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ABSTRACT

In this paper the effects of quantisation on distributed convex opti-
misation algorithms are explored via the lens of monotone operator
theory. Specifically, by representing transmission quantisation via
an additive noise model, we demonstrate how quantisation can be
viewed as an instance of an inexact Krasnosel’skiı̆-Mann scheme. In
the case of two distributed solvers, the Alternating Direction Method
of Multipliers and the Primal Dual Method of Multipliers, we fur-
ther demonstrate how an adaptive quantisation scheme can be con-
structed to reduce transmission costs between nodes. Finally for the
Gaussian channel capacity maximisation problem, we demonstrate
convergence even in the presence of one-bit uniform quantisation
based on the aforementioned adaptive quantisation scheme.

Index Terms— Quantisation, Monotone Operator Theory, Dis-
tributed Convex Optimisation, PDMM, ADMM.

1. INTRODUCTION

In the last two decades, the fields of computer science and signal
processing have seen a dramatic increase in the interest in and de-
ployment of distributed computational methods. In areas such as
machine learning [1, 2, 3], big data processing [4, 5] and network
based signal processing [6, 7, 8] such as ’Internet of Things’ type ap-
plications, distributed processing has become a ubiquitous approach
to parallelising computational efforts across multiple nodes. In par-
ticular, by allowing networks of computers to actively work together
to solve a common problem, these approaches also inherit numer-
ous advantages in contrast to their centralised counterparts includ-
ing robustness to node failure and topology changes, scalability with
network size, a reduction in power usage and more [9].

Within the literature a number of different approaches for dis-
tributed signal processing have been proposed, like distributed av-
eraging [6], gossip [10], message passing based algorithms [11, 12,
13], ADMM and PDMM. A common feature of all of the above
mentioned methods, and the one which facilitates distributed com-
putation, is the ability for nodes to communicate with each other and
thus exchange information. Whilst in theory these messages are of
infinite precision, in practice such signals must be coded and thus
quantised. This highlights an important practical artefact which is
not often considered during algorithmic derivation, that of a lack
of precision of the iterates. Whilst the effects of quantisation on
some distributed solvers have been addressed within the literature
[14, 15, 16, 17], with a specific effort into the effects on PDMM
given in [18], the purpose of this paper is to provide a general model
for quantisation in distributed optimisation by exploiting its inher-
ent link with monotone operator theory. Furthermore, by relating
the effect of quantisation with an inexact Krasnosel’skiı̆-Mann itera-
tive scheme [19] we demonstrate how adaptive fixed rate quantisers
can be developed for use in practical contexts. The effects of such
quantisation schemes are also highlighted by demonstrating their use

in solving a Gaussian channel capacity maximisation problem with
specific attention paid to how the performance of both PDMM and
ADMM are effected.

2. BACKGROUND ON MONOTONE OPERATOR THEORY

Many distributed optimisation solvers including the likes of gradi-
ent descent, proximal gradient methods, ADMM and PDMM can be
derived through the guise of monotone operator theory. This frame-
work therefore provides the ideal foundation for a general analysis of
the effect that quantisation has on such solvers. For this purpose, we
begin with an initial overview of some of the basis definitions and
properties of monotone operators and operator splitting techniques
which will be used throughout the text. For a more detailed and
self contained overview of this subject the reader is referred to the
tutorial paper provided in [20].

2.1. Monotone Operator Theory

An operator T on Rn is a subset of Rn×Rn. We will write T (x) to
denote the image or range of T defined as T (x) = {y ∈ Rn | ∃x ∈
Rn : (x, y) ∈ T}. If T (x) is a singleton or empty for any x, then
T is called a function or single-valued. The inverse relation of T
is defined as T−1 = {(x, y) | (y, x) ∈ T}. If T1 and T2 are any
operators, we let T1 + T2 = {(x, y + z) | (x, y) ∈ T1, (x, z) ∈
T2} and T2 ◦ T1 = {(x, z) | ∃ y ∈ Rn : (x, y) ∈ T1, (y, z) ∈
T2}. For any ρ ∈ R+ and operator T , we let ρT be the operator
{(x, ρy) | (x, y) ∈ T}. The resolvent of an operator T is defined as

JρT = (I + ρT )−1 , (1)

where I is the identity relation I = {(x, x) |x ∈ Rn}. The Cayley
operator, reflection operator, or reflected resolvent of T , is defined
as CρT = 2JρT − I .

A relation is called monotone if

(T (y)− T (x))T (y − x) ≥ 0,

and strongly monotone or coercive with parameter m > 0 if

(T (y)− T (x))T (y − x) ≥ m‖y − x‖22,

for all x, y ∈ Rn. A monotone operator is called maximal if there is
no monotone operator that properly contains it. That is, @ (x, u) /∈ T
such that T∪{(x, u)} is still monotone. A relation is called Lipschitz
continuous if there exists a L ≥ 0 such that

‖T (y)− T (x)‖2 ≤ L‖y − x‖2,

for all x, y ∈ Rn. T is called non-expansive if L ≤ 1 and a con-
traction if L < 1. By inspection of Eq. (1), we conclude that if
T is monotone, then I + ρT is strongly monotone so that JρT =
(I + ρT )−1 is single valued. In fact, JρT is Lipschitz continuous
with parameter L ≤ 1 and is therefore non-expansive.
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The fixed point set of the operator T is given by fix(T ) = {x ∈
Rn |x = T (x)}. It can be empty, or contain many points. Such a
fixed point can be iteratively found by solving

x(k+1) = T
(
x(k)

)
, (2)

where the superscript (·) denotes the iteration number and x(0) ∈ Rn
is some initialisation. It can be shown that if T is a contraction, the
fixed-point algorithm converges to a unique fixed point. In the case
that T is non-expansive, by the Krasnosel’skiı̆-Mann theorem [21,
Proposition 5.16], the fixed point iterations of the averaged operator
G = (1− θ)I + θT for some θ ∈ (0, 1) will converge to a solution
if one exists.

For maximal monotone operators there is an important relation
between the zeros, or roots, of said operator and the fixed points of
its associated resolvent operator. Notably, we have

0 ∈ T (x) ⇔ x ∈ (I + ρT )(x) ⇔ x = JρT (x), (3)

where the last relation holds since JρT is single valued. Moreover,
if x ∈ fix(JρT ), then x ∈ fix(CρT ).

2.2. Convex Optimisation and Monotone Operator Theory

As previously alluded to, monotone operator theory can be used to
solve convex optimisation problems. For instance, let the function
f : Rn 7→ R ∪ {∞} be closed, convex and proper (CCP). Consider
solving the unconstrained optimisation problem given by

min
x

f(x). (4)

The vector x∗ is a minimiser of Eq. (4) if and only if 0 ∈ ∂f(x∗),
where ∂f is the subdifferential relation of f defined by

∂f = {(x, g) |x ∈ Rn, ∀y ∈ Rn : f(y) ≥ f(x) + gT (y − x)},

which is monotone [20]. It follows from Eq. (3) that instead of find-
ing a zero of ∂f , we can find a fixed point of its associated resolvent.
When combined with Eq. (2), this allows us to solve convex optimi-
sation problems via an iterative approach.

2.3. Operator Splitting

The main difficulty in fixed-point methods is the evaluation of the
resolvent. In particular the inversion operation needed to evaluate
the resolvent may be prohibitively expensive to compute. One way
to overcome this problem is to decompose the operator T into two
maximal monotone operators T1 and T2 such that T = T1 + T2,
where the resolvents of T1 and T2 are easier to evaluate. Exam-
ples of operator splitting include Peaceman-Rachford splitting and
Douglas-Rachford splitting, with the latter providing the basis for
ADMM which can be seen as applying Douglas-Rachford splitting
to the dual function [20]. Peaceman-Rachford splitting is given by

0 ∈ T1(x) + T2(x) ⇔ z = CρT2 ◦ CρT1(z), x = JρT1(z),

where the introduced z variables will be referred to as auxiliary vari-
ables from here on out. As the Cayley operator is non-expansive, it
follows that the operator CρT2 ◦ CρT1 is non-expansive and induces
the following fixed point iteration

z(k+1) = CρT2 ◦ CρT1(z(k)).

SinceCρT2 ◦CρT1 is non-expansive, there is no guarantee that the it-
erates will converge. To ensure convergence without imposing addi-
tional conditions like strong monotonicity and Lipschitz continuity,
we can average the non-expansive operator such that

z(k+1) =
(
(1− α)I + αCρT2 ◦ CρT1

)
(z(k)), (5)

where α ∈ (0, 1). The effect of such averaging guarantees conver-
gence to an optimal solution, if one exists [21]. For α = 1

2
, the

algorithm is referred to as Douglas-Rachford splitting.

3. INCORPORATING QUANTISATION INTO THE
MONOTONE OPERATOR FRAMEWORK

An inherent characteristic of distributed solvers is the need for nodes
to transmit and share data within the network. In practical systems
this results in the inevitable introduction of quantisation noise due
to the use of finite precision transmission schemes. In this way, it is
interesting to consider the impacts that such quantisation may have
on an algorithms performance. Alternatively one can deliberately
introduce further quantisation to facilitate a reduction in transmis-
sion costs between nodes by reducing the size of transmitted packets.
To explore the impact that quantisation can have, we directly model
quantisation noise via the use of an inexact Krasnosel’skiı̆-Mann it-
erative scheme[19].

3.1. Inexact Krasnosel’skiı̆-Mann iterations

The inexact Krasnosel’skiı̆-Mann iterations are given by

z(k+1) = z(k) + α(k)(T (z(k))+ ε(k) − z(k)
)

=
(
(1− α(k))I + α(k)T

)(
z(k)

)
+ α(k)ε(k), (6)

which has clear similarities to Eq. (5). In fact, if α(k) = 1
2
∀k and

T = CρT2 ◦ CρT1 , Eq. (6) reduces to

z(k+1) =
1

2

(
I + CρT2 ◦ CρT1

)(
z(k)

)
+

1

2
ε(k).

Hence, inexact Douglas-Rachford splitting is equivalent to an inex-
act Krasnosel’skiı̆-Mann scheme, where 1

2
ε(k) describes an additive

error term, for example due to quantisation. Peaceman-Rachford
splitting can similarly be cast as inexact Krasnosel’skiı̆-Mann iter-
ations in the case when α(k) = 1 ∀k. Under the assumption that
the sequence of errors are finitely summable, i.e. that (e(k))k∈N ∈
`1+, and that the averaging terms satisfy

(
(α(k)(1 − α(k))

)
k∈N /∈

`1+ it was demonstrated in [19, Proposition 1(iii)] that the sequence
(z(k))k∈N converges to some z∗ ∈ fix (T ).

An immediate consequence of this result is that whilst the rate
of convergence of a distributed solver may be influenced by the pres-
ence of quantisation, it is possible for such algorithms to still con-
verge. In the following we highlight a method for designing appro-
priate quantisers for distributed optimisation based on this fact.

3.2. Quantisation in Distributed Optimisation
As previously mentioned, monotone operator theory and operator
splitting form the basis of many distributed optimisation algorithms.
Specifically, in the later portion of this paper we will show that
PDMM and ADMM can be expressed via Peaceman-Rachford and
Douglas-Rachford splitting respectively. In the following T ′ will
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be used to denote either of the Peaceman-Rachford or Douglas-
Rachford operators. For such operators, assume that a scalar quan-
tiser is used to encode the iterates such that the quantised update
equations are given by

z(k+1) = T ′
(
z(k)

)
+ n(k)

q = z̃(k+1) + n(k)
q ,

where the vector n(k)
q denotes the quantisation noise introduced in

the k-th iteration. In particular, the vector n(k)
q is dependent on the

vector z̃(k+1) = T ′(z(k)). As the operator T ′ is non-expansive, this
leads to the fact that

‖z(k+1) − z∗‖ ≤ ‖T ′
(
z(k)

)
− z∗‖+ ‖n(k)

q ‖.

As mentioned before, if the sequence
(
‖n(k)

q ‖
)
k∈N is finitely

summable ‖z(k+1) − z∗‖ must converge. Furthermore, in the
case that T ′ is the Douglas-Rachford operator, it was shown in [21]
that z(k) must converge to a fixed point of T ′. Without further con-
sideration, this indicates that a quantiser of increasing precision will
be required to guarantee convergence. Practically speaking this is an
undesirable feature as it corresponds to an increasing transmission
rate as the number of iterations increases.

3.3. Redefining the Transmissions
To avoid the need for such a dynamic rate quantiser, we highlight a
simple observation motivated by the work in [18]. For algorithms
which converge to a fixed point, the entropy of the updates decreases
with increasing iterations. This suggests that the rate of messages
should be able to be decreased with increasing iteration count, a di-
rect contradiction of the aforementioned requirement for guaranteed
convergence. In this work we consider the use of a predefined se-
quence of quantisers to allow for low data rate transmission between
nodes to occur whilst maintaining the convergent nature of the algo-
rithm.

A fundamental limitation of such a sequential quantisation tech-
nique is that without knowing the fixed point in question to which the
algorithm converges in advance, such quantisers cannot be practi-
cally deployed. To address this point, we propose to instead quantise
and transmit the difference of the iterates which converges to the zero
vector. This difference vector is given by v(k+1) = z̃(k+1) − z(k)
such that z(k+1) = z(k)+v(k+1). To define an appropriate quantiser
therefore only requires the knowledge of the distribution of v(k).
Whilst this still cannot be known exactly a priori, in certain prob-
lems we can infer a bounding distribution on this variable allowing
us to design a sequence of quantisers prior to algorithm deployment.

To demonstrate this point, consider the covariance matrix of the
transmitted variables (in this case v(k+1)) which is of importance as
it directly determines the entropy of each message. In the case of a
scalar uniform quantiser, an upper bound on this entropy is given by

H (X) ≤ 1

2
log

(
2πeσ2

X

∆2

)
,

where ∆ denotes the cell width or precision of the quantiser and σ2
X

denotes the variance of X . In the case of quantising v(k+1), this
covariance can be upper bounded by

cov
(
v(k)

)
= E

[
v(k)v(k)

H
]
− E

[
v(k)

]
E
[
v(k)

H
]
≤ E

[
‖v(k)‖2

]
I.

Importantly in inexact Krasnosel’skiı̆-Mann iterations ‖v(k)‖2 forms
a monotonically decreasing sequence. Thus, if the worst case rate of

decrease of ‖v(k)‖2 is known, the same decrease in cell width can be
implemented to maintain a fixed bit rate for the quantisation, whilst
simultaneously ensuring that the sequence

(
‖nq,z(k)‖

)
k∈N

is finitely
summable. In the case of ADMM or Douglas-Rachford splitting,
this in turn guarantees the convergence of the algorithm to a true
fixed point [20]. Whilst the same is not necessarily true for PDMM
or Peaceman-Rachford splitting, in practice it is observed that the
same result holds.

4. APPLICATION

To demonstrate the performance of this approach, in the following
we apply a sequentially quantised approach to the task of Gaussian
channel capacity (GCC) maximisation. Such a problem is often
found in multi-channel information theory analysis and can be di-
rectly solved in a centralised context via the well known waterfilling
method [22].

As demonstrated in [23], the GCC problem for N channels can
be cast as an equivalent convex optimisation problem given by

min
x
−

N∑
i=1

log(σ2
i + xi)

s.t. x ≥ 0,

N∑
i=1

xi = ptot, (7)

where σ2
i > 0, xi ≥ 0 ∀ i = 1, ..., N denote the noise and allocated

power for each channel respectively and the scalar ptot denotes the
total power requirement of the system. In a transmit beamforming
type application, each channel may represent a node within a net-
work. The connectivity within such a network can be represented
by its graphical form G(V,E) where V denotes the set of vertices
(nodes) and E denotes the set of edges (inter-node communication
paths) such that (i, j) ∈ E only if nodes i and j can communicate.
In particular, as the local noise powers σi may be estimated locally
at each node, the objective is to devise a way to solve this problem in
a distributed manner to remove the need for a data aggregation step.

In [24] it was shown that while Eq. (7) is not immediately dis-
tributable in the primal domain, it is distributable in the dual domain.
A distributed variant of the Lagrange dual of Eq. (7) is given by

min
λ,µ

∑
i∈V

(
log(

−1

µi + λi
)− µiσ2

i − λiσ2
i −

µi
N

)
s.t. µi = µj , ∀(i, j) ∈ E

0 > µi + λi∀i ∈ V
0 ≤ λi ∀i ∈ V. (8)

where the introduced λ and µ variables are the dual variables for the
inequality and equality constraints in Eq. (7) respectively.

We will now consider the task of solving this problem via two
different algorithms, PDMM and ADMM whilst incorporating the
proposed sequential quantisation approach outlined previously. In
particular, as the observed convergence rate of both algorithms
is geometric, in this case a geometrically contracting cell width
∆(k+1) = γk∆(0) was used for some initial cell width ∆(0) and
γ ∈ [0, 1).

4.1. Primal-Dual Method of Multipliers
As previously mentioned, the PDMM algorithm proposed in [25] can
be derived from a monotone operator perspective. In particular, it is
equivalent to Peaceman-Rachford splitting applied to the Lagrange
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dual of a distributed problem. As such, for the particular GCC prob-
lem considered the PDMM updates are given by

(λ
(k+1)
i , µ

(k+1)
i ) = arg min

λi,µi

(qi(λi, µi, z
(k)))

s.t. λi ≥ 0, µi + λi < 0 ∀i ∈ V (9a)

β
(k+1)

i|j = z
(k)

i|j + ρ
i− j
|i− j|µ

(k+1)
i (9b)

y
(k+1)

i|j = 2β
(k+1)

i|j − z(k)i|j (9c)

z
(k+1)

i|j = y
(k+1)

j|i , (9d)

where

qi(λi, µi, z
(k)) = log

( −1

µi + λi

)
− µiσ2

i − λiσ2
i −

µiptot
N

+
∑

j∈N (i)

(
i− j
|i− j|z

(k)T

i|j µi +
ρ

2
‖µi‖22

)
.

and N (i) = {j | (i, j) ∈ E}. Importantly, Eq. (9d) can be inter-
preted as a transmission of data between nodes. This is indicated
by the change in indexing where the notation i|j is used to denote a
variable related to the directed edge from node i to node j. For in-
stance the transmission made from not i to node j would be given by
v
(k+1)

j|i = y
(k+1)

i|j −z(k)j|i . It is at this stage that quantisation noise will
be introduced and our sequential quantisation technique exploited. It
should be noted that this difference term requires the knowledge of
z
(k)

j|i ∀ j ∈ N (i). Fortunately, ∀i this value can be locally tracked at

each node by updating a local reference variable ẑ(k) with the same
quantised v(k+1)

j|i transmissions.

4.2. Alternating Direction Method of Multipliers
While PDMM can be shown to be equivalent to Peaceman-Rachford
splitting, as previously mentioned, ADMM is equivalent to Douglas-
Rachford splitting applied to the dual problem. Thus, the ADMM
updates are equal to that of PDMM, except that the z update given
in Eq. (9d) becomes

z
(k+1)

i|j =
1

2

(
z
(k)

i|j + y
(k+1)

j|i

)
.

Furthermore, the transmissions made between nodes as part of the
ADMM algorithm are identical to those used in PDMM and require
the same local tracking of the neighbouring z(k)j|i variables.

5. SIMULATIONS AND RESULTS

The above quantised distributed methods were both used to solve
the distributed dual GCC problem given in Eq. (8). For this purpose,
a random geometric graph [26] of 50 nodes was constructed where

the transmission radius of each node was set to
√

log(N)
N

to ensure
a connected graph with high probability [26]. The resulting network
was verified as forming a single connected component to prevent
partitioning of the network. The available total transmission power
was set such that ptot = 16 and the set of σ2

i , i ∈ V were drawn
from a uniform distribution between 0 and 0.4.

In the considered instance, the penalty parameter ρ was selected
per algorithm to optimise convergence rate in the non-quantized case
whilst the cell width contraction factor γ was chosen to optimise the
quantised convergence rate using the same ρ. Furthermore, the initial
cell width was set such that ∆(0) = 1 and a fixed one-bit quantiser

0 500 1000 1500 2000 2500 3000 3500
Iteration number

10-20

10-10

100

||x
(k

)-x
*||2

Convergence of the primal variable x

Monotone PDMM
Quantized PDMM
Monotone ADMM
Quantized ADMM

Fig. 1. Convergence of the primal variable of the GCC problem for
different algorithms. For the quantised algorithms, a one-bit quan-
tiser was used .

was used for all simulations. Fig. 1 compares the convergence rate of
the primal variable x(k) for both algorithms in both the cases of non-
quantized distributed optimisation and the equivalent optimisation
approach.

As expected both the quantised and non-quantized variants of
both algorithms converge to the true x∗ as computed by the stan-
dard water filling approach. In the non-quantized case, we can note
that with optimal ρ selection PDMM converges faster than ADMM,
requiring around half the number of iterations to achieve the same
primal precision. This speedup is expected to be related to the lack
of averaging used in the case of PDMM. However, once sequential
quantisation is applied to both algorithms, convergence occurs at al-
most the same rate for both ADMM and PDMM. The rate of conver-
gence, when the quantisation is applied, is in fact faster than that of
the non-quantized case, achieving the same precision in around 30%
fewer iterations. This raises a somewhat counter-intuitive point, that
reducing the information rate between nodes can increase the rate
of algorithmic convergence if correctly implemented. A potential
justification for this is that whilst information is discarded during
the quantisation process, the essence of the update direction is pre-
served. Thus redundant information may be discarded, in turn aiding
convergence. A more mathematical exploration of this point is be-
yond the scope of this paper and is left for future work.

6. CONCLUSION

In this paper the effects of quantisation on distributed convex opti-
misation algorithms were explored via the lens of monotone opera-
tor theory. By modelling the effects of quantisation noise as an im-
plementation of an inexact Krasnosel’skiı̆-Mann scheme sufficient
conditions for convergence were established. Furthermore, by ex-
ploiting the observation that the entropy of the iterates of such dis-
tributed methods decreases with iteration count a sequential quanti-
sation mechanism was proposed to achieve constant rate transmis-
sion and high final precision. Such a theory was demonstrated in
the context of the Gaussian channel capacity maximisation problem
applied to two distributed solvers, the Alternating Direction Method
of Multipliers and the Primal Dual Method of Multipliers. Interest-
ingly it was shown that with appropriate tuning, the convergence rate
of both algorithms could not only be maintained but also accelerated,
leading to a reduction in the number of iterations required to reach a
desired precision. Overall this motivates the point that quantisation
for distributed algorithms is not only beneficial from a transmission
cost perspective but also may be able to be used to improve algorith-
mic performance.
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