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ABSTRACT

Large peak to average power ratios (PAPRs) are problematic for
communication systems. One possible approach to control the PAPR
is the tone reservation method. We analyze the tone reservation
method for general complete orthonormal systems, and consider two
solvability concepts: strong solvability and weak solvability. Strong
solvability requires a rather strong control of the peak value of the
transmit signal by the energy of the information signal, and thus
might be to restrictive for practical applications. Therefore, the con-
cept of weak solvability was introduced, which only requires the
boundedness of the transmit signal. In this paper we prove that weak
solvability and strong solvability are equivalent for arbitrary com-
plete orthonormal systems.

Index Terms— Orthonormal transmission system, peak to av-
erage power ratio, tone reservation, OFDM, CDMA

1. INTRODUCTION

The control of the peak to average power ratio (PAPR) is an im-
portant task in orthogonal frequency division multiplexing (OFDM)
and code division multiple access (CDMA) based communication
systems [1–4]. Large PAPR values are undesired, because they can
overload amplifiers, distort the signal, and lead to out-of-band radi-
ation. For a further discussion of these concepts, we would like to
refer to [4]. For future communication systems other, more general
waveform transmission schemes are discussed [5, 6].

Large PAPR values, however, are not specific to OFDM and
CDMA systems, but rather occur for arbitrary bounded orthonormal
systems (ONS). It is well known that the PAPR of such signals can
be as large as

√
N , where N denotes the number of carriers [7].

In order to reduce the PAPR, several methods have been pro-
posed [8, 9], among them the popular tone reservation method [10–
14], which we consider in this paper. In this method, the set of avail-
able carriers is partitioned into two sets, the first of which is used to
carry the information (information set), and the second of which to
reduce the PAPR (compensation set).

Tone reservation is an elegant procedure and easy to define. The
practical implementation however is difficult. Little of the available
results are analytic in nature, and there exist few explicit and effi-
cient algorithms for the calculation of the compensation set. Further,
optimal constants for the control of the PAPR value are in general
unknown, and hence the maximal possible reduction of the PAPR
value by tone reservation is unclear.

In Section 3 we will explain the tone reservation method in more
detail, and in Section 4 we introduce the concepts of weak and strong
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solvability of the PAPR problem. In Section 5 we present our main
result, the equivalence of weak and strong solvability for arbitrary
bounded complete ONSs.

2. NOTATION

By Lp[0, 1], 1 ≤ p ≤ ∞, we denote the usual Lp-spaces on the
interval [0, 1], equipped with the norm ‖ · ‖p. For an index set I ⊂
Z, we denote by `2(I) the set of all square summable sequences
c = {ck}k∈I indexed by I. The norm is given by ‖c‖`2(I) =

(
∑
k∈I |ck|

2)1/2. By |A| we denote the cardinality of a set A.
The Rademacher functions rn, n ∈ N, on [0, 1] are defined by

rn(t) = sgn[sin(π2nt)], where sgn denotes the signum function
with the convention sgn(0) = −1. The Walsh functions wn, n ∈ N,
on [0, 1] are defined by w1(t) = 1 and w2k+m(t) = rk+1(t)wm(t)

for k = 0, 1, 2, . . . and m = 1, 2, . . . , 2k. Note that we use an
indexing of the Walsh functions that starts with 1. The Walsh func-
tions {wn}n∈N form an orthonormal basis for L2[0, 1]. For further
details about the Walsh function, see for example [15].

3. TONE RESERVATION

Without loss of generality, we can restrict ourselves to signals de-
fined on the interval [0, 1]. Signals with other duration can be sim-
ply scaled to be concentrated on [0, 1]. For a signal s ∈ L2[0, 1], we
define

PAPR(s) =
‖s‖L∞[0,1]

‖s‖L2[0,1]

,

i.e., the PAPR is the ratio between the peak value of the signal and
the square root of the power of the signal. Note that the PAPR is
usually defined as the square of this value. This however, from a
mathematical point of view, makes no difference for the results in
this paper. In the case of an orthogonal transmission scheme, using
the ONS {φk}k∈I ⊂ L2[0, 1], the PAPR of the transmit signal

s(t) =
∑
k∈I

ckφk(t), t ∈ [0, 1],

with coefficients c = {ck}k∈I , is given by

PAPR(s) =
‖
∑
k∈I ckφk‖L∞[0,1]

‖c‖`2(I)
,

because {φk}k∈I is a ONS, which implies that ‖s‖L2[0,1] =
‖c‖`2(I).

For an orthogonal transmission scheme, the peak value of the
signal s, and hence the PAPR, can become large, as the following re-
sult shows. Given any system {φn}Nn=1 of N orthonormal functions
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Fig. 1. Block diagram of a general orthogonal waveform transmis-
sion scheme with tone reservation. In this example {φn}n∈N is an
ONS, and we have I = N, K = {1, . . . , N} and K{ = N \ K.

in L2[0, 1], then there exist a sequence {cn}Nn=1 ⊂ C of coefficients
with

∑N
n=1|cn|

2 = 1, such that ‖
∑N
n=1 cnφn‖L∞[0,1] ≥

√
N [7].

For the OFDM case, where the CONS consists of complex ex-
ponentials {eik · 2π}k∈Z and the CDMA case, where the CONS is
given by the Walsh functions {wn}n∈N, this can be easily seen. For
the sequence

cn =

{
1√
N
, 1 ≤ n ≤ N,

0, otherwise,

we clearly have
∑N
n=1|cn|

2 = 1. In the OFDM case we have∥∥∥∥∥
N∑
n=1

cn e
int2π

∥∥∥∥∥
L∞[0,1]

=
1√
N

max
t∈[0,1]

∣∣∣∣∣
N∑
n=1

eint2π

∣∣∣∣∣ = √N,
and in the Walsh case∥∥∥∥∥

N∑
n=1

cnwn

∥∥∥∥∥
L∞[0,1]

=
1√
N

∥∥∥∥∥
N∑
n=1

wn

∥∥∥∥∥
L∞[0,1]

=
√
N,

because
∑N
n=1 wn(t) = N for all t ∈ (0, 1/N).

Tone reservation, which is illustrated in Fig. 1, is one approach
to reduce the PAPR. Let {φk}k∈I be an ONS in L2[0, 1]. We addi-
tionally assume that ‖φk‖∞ <∞, k ∈ I, i.e., we consider the prac-
tically relevant case of bounded functions. In the tone reservation
method, the index set I is partitioned in two disjoint setsK (informa-
tion set) andK{ (compensation set). The setK is used to carry the in-
formation and the setK{ to reduce he PAPR. Note that the setK can
be finite or infinite. For a given sequence a = {ak}k∈K ∈ `2(K),
the goal is to find a sequence b = {ak}k∈K{ ∈ `2(K{) such that the
peak value of the signal

s(t) =
∑
k∈K

akφk(t)︸ ︷︷ ︸
=:A(t)

+
∑
k∈K{

bkφk(t)

︸ ︷︷ ︸
=:B(t)

, t ∈ [0, 1],

is as small as possible. A(t) denotes the signal part which contains
the information andB(t) the part which is used to reduce the PAPR.

Note that we allow infinitely many carriers to be used for the
compensation of the PAPR. This is also of practical interest, since
the solvability of the PAPR problem in this setting is a necessary
condition for the solvability of the PAPR problem in the setting with
finitely many carriers.

4. STRONG AND WEAK SOLVABILITY

Next we introduce two solvability concepts for the tone reservation
method. The difference of the two concepts lies in the way how we
control the peak value, i.e. the L∞ norm, of the transmit signal.

Definition 1 (Strong solvability of the PAPR problem). For an ONS
{φk}k∈I and a setK ⊂ I, we say that the PAPR problem is strongly
solvable with finite constant CEX, if for all a ∈ `2(K) there exists a
b ∈ `2(K{) such that∥∥∥∥∥∥

∑
k∈K

akφk +
∑
k∈K{

bkφk

∥∥∥∥∥∥
L∞[0,1]

≤ CEX‖a‖`2(K). (1)

We call the PAPR problem strongly solvable if it is strongly solvable
for some finite constant CEX.

Formally, this solvability concept was introduced in [13, 16]. If
the PAPR reduction problem is strongly solvable, condition (1) im-
mediately implies that ‖b‖`2(K{) ≤ CEX‖a‖`2(K), because(∑

k∈K{

|bk|2
) 1

2

≤

(∑
k∈K

|ak|2 +
∑
k∈K{

|bk|2
) 1

2

=

(∫ 1

0

∣∣∣∣∣∑
k∈K

akφk(t) +
∑
k∈K{

bkφk(t)

∣∣∣∣∣
2

dt

) 1
2

≤ ess sup
t∈[0,1]

∣∣∣∣∣∑
k∈K

akφk(t) +
∑
k∈K{

bkφk(t)

∣∣∣∣∣. (2)

Further, we have PAPR(s) ≤ CEX.
It is easy to show there exist infinite sets K ⊂ I for which the

PAPR is strongly solvable.

Example 1. We will give two examples next.
For the Walsh ONS {wn}n∈N (CDMA case) we can use the in-

formation setK = {2l}l∈N∪{0}. Then the PAPR problem is strongly
solvable, and it can be shown that the optimal extension constant is
CEX =

√
2 [17].

For the Fourier ONS {eik · 2π}k∈Z (OFDM case), the same in-
formation set K = {2l}l∈N∪{0} makes the PAPR problem strongly
solvable. However, in this case the optimal extension constant is yet
unknown.

For OFDM, using the complex exponentials, and CDMA, using
the Walsh functions, the information sets K for which the PAPR is
strongly solvable need to be sparse, similar to Example 1 where the
gaps grow larger and larger [18,19]. In [13] the following result was
proved for OFDM: If K ⊂ Z is a set such that the PAPR is strongly
solvable forK with some finite extension constantCEX then we have

lim
N→∞

|K ∩ [−N,N ]|
2N + 1

= 0,

that is the relative density of information bearing carriers in [−N,N ]
needs to go to zero. A similar result was shown in [16, 20] for the
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Walsh system: If K ⊂ N is a set such that the PAPR is strongly
solvable forK with some finite extension constantCEX then we have

lim
N→∞

|K ∩ [1, N ]|
N

= 0.

This is true regardless of the specific value of the constant CEX.
In view of the discouraging results about the density of the in-

formation set, one could ask if it is too restricting to require (1), i.e.,
the control of the peak value by a constant CEX times the norm of a.
Therefore, in [20] the concept of weak solvability was introduced.

Definition 2 (Weak solvability of the PAPR problem). For an ONS
{φk}k∈I and a set K ⊂ I, we say that the PAPR problem is weakly
solvable if for all a ∈ `2(K) we have

inf
b∈`2(K{)

∥∥∥∥∥∥
∑
k∈K

akφk +
∑
k∈K{

bkφk

∥∥∥∥∥∥
L∞[0,1]

<∞.

This is a weaker form of solvability compared to the strong solv-
ability that was given in Definition 1. The peak value of the transmit
signal is only required to be bounded and not to be controlled by the
norm of the sequence a = {ak}k∈K as in (1).

Clearly, strong solvability always implies weak solvability. In
[20] the question was raised if maybe the converse implication is
also true, that is, if maybe both concepts are equivalent. In [18] this
equivalence was proved for OFDM by showing that weak solvabil-
ity implies strong solvability. The question remained whether this is
also true for other ONS. The goal of this work is to prove the equiva-
lence of strong solvability and weak solvability for general complete
ONS. Since the proof in [18] was tailored to the specific properties
of the OFDM ONS, we need to use a completely different approach
for the proof here.

5. EQUIVALENCE OF SOLVABILITY CONCEPTS

The goal of this section is to show that, for arbitrary complete ONS,
weak solvability, as stated in Definition 2, implies string solvabil-
ity, as stated in Definition 1. Hence, both concepts of stability are
equivalent.

To this end, we start with the following simple lemma, which
gives a different but equivalent characterization of the weak solv-
ability concept.

Lemma 1. Let {φn}n∈N be an ONS andK ⊂ N. The PAPR problem
is weakly solvable for {φn}n∈N and K if and only if for all a ∈
`2(K) there exists a fa ∈ L∞[0, 1] such that∫ 1

0

fa(t)φk(t) dt = ak

for all k ∈ K.

Proof. “⇒”: Assume that the PAPR problem is weakly solvable for
{φn}n∈N and K. Then we have

inf
b∈`2(K{)

∥∥∥∥∥∥
∑
k∈K

akφk +
∑
k∈K{

bkφk

∥∥∥∥∥∥
L∞[0,1]

<∞.

It follows that there exists a b∗ ∈ `2(K{) such that for

fa =
∑
k∈K

akφk +
∑
k∈K{

b∗kφk,

where the convergence of the sums is in the L2[0, 1] norm, we have
‖fa‖L∞[0,1] <∞. Further, since {φn}n∈N is an ONS, we have∫ 1

0

fa(t)φk(t) dt = ak

for all k ∈ K.
“⇐”: Let a ∈ `2(K) be arbitrary but fixed. According to the

assumption, there exists a fa ∈ L∞[0, 1] such that∫ 1

0

fa(t)φk(t) dt = ak

for all k ∈ K. Since fa ∈ L∞[0, 1] ⊂ L2[0, 1], the series expansion∑
n∈N

cnφn (3)

with {cn}n∈N ∈ `2 converges to fa in the L2[0, 1] norm. Since the
convergence of the series (3) is unconditional, the reordering∑

k∈K

akφk(t) +
∑
k∈K{

bkφk(t)

with ak = ck for k ∈ K and bk = ck for k ∈ K{ also converges to
fa. Since fa(t) ∈ L∞[0, 1], this implies that∥∥∥∥∥∥

∑
k∈K

akφk +
∑
k∈K{

bkφk

∥∥∥∥∥∥
L∞[0,1]

= ‖fa‖L∞[0,1] <∞,

and it follows that the PAPR problem is weakly solvable for
{φn}n∈N and K.

In the next theorem our main result is presented.

Theorem 1. Let {φn}n∈N be a complete ONS with supn∈N‖φn‖∞ <
∞, and K ⊂ N, such that the PAPR problem is weakly solvable.
Then the PAPR problem is strongly solvable, i.e., there exists a con-
stant CEX = CEX(K, {φn}n∈N) such that for all a ∈ `2(K) we can
find a b ∈ `2(K{) such that∥∥∥∥∥∑

n∈K

anφn +
∑
n∈K{

bnφn

∥∥∥∥∥
L∞[0,1]

≤ CEX‖a‖`2(K).

For the proof of Theorem 1 we need the following lemma and
the set

N (K) =
{
f ∈ L∞[0, 1] :

∫ 1

0

f(t)φn(t) dt = 0 ∀n ∈ K
}
.

Lemma 2. N (K) is a closed subspace of L∞[0, 1].

Proof. Clearly, N (K) has a linear structure, i.e., is closed with re-
spect to addition and multiplication with complex scalars. It remains
to prove that N (K) is closed. Let {fm}m∈N be an arbitrary se-
quence in N (K) that converges in L∞[0, 1]. That is, there exists a
f∗ ∈ L∞[0, 1] such that limm→∞‖f∗ − fm‖∞ = 0. We need to
show that f∗ ∈ N (K). For m ∈ N, n ∈ K we have∣∣∣∣∫ 1

0

f∗(t)φn(t) dt

∣∣∣∣ = ∣∣∣∣∫ 1

0

f∗(t)φn(t) dt−
∫ 1

0

fm(t)φn(t) dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

(f∗(t)− fm(t))φn(t) dt

∣∣∣∣
≤ ‖φn‖L∞[0,1]‖f∗ − fm‖L∞[0,1].
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Letting m go to infinity, we see that∣∣∣∣∫ 1

0

f∗(t)φn(t) dt

∣∣∣∣ = 0

for all n ∈ K, which implies that f∗ ∈ N (K).

In the proof of Theorem 1 we also employ the bounded inverse
theorem, which is a consequence of the open mapping theorem [21,
pp. 99]. We state the bounded inverse theorem next for convenience.

Theorem 2 (Bounded Inverse Theorem). LetB1, B2 be two Banach
spaces. If T : B1 → B2 is a bounded linear operator which is also
bijective then the inverse operator T−1 : B2 → B1 is bounded as
well.

Now we are in the position to prove Theorem 1.

Proof of Theorem 1. For f ∈ L∞[0, 1] we define the set

[f ] =

{
g ∈ L∞[0, 1] :

∫ 1

0

(f(t)− g(t))φn(t) dt = 0 ∀n ∈ K

}
.

Let QK denote the quotient set L∞[0, 1]/N (K), consisting of all
the sets [f ], f ∈ L∞[0, 1]. QK has a linear structure: we have
α[f ] = [αf ] and [f ] + [g] = [f + g]. Further,

‖[f ]‖QK = inf
g∈N (K)

‖f + g‖L∞[0,1]

defines a norm on QK. Equipped with this norm QK becomes a
Banach space.

Next, we consider the operator RK : QK → `2(K), defined by

(RK[f ])(k) =

∫ 1

0

f(t)φk(t) dt, k ∈ K.

For r ∈ N (K) we have

‖RK[f ]‖`2(K) =

(∑
k∈K

∣∣∣∣∫ 1

0

f(t)φk(t) dt

∣∣∣∣2
) 1

2

=

(∑
k∈K

∣∣∣∣∫ 1

0

(f(t) + r(t))φk(t) dt

∣∣∣∣2
) 1

2

≤

(∑
k∈N

∣∣∣∣∫ 1

0

(f(t) + r(t))φk(t) dt

∣∣∣∣2
) 1

2

=

(∫ 1

0

|f(t) + r(t)|2 dt

) 1
2

≤ ‖f + r‖L∞[0,1], (4)

where we used Parseval’s equality in the second to last line and
Hölder’s inequality in the last line. Since the left hand side of (4)
does not depend on r, it follows that

‖RK[f ]‖`2(K) ≤ inf
r∈N (K)

‖f + r‖L∞[0,1] = ‖[f ]‖QK .

This shows that the operator RK : QK → `2(K) is well-defined
and bounded. Further, from RK([f1] + [f2]) = RK[f1] + RK[f2],
[f1], [f2] ∈ QK, and RK(α[f ]) = αRK[f ], α ∈ C, [f ] ∈ QK, we
see that RK is a linear operator.

Let [f1], [f2] ∈ QK be arbitrary such that RK[f1] = RK[f2]. It
follows that

(RK[f1])(k)− (RK[f2])(k) =

∫ 1

0

(f1(t)− f2(t))φk(t) dt = 0

for all k ∈ K. Since {φn}n∈N is a complete ONS, this shows that
f1 = f2, which in turn implies that [f1] = [f2]. HenceRK injective.

Since, according to the assumptions of the theorem, the PAPR
problem is weakly solvable, we have due to Lemma 1 that for every
a ∈ `2(K) there exists an fa ∈ L∞[0, 1] such that∫ 1

0

fa(t)φk(t) dt = ak, k ∈ K.

Hence, there exists a [fa] ∈ QK such that RK[fa] = a. Since
a ∈ `2(K) was arbitrary, we see that RKQK = `2(K). That is RK
is also surjective.

We established the fact that RK : QK → `2(K) is a bijective
bounded linear operator. As a consequence of Theorem 2, there ex-
ists a bounded linear operator EK such that EK = R−1

K .
Let ε > 0 and a ∈ `2(K) be arbitrary. Then we have EK(a) =

[fa] and
‖[fa]‖QK ≤ ‖EK‖`2(K)→QK‖a‖`2(K). (5)

Further, according to the definition of ‖ · ‖QK , there exists a gε,a ∈
[fa] such that

‖gε,a‖L∞[0,1] ≤ ‖[fa]‖QK + ε‖a‖`2(K). (6)

Since gε,a ∈ [fa] we have∫ 1

0

gε,a(t)φk(t) dt = ak, k ∈ K.

Combining (5) and (6), we see that

‖gε,a‖L∞[0,1] ≤ (‖EK‖`2(K)→QK + ε)‖a‖`2(K).

Hence, the PAPR problem is strongly solvable with extension con-
stant ‖EK‖`2(K)→QK + ε.

6. RELATION TO PRIOR WORK

The concept of weak solvability was first discussed in Section 4.7 of
the chapter “Mathematics of signal design for communication sys-
tems” in [20]. However, when [20] was published, it was unclear
how the PAPR problem behaves for the concept of weak solvabil-
ity. In [18] it was shown for OFDM that if the PAPR problem is not
weakly solvable, then the set of a ∈ `2(K) such that ‖s‖L∞[0,1] =

∞ is a residual set, regardless of the choice of b ∈ `2(K). Further, it
was proved in [18] that for OFDM both concepts—weak and strong
solvability of the PAPR problem—are equivalent. In this paper, we
generalize this result to arbitrary complete ONSs.

In [17] the general theory from this paper was applied to study
the PAPR problem for CDMA transmission schemes that use the
Walsh functions. For this special case, the best possible constant
for the reduction of the PAPR could be determined, and optimal in-
formation sets were characterized. For future research it would be
interesting to further advance the techniques from the present paper,
in order to obtain similar results as in [17] also for other ONSs than
the Walsh system.
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