix theory and optimization theory, sheds
light on how large optimization problems can be easier to
solve than small problems.

2. SYSTEM MODEL

Consider a single-cell multi-user MIMO system willi antennas
at the BS servingkk < M single-antenna users in the down-
link. The BS performs multiuser beamforming to serve tkie
users in the same time and frequency resource block. Deryote b
gr ~ CN(0, 8,1 ) the channel realization between the BS and
userk, wheref; represents the large-scale fading. The downlink
system model for the transmission to useran be written as
k=1,.. K, 1)
wheres = [s1,...,sx]T € CK*! s, denotes the information
symbol intended for uset, ny ~ CN(0,07) represents i.i.d. ad-
ditive white Gaussian noise, aV’ = [wx, ..., wk] is the beam-
forming matrix wherew;, € CM>1 is the beamformer of usér.

With perfect CSI at the BS and at the users, the instantaneous
achievable rate in b/s/Hz for uskrcan be written as

Y = gil Ws + ny,

Ry =log, (1 +SINRyg), k=1,...,K, 2
whereSINR,, represents the signal-to-interference-plus-noise-rati
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(SINR) at uselk, given by The optimal power allocation is a diagonal matrR =
I diag(p1, . .., px) given by the vectop = [p1,. .., px]"
lgr wi|

: (3) _ 2,41
Zfil,i;&k lgi wil? + o p=0A1 ©)

SINRy =

. Nth .
From a system design perspective, the beamformer me&fix with the (k, 7)™ element ofA being

is optimized to maximize a certain utility (SINR,, ..., SINRx) LigHe 2, k=i
characterized by the SINR values. In this work, we choose&arim Aij = { Tk ]Z; 2 ’ "y (10)
mize the sum rate in the cell. This corresponds to choosing ~lgi el #1
K wherec;, is thek!” column of
U(SINR4,...,SINRk) = ) "log,(1+SINRk).  (4) . .
M C= (Z Aegrgt! + MIM> G, (12)
The optimization problem that we are interested in solvig i k=1
* which can be interpreted as the beamforming direction tokigeis
maximize Z log, (1 + &) chosen such that all the SINR constraints are satisfied \githléy,

and1 is a vector with all entries being. We see that for any fi-
nite M and K, the optimal beamforming vectors are parameterized

twied {ve 20} 1=

. . ®) byAs,...,Ax and for which the optimal val b-
2 VY A1, ..., Ak andpi,. .., px for which the optimal values are o
subject to ; lloxl” < @ tained through solving equations (8) and (9). ParticuldaHg opti-
- mal{\x } are found through solving fixed-point equations, therefore
SINRx > i, Vk, no insights into the solution to (5). Nevertheless, in thgdasystem
whereQ is the maximum transmit power. regime wherek, M — oo with K/M = ¢ € (0, 1], recent result-
s from random matrix theory can be used to obtain the asymptot
values of\1, ..., Ak andpi, ..., pk [7]. These are as follows:
3. OPTIMAL LINEAR BEAMFORMING
ml?x|/\k — | 30, max Ipr — pr| “3 0 (12)

In this section, we present the general form of the optinradr B
beamforming vectors and how they converge in the asymptotivhere™S denotes the almost sure convergence, &ndndp;, are
regime wherek, M — oo with a fixede = £ € (0,1]. We start ~ “deterministic equivalents” foh, andp, given by

by reviewing the solution to the power minimization problemd

. . 2
then apply it to the problem in (5). N e o Vi (P +0_(1+%)2) (13)
k

k= , Pk = o
Brn Bren? B
3.1. Optimal Beamforming for Power Minimization and x . K
—1_ £ Tk _ il
We first review results for a closely related problem, nantéaly n=1 K ; 1+ Po = n ; B 14

power minimization problem with SINR targets, which was the
cus of many previous works (see [15] and references therein) ) S
The power minimization problem is formulated to find the min- 3-2. Optimal Beamformer for Sum Rate Maximization

imum powerF, satisfying SINR constraints: We have seen that, for any given SINR targets, the minimakpasv

asymptotically given byP, in (14). Moreover, at the optimal point,

K
P, 2 min Z l|ws ||2 all SINR targets are satisfied with equality. For any giveto$ey;,
{wi} Pt P, is the minimum power that can achieve these SINR targets. As
19 wi|? (6) a result,P, can be written as a function ofi, ..., vx and we can
subject to e 9k Wk >k, Vk. transform problem (5) into the following form:
i=1,i#k lgi' wi|? + o
K
The structure of the optimal linear precoder mati, = maximize Zlog2(1 + k)
ey {7k =0} —
[wi,...,wk]is given by k=1 (15)
2 K
K -t L subjectto P, = 7 Tk <Q.
_ H 3 K Bk
W, = ZAkgkgk + MIy GP=, (7) it
k=1
) Problem (15) is asymptotically equivalent to (5), but wd wiw use
whereG = [g1, . . ., gx] denotes the channel matrix from the BS to it as a large-scale approximation for finilé and K. We observe
allthe K users and\, ..., Ak are the optimal Lagrange multipliers that P, depends on{~x} in a complicated way. To simplify the
given by the positive unique fixed-points of the equations: problem we rewrite the constraint by first observing thi always
positive since’ < M:
1 1 K Py K
(1 + —) e — . ® co Q N~
<Q-—= . 16
Vi gl (Zfil Ngigh + MIM) . ; KE " SQ-% ; T (16)
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Then we divide both sides of (16) witlf)/ K to get

<M — 17
E RV E 7 + " (17)
where we have defined
2
g
= , k=1,... K, 18
= BQ (8

which can be interpreted as the inverse signal-to-noise-(8NR)
at the users. Finally, we have rewritten (15) as

K

Zlogg (1+)

maximize
{20}
(19)
Vi
1+~

subject to Z (amk +

k=1

)

We see that with the use of deterministic equivalents, wainlihe
large-system approximation (19) of problem (5) and the axipra-
tion is tight whenM and K are large. Moreover, (19) has a clear
interpretation: we are allocating SINR values to parallgmels
with a total cost constraint where the cost of allocating di@alar
SINR valuey;, to userk is axyi, + ﬁﬁw—k

4. SUFFICIENT OPTIMALITY CONDITIONS

In this section, we characterize the optimality conditiorgroblem
(19), based on which we develop a water-filling-like aldarit to
find the optimal solution.

4.1. Sufficient Condition for Global Optimality

The optimal solution does not change if we change the bake;of
to In in the objective function and this makes the calculations- si
pler. Define the Lagrange multipligr > 0, then the Lagrangian

function of (19) is
) - M) . (20)

L(’YL . '7’YK7IL‘L)
We are ready to present the optimality conditions:

K

>

k=1

<ak’7k + 1 +7

=> In(l+w)—p <
k=1

Lemma 1. The vectory* = [vi,...,7vi]" is the optimal solution
to (19)if v is feasible and there exists" > 0 such that the follow-
ing conditions are satisfied:

y* = argmax L(y, u*) (21)
v=>0
= Vi
I <,§1 (ak'yk + T+~ ) - M> =0. (22)

Proof. For any feasibley, we have the following chain of inequali-

ties
K
> (1l 47i) =
k=1

K
> " In(1 + ).
k=1

L(v*, ") > Ly, ")

(23)
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The equality in (23) is due to the condition in (22). The firstqual-
ity holds asy* is the maximizer of the Lagrangian function. The
last inequality holds as the Lagrangian is always an uppenth@n
the original objective function of a maximization probleor fany
feasibley. Optimality follows sincey™ is feasible and the result-
ing objective function is larger than or equal to any othesfble
point. O

From Lemma 1 and the fact that the objective function is sepa-
rable in theK optimization variables, we have

max L(y, p) =
~¥>0

(24)
Zgng)é (ln(1+7k)—u<awk+ )) + pM.
k=1 k=

As M is a constant that does not dependqgrthe optimization
problem (19) can be decomposed irtosingle-variable subprob-
lems in the following form:

The solution to (25) can be found for a giveras given by the fol-
lowing theorem.

1+~

Tk
14 vk

(ln(l + k) — 1 <ak7k + (25)

max
Vi =0

Theorem 1. The optimakhy;, for (25)for a givenp is

w>1/(1+ ay)
i) = { 1- Quak;‘:a/i 1n? %<1/ + ap) (26)
whena, > 1 and
0, p> afar)
’Yk(lu‘) = { 172/,1.ak~2%‘:a/;74p‘2ak7 M S Oé(ak) (27)

whena; < 1, wherea(ayr) is the solution of the following equation

nw
In <1+ > w(l—ag)++/1— 4p2ay.
(28)

Proof Sketch.The solution is obtained by solving for the stationary
points in (25), identifying the right one corresponding te maxi-
mum, and comparing to the boundary points. The detailedfpsoo
omitted here due to limited space, but will be provided injthenal
version of this work. O

—2ua + /1 —4p2ay,

2uay,

After applying Theorem 1, what remains is to find thesuch
that equality is met in the following equation:

K

Z (am () +

k=1

)\ _
1 +’Yk(M)) =M

This can be done via the bisection methodyaéu) is a monoton-

ically decreasing function im. This leads to a water-filling-like
algorithm of finding the “water levell, which can be implemented
efficiently and can be computed in parallel.

(29)

4.2. Sufficient Conditions for Strong Duality

The main drawback of our new approach to solve the sum rate max
imization problem is that the optimality condition is onlyficient
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Fig. 1. CDF of the sum rate witd/ = 100, K = 60, R = 500 m
for ZF beamforming and the proposed beamforming.

but not necessary. There exist cases whesatisfying (29) does
not exist, sinceyx(w) is not continuous when,, < 1. When such
1 exist, strong duality holds and it is called theometric multipli-
er [16]. In the following we provide an analytic sufficient catidn
for which strong duality holds.

Proposition 1. Denote the number of users withhy < 1 as Kj,
then strong duality holds wheki;, < M/3 + 1.
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Fig. 2. Average sum rate with/ = 100, R = 500 m and varyingk’
from 10 to 60 for ZF beamforming and the proposed beamforming.

the BS and:;, is log-normal distributed with a standard deviation of
8 dB and represents the independent shadowing effect. Wesehoo
Q = 107%5 . %3 such that the median SNR at the cell edge is
dB. The Monte-Carlo simulation is run fan00 realizations, where
the user locations and channels are random in each reatizati

In Fig. 1, we plot the CDF of the sum rate for different random
user locations the proposed scheme and ZF Wita- 60. From the

Proof Sketch.The prOOf consists of three main StepS. First we ShOV\ﬁgure we observe that there is a Significant gap between d’mped

that fora; < ax we always havey; (1) > v (u). Second, we prove
thata(ax) > 1/(1 4 ax). In the last step, we denotg,.x as the
maximumay, such thata, < 1 and assum@ > 1/(1 + amax), We
then find an upper bound of the total cost as

K

Z (am () +

k=1

V(1)

1+ %(u)) < 3(Kn =D

(30)

Then under conditiod;, < M /3 + 1, the existence of a geometric

beamformer and ZF beamforming. For example, adbthgercentile,
there is a gain of abo@0 b/s/Hz with the proposed scheme.

In Fig. 2, we plot the average sum rate for differéht From the
figure we see that when= K /M is small, ZF is good enough and
performs close to the proposed scheme. Howeveriasreases, the
gap between the proposed scheme and ZF increases sigmhyficant

multiplier i is guaranteed as we are ensured to be in the continuous

regime ofy () for all & for (29) to hold. |

This sufficient condition generally holds in cellular netk® as
most users have rather low SNRs, which implies large. More-
over, in practice, there is interference from other celtstte re-
sulting received SINR will be lower, which increase, . . . , ax and
makes the condition easier to be satisfied.

5. SIMULATION RESULTS

In this section, we present simulation results to demotesthe ben-
efits of our proposed algorithms and compare the performaitbe
the ZF beamforming, which is generally considered to beectos
optimal in massive MIMO. Consider a scenario with = 100 an-
tennas. The power optimization of the ZF scheme is perforbyed
water-filling to optimize the sum rate. The users are assuimée
uniformly and randomly distributed in a cell with radiiis = 500
m and no user is closer to the BS the00 m. The path-loss model
is chosen agy, = z/ry® wherery, is the distance of usdr from

6. CONCLUSION

We introduced a new approach to solve the sum rate maximizati
problem in the downlink multiuser MIMO by exploiting a large
system approximation from random matrix theory and optatian
theory. A water-filling-like semi-closed form solution isudnd. We
draw the following conclusions:

1. The sum rate maximization problem can be simplified to a
separable programming problem which, though non-convex,
canbe solved efficiently thanks to the specific structure.

2. The performance comparison with ZF beamforming showed
that the proposed scheme is beneficial when the number of
users in the cell is large, which suggests the applicakility
massive MIMO systems.
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