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ABSTRACT

In this paper we study the tone reservation technique for the reduc-
tion of the peak to average power ratio (PAPR) in code division mul-
tiple access (CDMA) systems that employ the Walsh functions. In
the tone reservation method, the available carriers are partitioned
into two sets, the information set, which carries the information,
and the compensation set, which is used to reduce the PAPR. Cen-
tral questions are: What is the best possible reduction of the PAPR?
What is the optimal information set that achieves this reduction, and
how can it be found? What is the general structure of the infor-
mation set? So far, the answers were unknown. In this paper we
completely solve these questions for CDMA systems that employ
the Walsh functions. Interestingly, using the first N Rademacher
functions is optimal under all sets of size N .

Index Terms— Peak to average power, tone reservation, code
division multiple access, Walsh system, optimal constant

1. INTRODUCTION

Code division multiple access (CDMA) is a transmission technique
that is used in many systems, for example in 3G and UMTS, GPS,
and Galileo [1]. Moreover, multiple extensions such as multicarrier
CDMA [2] exist.

The control of the peak to average power ratio (PAPR) is an
important task in any orthogonal transmission scheme, and thus also
for CDMA systems that employ orthogonal functions [3–6]. Large
PAPR values are undesired, because they can overload amplifiers,
distort the signals, and lead to out-of-band radiation. For a further
discussion of these concepts and problems, we would like to refer
to [6].

In order to reduce the PAPR, several methods have been pro-
posed [7, 8], among them the popular tone reservation method [9–
11], which we consider in this paper. In this method, the set of
available carriers is partitioned into two sets: the information set
K, which is used to carry the information, and the compensation set
K{, which is used to reduce the PAPR. A significant advantage of the
tone reservation method is that no additional information exchange
is needed between the transmitter and receiver. The set K is fixed
and known by both the transmitter and receiver. The receiver simply
has to select the carriers corresponding to the set K. In Section 3 we
will explain the tone reservation method in more detail.

Tone reservation is an elegant procedure and easy to define. The
practical implementation, however, is difficult, because there exist
few explicit algorithms for the calculation of the compensation set,
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and their complexity is high in general. Further, most available re-
sults are based on simulations and little of them are analytic in na-
ture.

In this paper we analytically treat the PAPR reduction problem
via tone reservation for CDMA systems that are based on the Walsh
functions. Important questions about the tone reservation method
in those systems are: 1. What is the best possible reduction of the
PAPR? 2. What is the optimal information set that achieves this re-
duction, and how can it be found? And 3. What is the general struc-
ture of the information set? We solve all three question in Section 5.
It is surprising that for CDMA the optimal constants and information
sets can be derived.

In [12] a general theory for the solvability of the PAPR reduc-
tion problem was developed for arbitrary orthogonal transmission
schemes. The solvability of the PAPR problem for CDMA systems
that are based on Walsh functions was studied in [13, 14]. The re-
sults in these publications initiated the research for answering the
above questions. It would be interesting to further develop the theory
from [12], such that above questions can also be answered for other
orthogonal transmission schemes, in particular for OFDM. However,
this task seems to be very difficult.

2. NOTATION AND WALSH SYSTEMS

By Lp[0, 1], 1 ≤ p ≤ ∞, we denote the usual Lp-spaces on the
interval [0, 1], equipped with the norm ‖ · ‖p. For an index set I ⊂
Z, we denote by `2(I) the set of all square summable sequences
c = {ck}k∈I indexed by I. The norm is given by ‖c‖`2(I) =

(
∑
k∈I |ck|

2)1/2. By |A| we denote the cardinality of a set A.
The Rademacher functions rn, n ∈ N, on [0, 1] are defined by

rn(t) = sgn[sin(π2nt)], where sgn denotes the signum function
with the convention sgn(0) = −1. The Walsh functions wn, n ∈ N,
on [0, 1] are defined by w1(t) = 1 and w2k+m(t) = rk+1(t)wm(t)

for k = 0, 1, 2, . . . and m = 1, 2, . . . , 2k. Note that we use an
indexing of the Walsh functions that starts with 1. The Rademacher
system {rn}n∈N is an orthonormal system (ONS) inL2[0, 1], but not
a basis. The Walsh functions {wn}n∈N form an orthonormal basis
for L2[0, 1], and we have

∫ 1

0
wn(t) dt = 0 for all n ∈ N, n ≥ 2.

For further details about the Walsh function, see for example [15].

3. PAPR AND TONE RESERVATION

Without loss of generality, we can restrict ourselves to signals de-
fined on the interval [0, 1]. Signals with other duration can be sim-
ply scaled to be concentrated on [0, 1]. For a signal s ∈ L2[0, 1], we
define

PAPR(s) =
‖s‖L∞[0,1]

‖s‖L2[0,1]

,
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Fig. 1. Block diagram of a CDMA transmission scheme with tone
reservation. In this example we have I = N, K = {1, . . . , N} and
K{ = N \ K.

i.e., the PAPR is the ratio between the peak value of the signal and
the square root of the power of the signal. Note that the PAPR is
usually defined as the square of this value. This however makes,
from a mathematical point of view, no difference for the results in
this paper. In the case of an orthogonal transmission scheme, using
the ONS {φk}k∈I ⊂ L2[0, 1], the PAPR of the transmit signal

s(t) =
∑
k∈I

ckφk(t), t ∈ [0, 1],

with coefficients c = {ck}k∈I , is given by

PAPR(s) =
‖
∑
k∈I ckφk‖L∞[0,1]

‖c‖`2(I)
,

because ‖s‖L2[0,1] = ‖c‖`2(I), due to the fact that {φk}k∈I is an
ONS.

For an orthogonal transmission scheme, the peak value of the
signal s, and hence the PAPR, can become large, as the following re-
sult shows. Given any system {φn}Nn=1 of N orthonormal functions
in L2[0, 1], then there exist a sequence {cn}Nn=1 ⊂ C of coefficients
with

∑N
n=1|cn|

2 = 1, such that ‖
∑N
n=1 cnφn‖L∞[0,1] ≥

√
N [16].

This increase of the PAPR with an order of
√
N is undesired and

ways to battle it are needed.
Tone reservation is one approach to reduce the PAPR. Let

{φk}k∈I be an ONS in L2[0, 1]. We additionally assume that
‖φk‖∞ < ∞, k ∈ I, i.e., we consider the practically relevant case
of bounded carriers. In the tone reservation method, the index set I
is partitioned in two disjoint sets K and K{. Note that the set K can
be finite or infinite. For a given sequence a = {ak}k∈K ∈ `2(K),
the goal is to find a sequence b = {bk}k∈K{ ∈ `2(K{) such that the
peak value of the signal

s(t) =
∑
k∈K

akφk(t)︸ ︷︷ ︸
=:A(t)

+
∑
k∈K{

bkφk(t)

︸ ︷︷ ︸
=:B(t)

, t ∈ [0, 1],

is as small as possible. A(t) denotes the signal part which contains
the information andB(t) the part which is used to reduce the PAPR.

A block diagram, illustrating the tone reservation method for a
CDMA transmission system using the Walsh functions, is given in
Fig. 1.

Note that we allow infinitely many carriers to be used for the
compensation of the PAPR. This is also of practical interest, since
the solvability of the PAPR problem in this setting is a necessary
condition for the solvability of the PAPR problem in the setting with
finitely many carriers.

4. SOLVABILITY OF THE PAPR PROBLEM

We define the solvability of the PAPR problem next.

Definition 1 (Solvability of the PAPR problem). For an ONS
{φk}k∈I and a set K ⊂ I, we say that the PAPR problem is solv-
able with finite extension constant CEX, if for all a ∈ `2(K) there
exists a b ∈ `2(K{) such that∥∥∥∥∥∥

∑
k∈K

akφk +
∑
k∈K{

bkφk

∥∥∥∥∥∥
L∞[0,1]

≤ CEX‖a‖`2(K). (1)

We call the PAPR problem solvable if it is solvable for some finite
extension constant CEX.

If the PAPR reduction problem is solvable, condition (1) imme-
diately implies that ‖b‖`2(K{) ≤ CEX‖a‖`2(K), because

(∑
k∈K{

|bk|2
) 1

2

≤

(∑
k∈K

|ak|2 +
∑
k∈K{

|bk|2
) 1

2

=

(∫ 1

0

∣∣∣∣∣∑
k∈K

akφk(t) +
∑
k∈K{

bkφk(t)

∣∣∣∣∣
2

dt

) 1
2

≤ ess sup
t∈[0,1]

∣∣∣∣∣∑
k∈K

akφk(t) +
∑
k∈K{

bkφk(t)

∣∣∣∣∣, (2)

that is, the energy of the compensation signal is also bounded by
(CEX‖a‖`2(K))

2. Further, we have PAPR(s) ≤ CEX. It is clear that
finding the optimal, i.e., minimal extension constant is an important
problem that is relevant for applications.

In [11,13] the following different but equivalent characterization
of the solvability of the PAPR problem was given.

Theorem 1. Let {φn}n∈N be a complete ONS, K ⊂ N, and CEX >
0. We have

‖f‖L2[0,1] ≤ CEX‖f‖L1[0,1] (3)

for all f ∈ L1[0, 1] having the representation

f =
∑
k∈K

akφk

for some {ak}k∈K ⊂ C, if and only if the PAPR problem is solvable
for {φn}n∈N and K with constant CEX.

Theorem 1 will be useful for our proof. In particular, because it
shows that for any set K, the smallest constant CEX for which (3) is
true is also the smallest constant CEX for which (1) is true.
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5. OPTIMAL PAPR CONTROL AND OPTIMAL SET

As already mentioned in the introduction, in the remainder of this pa-
per we will answer the following three questions for CDMA systems
that employ the Walsh system: 1. What is the best possible reduction
of the PAPR, i.e, how small is the optimal extension constant CEX?
2. What is the optimal information setK that achieves this reduction,
and how can it be found? And 3. What is the general structure of the
information set K?

Let K = {k1, k2, . . . , kN} ⊂ N be a set of N arbitrary distinct
natural numbers. By CEX(K) we denote the optimal, i.e., smallest,
extension constant for which the PAPR problem is solvable for the
Walsh system {φn}n∈N = {wn}n∈N and the set K. Next, we want
to study how small the optimal extension constant can become for
different sets K of cardinality N , i.e., we are interested in

CEX(N) := inf
K⊂N
|K|=N

CEX(K). (4)

We will see in Theorem 3 that for each N ∈ N there indeed exists
a set Kopt(N) ⊂ N with |Kopt(N)| = N , such that CEX(N) =
CEX({Kopt(N)}). That is, the infimum in (4) is in fact attained and
a minimum.

A priori it is not clear how the set Kopt(N) depends on N . It
could be that for different N we obtain completely different sets
Kopt(N). In particular it does not need to hold that Kopt(N) ⊂
Kopt(N + 1). However, we will see in Corollary 1 that exactly this
is the case.

The next theorem completely describes the smallest possible ex-
tension constant CEX, and thus answers question 1.

Theorem 2. We have CEX(1) = 1 and CEX(N) =
√
2 for all N ≥

2.

Question 2 about the optimal information set Kopt(N) that
achieves the best possible PAPR reduction is answered by the next
theorem.

Theorem 3. For N ∈ N we have CEX(N) = CEX({2k + 1}N−1
k=0 ).

That is, Kopt(N) = {2k + 1}N−1
k=0 , showing that the first N

Rademacher functions achieve the minimal extension constant
CEX(N).

Finally, we study the structure of the optimal information sets,
and thus answer question 3. For N ∈ N let

TN := {K ⊂ N : |K| = N,CEX(N) = CEX(K)}

denote the set of all optimal information sets K, i.e., the set of all K
that attain the smallest possible extension constant CEX(N).

Of course, we cannot conclude for K ∈ TN and kl 6∈ K that
K ∪ {kl} ∈ TN+1. It is also not immediately clear whether there
exists an infinite setK = {k1, k2, . . . }, kn < kn+1, l ∈ N, such that
the firstN elementsKN = {k1, . . . , kN} always satisfyKN ∈ TN .
The following corollary gives an answer, and shows that we have this
situation.

Corollary 1. Let N ≥ 2 and K = {k1, . . . , kN} ∈ TN . Then we
have K \ {kl} ∈ TN−1 for all 1 ≤ l ≤ N − 1.

The proofs of all above results will be given in Section 8.

6. ELEMENTARY FACTS ABOUT WALSH FUNCTIONS

Before we can give the proofs, we need some elementary facts about
the Walsh functions, which were introduced in Section 2.

Let K = {k1, k2, . . . , kN} ⊂ N be a set of N arbitrary distinct
natural numbers. Let W (K) denote the largest number C1 such that

C1

(
N∑
l=1

|αl|2
) 1

2

≤
∫ 1

0

∣∣∣∣∣
N∑
l=1

αlwkl(t)

∣∣∣∣∣ dt (5)

for all α1, . . . , αN ∈ C. We have

W (K) = inf
{αl}Nl=1∑N
l=1|αl|2=1

∫ 1

0

∣∣∣∣∣
N∑
l=1

αlωkl(t)

∣∣∣∣∣ dt
= min

{αl}Nl=1∑N
l=1|αl|2=1

∫ 1

0

∣∣∣∣∣
N∑
l=1

αlωkl(t)

∣∣∣∣∣ dt. (6)

The minimum in (6) is indeed attained, since the mapping

(α1, . . . , αN ) 7→
∫ 1

0

∣∣∣∣∣
N∑
l=1

αlωkl(t)

∣∣∣∣∣ dt
is continuous, and the minimum is taken over a compact set in CN .
According to the Cauchy–Schwarz inequality we have

∫ 1

0

∣∣∣∣∣
N∑
l=1

αlwkl(t)

∣∣∣∣∣ dt ≤
∫ 1

0

∣∣∣∣∣
N∑
l=1

αlwkl(t)

∣∣∣∣∣
2

dt

 1
2

=

(
N∑
l=1

|αl|2
) 1

2

,

which implies that
W (K) ≤ 1. (7)

Further, for arbitrary l ∈ {1, . . . , N}, we see from (6) that

W (K) ≤W (K \ {kl}). (8)

For N ∈ N we set

W (N) := sup
K⊂N
|K|≤N

W (K).

Clearly, we have 0 ≤ W (N) ≤ 1 for all N ∈ N, according to (7).
For N ≥ 2 and all sets {k1, . . . , kN}, it follows from (8) that

W ({k1, . . . , kN}) ≤W (N − 1),

and consequently
W (N) ≤W (N − 1). (9)

Hence, we see that 0 ≤W (N) ≤ 1 and, further, that {W (N)}∞N=1

is a monotonically decreasing sequence of real numbers that is
bounded from below. Hence the limit limN→∞W (N) exists.
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7. AUXILIARY RESULT ABOUT RADEMACHER
FUNCTIONS

In this section, we prove an auxiliary result about Rademacher func-
tions, that will be needed for the proof of our main results.

For N ∈ N, let R(N) denote the largest number C2 such that

C2

(
N∑
l=1

|αl|2
) 1

2

≤
∫ 1

0

∣∣∣∣∣
N∑
l=1

αlrl(t)

∣∣∣∣∣ dt (10)

for all α1, . . . , αN ∈ C. By the same reasoning as in Section 6,
there exists such a number.

Lemma 1. We have R(1) = 1 and R(N) = 1/
√
2 for all N ≥ 2.

Proof. For N = 1, eq. (10) becomes C2|α1| ≤ |α1|, which shows
that R(1) = 1.

Next, we treat the case N ≥ 2. According to Khinchin’s in-
equality [17], we have for all N ∈ N and all α1, . . . , αN ∈ C that

1√
2

(
N∑
l=1

|αl|2
) 1

2

≤
∫ 1

0

∣∣∣∣∣
N∑
l=1

αlrl(t)

∣∣∣∣∣ dt. (11)

The constant 1/
√
2 in (11) is the best, i.e., largest possible constant

that holds for all N ∈ N [17, 18]. For fixed N ∈ N, N ≥ 2,
inequality (11) implies that

R(N) ≥ 1√
2
. (12)

A simple calculation shows that
∫ 1

0
|r1(t) + r2(t)| dt = 1. Hence,

for N = 2 and α1 = α1 = 1, inequality (10) becomes C2

√
2 ≤ 1,

and and we see that R(2) ≤ 1/
√
2. Due to (12), it follows that

R(2) =
1√
2

(13)

Further, for N ≥ 3 we have 1/
√
2 ≤ R(N) ≤ R(2) ≤ 1/

√
2,

where the first inequality follows from (12), the second inequality
from the same arguments that led to (9), and the third inequality
from (13). Hence, for N ≥ 2, we have R(N) = 1/

√
2.

8. PROOFS

In this section we prove Theorems 2 and 3 and Corollary 1.
Based on Lemma 1 we can prove Lemma 2, which is ultimately

needed for the proof of Theorem 2.

Lemma 2. We have W (1) = 1 and W (N) = 1/
√
2 for all N ≥ 2.

Proof. Since W ({k}) =
∫ 1

0
|wk(t)| dt = 1, for all k ∈ N, it

immediately follows that W (1) = 1. According to the definition of
W , we have W (N) ≥ R(N) for all N ∈ N. Hence, it follows from
Lemma 1 that

W (N) ≥ 1√
2

(14)

for all N ≥ 2. Let k1 < k2 be two arbitrary natural numbers. We
have∫ 1

0

|wk1(t) + wk2(t)| dt =
∫ 1

0

|wk1(t)(wk1(t) + wk2(t))| dt

=

∫ 1

0

|1 + wk1(t)wk2(t)| dt =
∫ 1

0

|1 + wk′(t)| dt

=

∫ 1

0

1 + wk′(t) dt = 1, (15)

and it follows that

W ({k1, k2}) ≤
∫ 1

0

∣∣∣∣ 1√
2
wk1(t) +

1√
2
wk2(t)

∣∣∣∣ dt = 1√
2
,

where we used (6) in the inequality and (15) in the equality. Hence,
we see that

W (2) ≤ 1√
2
. (16)

Since W (N) ≤ W (2) for all natural numbers N ≥ 2 according to
(9), it follows that

1√
2
≤W (N) ≤W (2) ≤ 1√

2
,

where we used (14) in the first and (16) in the last inequality. Con-
sequently, we have W (N) = 1/

√
2 for all N ≥ 2.

Now we are in the position to prove Theorems 2 and 3, as well
as Corollary 1.

Proof of Theorem 2. According to the definitions of CEX(N) and
W (N), and Theorem 1 we see that CEX(N) = 1/W (N). Hence,
Lemma 2 completes the proof.

Proof of Theorem 3. In the proof of Lemma 1 we have already seen
that, for everyN ∈ N, the firstN Rademacher functions r1, . . . , rN
give the maximal constant W (N) and hence the minimal extension
constant CEX(N). The first N Rademacher functions {rn}Nn=1 cor-
respond to the Walsh functions {w2k+1}N−1

k=0 .

Proof of Corollary 1. For N ≥ 3 we have for {k1, . . . , kN} ∈ TN
that

1√
2
=W ({k1, . . . , kN}) ≤W ({k1, . . . , kN} \ {kl}) ≤

1√
2

according to (8) and Lemma 2. It follows that

W ({k1, . . . , kN} \ {kl}) =
1√
2
,

which in turn implies that

CEX({k1, . . . , kN} \ {kl}) =
1

W ({k1, . . . , kN} \ {kl})
=
√
2 = CEX(N − 1), (17)

where the first equality follows from the Definition of W and Theo-
rem 1. From (17) we see that {k1, . . . , kN} \ {kl} ∈ TN−1.

9. RELATION TO PRIOR WORK

The control of the PAPR and finding optimal information sets is an
important problem. In [14] it was shown for CDMA based Walsh
functions that the information sets K for which the PAPR is solv-
able need to be sparse, in particular their upper densities needs to be
zero. However, no statement about the optimal information set was
made. In general, little is known about the answers to questions 1–3,
and most of the results are based on simulations and not on analytic
considerations. For our proof the optimal constant in Khinchin’s in-
equality [17, 18] was essential. It would be interesting to answer
the three questions also for other orthogonal transmission schemes,
e.g., OFDM, where the ONS is the system of complex exponentials.
However, the present proof technique is tailored to the specific prop-
erties of the Walsh functions, and therefore cannot be used for other
ONS.
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