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ABSTRACT
Orthogonal frequency division multiplexing (OFDM) and single-
carrier frequency domain equalization (SC-FDE) are two com-
monly adopted modulation schemes for frequency-selectivechan-
nels. Compared to SC-FDE, OFDM generally achieves higher data
rate, but at the cost of higher transmit signal peak-to-average power
ratio (PAPR) that leads to lower power amplifier efficiency. This pa-
per proposes a new modulation scheme, called flexible multi-group
single-carrier (FMG-SC), which encapsulates both OFDM and
SC-FDE as special cases, thus achieving more flexible rate-PAPR
trade-offs between them. Specifically, a set of frequency subcarriers
are flexibly divided into orthogonal groups based on their channel
gains, and SC-FDE is applied over each of the groups to send dif-
ferent data streams in parallel. We aim to maximize the achievable
sum-rate of all groups by optimizing the subcarrier-group mapping.
We propose two low-complexity subcarrier grouping methodsand
show via simulation that they perform very close to the optimal
grouping by exhaustive search. Simulation results also show the
effectiveness of the proposed FMG-SC modulation scheme with
optimized subcarrier grouping in improving the rate-PAPR trade-off
over conventional OFDM and SC-FDE.

Index Terms— Multicarrier modulation, single-carrier modu-
lation, frequency-domain equalization, peak-to-averagepower ratio,
subcarrier grouping.

1. INTRODUCTION

Multicarrier modulation is a promising technique to meet the grow-
ing demand for higher data rate and provide enhanced immunity
against multipath interference in broadband communications over
frequency-selective channels. Particularly, orthogonalfrequency
division multiplexing (OFDM) has been adopted in many broad-
band wireless standards [1, 2], such as for the Third Generation
Partnership Project Long Term Evolution (3GPP-LTE) downlink
[3]. OFDM is well known for its flexibility in channel-adaptive rate
and/or power allocation for performance optimization [4–6]. How-
ever, OFDM signals generally have high peak-to-average power
ratio (PAPR), which requires costly amplifier at the transmitter. Nu-
merous PAPR reduction techniques for OFDM have been reported
in the literature [7–12], but they generally lead to higher implemen-
tation complexity. To resolve this issue, single-carrier modulation
with frequency-domain equalization (SC-FDE) [13] at the receiver
has been proposed and adopted for LTE uplink to reduce the cost
of mobile terminals [3, 14]. Compared with non-adaptive OFDM,
SC-FDE has significantly lower PAPR and bit error rate (BER) [15].
However, the achievable rate of SC-FDE is dominated by the worst
frequency subchannel gain, while SC-FDE with channel-adaptive
power control provides higher throughput but at the cost of increased
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Fig. 1. Frequency-time representation of different modulation
schemes, withN = 6, Q = 3,M = 2, andK = 2.

PAPR [16]. Moreover, generalized frequency division multiplexing
(GFDM) was recently proposed [17], which includes OFDM and
SC-FDE as two special cases. However, GFDM in general has
non-orthogonal subcarriers, thus requiring complicated receiver de-
sign and significantly higher implementation complexity than both
OFDM and SC-FDE.

Motivated by the limitations of existing modulation techniques,
we propose in this paper a new modulation scheme, named flex-
ible multi-group single-carrier (FMG-SC) modulation, which, like
GFDM, also encapsulates OFDM and SC-FDE as two special cases,
but in a different way. Fig. 1 compares OFDM, SC-FDE, GFDM,
and proposed FMG-SC modulated signals using the frequency-time
representation. For OFDM, the system total bandwidthB is equally
divided byN orthogonal subcarriers, each transmitting a different
data symbol at symbol rate1/T in parallel over time, withT denot-
ing the block duration. SC-FDE sequentially transmitsN data sym-
bols overT at symbol rateN/T , all at the same carrier frequency
with bandwidthB. GFDM divides the frequency-time dimension
into Q subcarriers andM time symbols, where in totalN = QM
data symbols are transmitted over bandwidthB and in durationT .
By contrast, FMG-SC transmitsK groups of SC-FDE modulated
signals simultaneously, where the signals of different groups are or-
thogonal in frequency as they are modulated by non-overlapping
subsets of theN orthogonal subcarriers (see Fig. 1 where in total
five data symbols are transmitted in two groups, with three and two
symbols in Group 1 and 2, respectively). Notice that for FMG-SC,
we consider in general there may be a set of subcarriers that are not
used for modulation (e.g., due to deep channel fading), denoted as
S0. Hence, OFDM is a special case of FMG-SC whenK = N and
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Fig. 2. Illustration of the FMG-SC modulation and demodulation.

S0 = ∅, while SC-FDE is another special case withK = 1 and
S0 = ∅.

Similar to SC-FDE, the effective receive signal-to-interference-
plus-noise ratio (SINR) of each group in FMG-SC is bottlenecked
by the subcarrier with the weakest channel gain. Hence, an opti-
mal grouping of subcarriers is crucial to achieving the maximum
average sum-rate of all groups in FMG-SC. As the complexity of
exhaustively searching over all possible subcarrier groupings is
prohibitive, we propose two low-complexity methods to solve this
problem approximately. Simulation results show that the proposed
methods perform very closely to the optimal exhaustive search in
terms of achievable rate for FMG-SC. It is also shown that the
proposed FMG-SC modulation with optimized subcarrier group-
ing can achieve more practically favorable rate-PAPR trade-offs as
compared to conventional OFDM and SC-FDE.

2. SYSTEM MODEL

We consider point-to-point communication in a frequency-selective
channel. Both the transmitter and the receiver are assumed to be
equipped with a single antenna. We also assume that perfect channel
state information (CSI) is available at the receiver, basedon which
it determines the parameters needed for designing the transmitter
signal modulation and sends them back to the transmitter viaa re-
liable feedback channel. We consider quasi-static channels and for
convenience assume that the channel is constant in this paper, if not
stated otherwise. Fig. 2 illustrates the proposed FMG-SC modula-
tion scheme, which is described in detail as follows.

LetN = {1, . . . , N} denote the set of equally-spaced orthog-
onal subcarriers, which are further divided intoK non-overlapping
groups, denoted by the setK = {1, . . . ,K}. Eachkth group is
assumed to consist ofMk ≥ 1 subcarriers, with

∑K

k=1
Mk ≤ N .

Let αk,n indicate whether subcarriern is allocated to groupk, n =
1, . . . , N , k = 1, . . . ,K, i.e.,

αk,n =

{

1, if subcarriern is assigned to groupk,

0, otherwise.
(1)

We then have
∑N

n=1
αk,n = Mk, ∀k ∈ K. In addition, note

that each subcarrier is assigned to at most one group, which yields
∑K

k=1
αk,n ≤ 1,∀n ∈ N . Let Sk denote the set of subcarriers

assigned to groupk for SC-FDE transmission, which is given by
Sk = {n|αk,n = 1}, with Sk ⊆ N . The subcarrier allocation
should thus satisfyS0∪S1∪· · ·∪SK = N andSk ∩Sl = ∅,∀k 6=
l, k, l ∈ {0} ∪ K. Notice thatS0 denotes the set of subcarriers
without being assigned to any groupk, with |S0| ≥ 0.

Let R denote the achievable sum-rate of all groups in bits per
second per Hertz (bps/Hz). At the transmitter, all information bits
of each transmission block are first demultiplexed intoK data
streams, each carrying a bit rateRk, where

∑K

k=1
Rk = R. The

K data streams are coded and modulated with SC-FDE modulation
[15], and transmitted simultaneously. To reduce the complexity and
achieve a low PAPR, we assume equal power allocation among all
used subcarriers in all groups (excludingS0).1 Let pk denote the
power allocated to each subcarrier in groupk. Assume the total
transmission power isP . The power allocationpk ’s should thus
satisfy

∑K

k=1
Mkpk ≤ P . With equal power allocation among all

used subcarriers, we thus havepk = P
∑

K
k=1

∑
N
n=1

αk,n
, ∀k ∈ K.

Without loss of generality, we focus on the transmission of
group k only. Let x ∈ C

Mk×1 denote the information symbol
vector, whose entries are modelled as independent and identically
distributed (i.i.d.) random variables each with zero mean and unit
variance. By referring to Fig. 2, the transmitted signal from groupk
before cyclic prefix (CP) insertion is expressed as

x̃ = F
H
NAPFMk

x, (2)

whereFMk
is anMk×Mk discrete Fourier transform (DFT) matrix,

FH
N is anN ×N inverse DFT (IDFT) matrix,P ∈ R

Mk×Mk
+ is the

diagonal power allocation matrix with all diagonal entriesgiven by√
pk, andA ∈ Z

N×Mk is the subcarrier-group mapping matrix with
Ai,j = {1|αk,i = 1,

∑i

n=1
αk,n = j} andAi,j = 0 otherwise,

i = 1, . . . , N , j = 1, . . . ,Mk. For example, consider the case with
N = 4, Mk = 2, we have

A =

[

1 0 0 0
0 0 1 0

]T

, (3)

if the first and third subcarriers are allocated to groupk. It is worth
noting that to enable the above modulation, there are in general two
sets of parameters for the receiver to feed back to the transmitter:

1. Subcarrier-group mapping at each subcarrier:{αk,n}, k =
1, . . . ,K, n = 1, . . . , N ;

2. Rate assignments for each group:{Rk}, k = 1, . . . , K.

However, for the practical case with a small number of groups, the
feedback complexity is moderate and affordable. For example, con-
siderK = 1, then the feedback parameters are reduced to only the
subcarrier indices inS0 and the transmission rate.

At the receiver, letH ∈ C
N×N denote the complex baseband

channel in time domain. The use of CP rendersH to be a cir-
culant matrix and thus expressed via eigenvalue decomposition as
FH

NΛFN , whereΛ ∈ C
N×N is a diagonal matrix with each(n, n)-

th entryhn being the complex channel gain at thenth subcarrier in
the frequency domain. Letz ∈ C

N×1 denote the receiver noise,
whose entries are modelled as i.i.d. circularly symmetric complex
Gaussian (CSCG) random variables each with zero mean and vari-
anceσ2. Hence, the received signal after CP removal is expressed
as

y = Hx̃+ z = F
H
NΛAPFMk

x+ z. (4)
As shown in Fig. 2, an FDE is applied to all subcarriers based on the
criterion of minimum mean square error (MMSE) [18]. The equal-
ized signal of groupk in time domain is thus given by

ỹ =F
H
Mk

A
H
TFNy (5)

=F
H
Mk

A
H
TΛAPFMk

x+ F
H
Mk

A
H
TFNz, (6)

1Note that power optimization among subcarriers in different groups can
be applied to further improve the achievable rate, but the gain is only marginal
as verified by our simulation results whenS0 is properly selected; thus it is
not considered in this paper due to the space limitation.
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whereT ∈ C
N×N is the diagonal MMSE-FDE matrix with the

(n, n)-th entry denoted by
√

pkh
∗

n

pk|hn|2+σ2 , n = 1, . . . , N , where(·)∗
represents the complex conjugate operation. Therefore, the receive
SINR of groupk can be shown to be [18]

γk({αk,n}) = 1

1

Mk

∑N

n=1
αk,n

(

σ2

σ2+pk|hn|2

) −1, k = 1, . . . , K.

(7)
Hence, the achievable rate in bps/Hz at thekth group is given by

Rk({αk,n}) = Mk

N
log2

(

1 +
γk({αk,n})

Γ

)

, (8)

whereΓ ≥ 1 denotes the gap for the achievable rate from the chan-
nel capacity owing to the employment of a practical modulation and
coding scheme (MCS) [19].

3. PROBLEM FORMULATION

In this paper, we aim to maximize the achievable sum-rate over all
groups for our proposed FMG-SC under a given number of groups,
K ≥ 1, by optimizing the subcarrier-group mapping{αk,n}.
Hence, the problem is formulated as

(P1) : maximize
{αk,n}

K
∑

k=1

Rk({αk,n}) (9)

subject to αk,n ∈ {0, 1}, ∀k ∈ K, ∀n ∈ N (10)
K
∑

k=1

αk,n ≤ 1, ∀n ∈ N (11)

N
∑

n=1

αk,n ≥ 1, ∀k ∈ K. (12)

Note that (P1) is a non-convex combinatorial optimization prob-
lem due to the binary constraints on{αk,n} in (10). A direct ap-
proach for finding its optimal solution is via searching overall pos-
sible subcarrier-group mappings and selecting the one withthe max-
imum sum-rate. Note that for each subcarrier, there areK+1 possi-
ble group mappings, since it can be assigned to any of theK groups
{Sk}k∈K, or toS0 (i.e., unused). The complexity of computing the
sum rate of all groups given any subcarrier-group mapping can be
shown to beO(NK), and that of searching over all possible map-
pings isO

(

(K + 1)N
)

. Hence, the total computational complexity
of exhaustive search for the optimal{αk,n} isO

(

NK(K + 1)N
)

,
which is unaffordable for practical systems with largeN .

4. PROPOSED SOLUTION

To avoid the prohibitive complexity of exhaustive search, in this sec-
tion, we present two suboptimal methods with lower complexity to
solve (P1).

4.1. Set Partitioning Optimal Search (SPOS)
Notice from (7) that(1 + γk) is the harmonic mean of

{

1 +
pk|hn|2

σ2

}

n∈Sk
, where pk|hn|2

σ2
is the signal-to-noise ratio (SNR)

of subcarriern that belongs to groupk. The harmonic mean op-
eration is known to be dominated by the smallest element in its
arguments. As a result, it can be shown that for a group of subcar-
riers with a minimum subcarrier SNR ofγ′

0, its effective SINR is
upper-bounded by(Mk(1 + γ′

0)− 1). Thus, the achievable rate of
each group with SC-FDE transmission is bottlenecked by its worst

subcarrier SNR. By intuition, subcarriers with similar SNRvalues
should be grouped together to mitigate the above effect.

Motivated by this, we solve (P1) approximately by considering
the problem of finding the optimal partition ofN subcarriers sorted
in an increasing order of their SNRs intoK + 1 non-overlapping
groups to maximize the sum-rate. We thus term this method as set
partitioning optimal search (SPOS). Equivalently, we needto deter-
mine the locations to insertK bars that separate theN sorted subcar-
rier SNRs intoK + 1 bands. The group of subcarriers with the low-
est SNR values belong toS0 and thus are not used for transmission,
while the transmission power is equally allocated among therest of
the subcarriers. This is equivalent to aset partitioning problem in
combinatorial optimization. Specifically, there areN locations to
place theK bars, denoted byb = [b1, . . . , bK ]T ∈ Z

K
+ . Hence,

there are
(

N

K

)

possible divisions, and exhaustively searching over all
of them requires a complexity ofO

(

NK
)

. Note that each possible
b determines a unique set of values for{αk,n}, and the complexity
of sorting subcarriers isO(N logN). Thus, the overall complexity
of the proposed SPOS isO

(

N logN +NK+1K
)

, which is lower
than that of exhaustively searching{αk,n} since it usually holds that
K ≪ N .

4.2. Set Partitioning Gradient-based Search (SPGS)
Alternatively, we present a more efficient iterative algorithm that
further reduces the complexity of the above SPOS, by leveraging
a gradient-based search for solving (P1). LetĨ = [Ĩ1, . . . , ĨN ]T ∈
NN denote the sorted subcarrier indices, andg = [g1, . . . , gN ]T ∈
R

N
+ denote the corresponding sorted subcarrier SNR values, i.e. gm

is the SNR value of subcarriern for n ∈ N in the original or-
der if Ĩm = n. In each inner iteration, we movebk at most one
position to the direction that maximizes (P1) with otherbi’s fixed,
i 6= k, i, k ∈ K, i.e.,bk ← bk + δk, whereδk ∈ {−1, 0, 1}. This
is carried out sequentially overk = 1, . . . ,K, which completes
an outer iteration. The outer iteration terminates when no change
is made to all bar locations. Note that for eachbk, its domain is
bounded by[bk−1 + 1, bk+1 − 1], whereb0 = −1 andbK+1 = N .

It is worth noting that since (P1) is not a convex problem, i.e.,
it may have multiple locally optimal points, the proposed algorithm
may terminate at a local optimum. A good choice of the initialb

is thus crucial to its performance. One possible way is to randomly
generate multiple initial points and choose the one that produces the
highest sum-rate after convergence. However, this may be computa-
tionally inefficient. Alternatively, as the harmonic mean of a set of
positive numbers is dominated by the smallest number in the set, and
the subcarriers with similar SNR values should be grouped together,

we propose to set the initial set ofb as
[

⌊ N

K+1
⌋, . . . , ⌊ NK

K+1
⌋
]T

,

which partitions theN sorted subcarriers intoK equal-size bands.
The complexity of the above proposed set partitioning gradient-
based search (SPGS) depends on the number of outer iterations
for convergence, which is difficult to analyze in general. The best
case only needs one outer iteration, while the worst case mayhave
the iteration number linear inN as observed from our simulations.
Hence, the complexity of SPGS is at mostO

(

N logN +N2K2
)

,
which is even lower than that of the previous SPOS.

5. SIMULATION RESULTS

This section presents simulation results to evaluate the performance
of our proposed FMG-SC modulation with different subcarrier
grouping methods. The frequency-selective channel is assumed to
consist ofL = 8 paths with an exponential power delay profile,
where each tap coefficient is modeled as an independent CSCG
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Fig. 3. Achievable rate comparison of different subcarrier grouping
methods for FMG-SC withK = 2 andΓ = 1.

random variable with zero mean and variance determined by the
power delay profile. The total average power of all paths is nor-
malized to unit, and thus the SNR is defined asP/

(

Nσ2
)

. We set
N = 64, unless stated otherwise. Each simulation result is averaged
over 1000 independent channel realizations. The CP length for all
modulation schemes considered (OFDM, SC-FDE, and FMG-SC)
is set equal toL and the rate loss due to CP is ignored since it is a
constant percentage for all schemes.

First, we evaluate the performance of our proposed low-
complexity subcarrier grouping for FMG-SC. Fig. 3 shows the
achievable rates of different grouping methods withK = 2 and
Γ = 1 (0dB). We consider three benchmark schemes, including
exhaustive search (ES), equal partition with unsorted subcarriers
(EP-US), and equal partition with sorted subcarriers (EP-SS). EP-
US divides the subcarrier set[1, . . . , N ] intoK equal bands directly
whereas EP-SS operates similarly on sorted subcarriers in the set
Ĩ. Notice that we have assumed all the subcarriers are used in this
example, i.e.,S0 = ∅. Due to its high computational complexity,
we only considerN = 16 for ES and compare it with the proposed
SPOS withN = 16. From Fig. 3, it is observed that the proposed
SPOS performs as good as the optimal ES. For other results shown
in Fig. 3, we considerN = 64. It is observed that the proposed
SPGS has very close achievable rate compared to the proposed
SPOS, although it requires even lower complexity. Additionally,
it is also observed that benchmark scheme ES-US has the lowest
achievable rate, while the rate is improved if the subcarriers are
sorted based on SNRs as in the benchmark scheme ES-SS. The two
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proposed subcarrier grouping methods significantly outperform the
two benchmark schemes with equal partition, especially at low SNR
values.

Fig. 4 and Fig. 5 compare the achievable rate and the mean
PAPR of different modulation schemes, respectively. Specifically,
OFDM with the optimal water-filling (WF) based power and bit al-
location over all subcarriers is considered, while for SC-FDE and
the proposed FMG-SC withK = 1 or 2 groups, equal power allo-
cation over all/used subcarriers is assumed. For FMG-SC, the pro-
posed SPGS subcarrier grouping method is assumed, since it yields
nearly optimal performance with the lowest complexity, as shown
in Fig. 3. We assume that a rate-1/3 convolutional code with con-
straint length of 3 is used, for which the SNR gap isΓ = 4.54dB at
a target BER of10−6 [20]. With practical modulation and coding,
the achievable rate needs to be discrete for each channel realization.
Thus, we considerM -QAM modulation with bit granularity of 1/3.
Root-raised cosine (RRC) pulse shaping function with rolloff fac-
tor of 0.1 is also assumed. From Fig. 4, it is observed that there
are significant rate gains by using FMG-SC even withK = 1 (i.e.,
single group) as compared to SC-FDE. This indicates that a simple
transmit adaptation by nulling the weakest subcarriers in SC-FDE
leads to significant improvement in achievable rate. With increased
K (e.g.,K = 2), the achievable rate of FMG-SC approaches that
of WF-OFDM. However, as observed in Fig. 5, the improvement in
data rate by FMG-SC over SC-FDE is at the cost of increased mean
PAPR, which is more pronounced whenK increases from 1 to 2 in
FMG-SC. Hence, the proposed FMG-SC modulation with optimized
subcarrier grouping provides more flexible rate-PAPR trade-offs be-
tween conventional SC-FDE and OFDM, which are practically ap-
pealing.

6. CONCLUSION

This paper proposes a new general modulation scheme termed
FMG-SC for broadband communication over frequency-selective
channels, which encapsulates conventional OFDM and SC-FDE
modulations as special cases. We study the optimal subcarrier
grouping for FMG-SC to maximize the achievable rate, and propose
two low-complexity methods that can find nearly optimal solutions
efficiently. It is shown by simulation that the proposed FMG-SC
modulation with optimized subcarrier grouping has achievable rate
close to that of WF-OFDM yet with lower PAPR. Meanwhile, its
achievable rate significantly outperforms that of SC-FDE atthe cost
of moderately higher PAPR. Hence, the proposed FMG-SC pro-
vides more practically favorable rate-PAPR trade-offs over existing
OFDM and SC-FDE.
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[17] N. Michailow, M. Matthé, I. S. Gaspar, A. N. Caldevilla, L. L.
Mendes, A. Festag, and G. Fettweis, “Generalized frequency
division multiplexing for 5th generation cellular networks,”
IEEE Trans. Commun., vol. 62, no. 9, pp. 3045–3061, Sept.
2014.

[18] T. Shi, S. Zhou, and Y. Yao, “Capacity of single carrier systems
with frequency-domain equalization,” inProc. IEEE Circuits
and Systems Symposium on Emerging Technologies: Frontiers
of Mobile and Wireless Communication, vol. 2, May 2004, pp.
429–432.

[19] J. M. Cioffi, ”Digital Communications”, Standord Univ., Stan-
dord, CA, 2014, EE379 course notes.

[20] J. Proakis and M. Salehi,Digital Communications, 5th ed.
McGraw-Hill, 2008.

3683


