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ABSTRACT
This paper studies the security aspect of gossip-based decentralized
optimization algorithms for multi agent systems against data injec-
tion attacks. Our contributions are two-fold. First, we show that the
popular distributed projected gradient method (by Nedić et al.) can
be attacked by coordinated insider attacks, in which the attackers
are able to steer the final state to a point of their choosing. Second,
we propose a metric that can be computed locally by the trustworthy
agents processing their own iterates and those of their neighboring
agents. This metric can be used by the trustworthy agents to detect
and localize the attackers. We conclude the paper by supporting our
findings with numerical experiments.

Index Terms— Decentralized optimization, gossip algorithms,
data injection attack.

1. INTRODUCTION

Decentralized multi-agent optimization has made significant strides
in the past ten years. There is a large literature on multi-agent opti-
mization algorithms, often referred as gossip-based or network dif-
fusion algorithms, that rely on local computations and near neigh-
bors communications to solve iteratively a wide class of constrained
optimization problems, e.g., [1–14]. A key advantage of these par-
allel computation algorithms is the built-in fault tolerance to inter-
mittent computation or communication due to normal failures, as
the agents involved can reorganize themselves automatically sailing
through these failures. There has been steady progress in expanding
the class of problems amenable to a decentralized solution, and a lot
of efforts have been made in improving their convergence rate and
communication requirements. However, the issue of securing these
algorithms against malicious data injection attacks has not received
much attention until very recently [15–19]. Naturally, to prevent in-
terference from unauthorized nodes, one can resort to authentication
and encryption (see e.g. [20, 21]). However, in the case of an in-
sider attack, gossip-based algorithms are highly vulnerable, even if
only one node is compromised. In fact, it is relatively easy to show
that gossip-based algorithms are vulnerable to data injection attacks
and that such attacks, if coordinated, can steer the network to a final
result of the attackers choosing [18,22]. The flat, self-organizing ar-
chitecture, which is the selling feature for these algorithms, during
an attack becomes a liability.

This paper studies the effect of insider attacks on decentralized
optimization algorithms. In particular, we focus on a classical dis-
tributed projected gradient (DPG) method introduced by Nedić et
al. [5]. To this end, we first propose a new, stronger attack model
that cannot be detected using the state-of-the-art protection method.
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This attack model is shown analytically to be always successful even
when the underlying communication graph is time varying. We then
propose a new metric that is locally computable by the trustworthy
agents to detect and localize the attackers. The latter is shown analyt-
ically and empirically to perform the detection and localization tasks
successfully. Notice that in [18], the authors proposed a robust con-
sensus based distributed optimization algorithm that is guaranteed to
converge to the convex hull of the union of the sets of minimizers of
the normal nodes’ objectives, which may not include a global opti-
mum in general. On the other hand, with a similar algorithm, [19]
proves that an optimal solution can be found under the assumption
that the local functions admit a common optimal solution. Both pa-
pers did not discuss the task of detection and localization of inside
attackers.

2. DISTRIBUTED PROJECTED GRADIENT

We study consensus-based optimization algorithms for tackling the
following problem on an n-agents network:

minθ∈Rd f(θ) := (1/n)
∑n
i=1 fi(θ) s.t. θ ∈ C , (1)

where C ⊆ Rd is a closed convex set and fi : Rd → R is a differ-
entiable function over C. Here, fi is a private function such that it is
only known to the ith agent, e.g., it may correspond to the measure-
ments made by the sensors of the ith agent. We let f? be the optimal
value of problem (1). At time t ∈ N, the n agents are connected
via an undirected time varying graph G(t) = (V,E(t)) where V =
[n] := {1, ..., n} and E(t) ⊆ [n]× [n] is the edge set. The graph is
associated with a weighted adjacency matrix W (t) ∈ Rn×n where
[W (t)]ij := Wij(t) = 0 if (j, i) /∈ E(t). The union of these
graphs is defined as G := (V,E) with E := ∪∞t=1E(t). We assume
the following on the sequence of graphs {G(t)}t≥1 and adjacency
matrices {W (t)}t≥1:

H1. If (i, j) ∈ E(t), then Wij(t) ≥ η for some η ∈ (0, 1);

H2. There exists B0 <∞ such that the graph (V,∪B0
`=1E(t+ `)) is

connected.

H3. For all t ≥ 1, it holds that (a)W (t) ≥ 0,W (t)1 = 1 and (b)
W>(t)1 = 1.

The distributed projected gradient method (DPG) method [5]
tackles (1) by performing the recursion:

θi(t+ 1) = PC
(
θ̄i(t)− γ(t)∇fi

(
θ̄i(t)

))
,

θ̄i(t) =
∑n
j=1Wij(t)θj(t) ,

(2)

for all i ∈ [n] and t ≥ 1, where γ(t) > 0 is a diminishing step
size. For convex problems, it was shown in [5] the DPG method
converges to an optimal solution of (1):
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Fact 1. Under H1, H2, H3(a) and H3(b). Suppose that each of fi
is convex, ‖∇fi(θ)‖ ≤ C for some C and for all θ ∈ C, and the
step size satisfies

∑∞
t=1 γ(t) = ∞,

∑∞
t=1 γ

2(t) < ∞, then for all
i, j ∈ [n] we have

lim
t→∞

f(θi(t)) = f? and lim
t→∞

‖θi(t)− θj(t)‖ = 0 . (3)

For non-convex problems, the same DPG method (2) is shown in
[14] to converge to a KKT point of (1) under different assumptions
on the sequence of adjacency matrices {W (t)}∞t=1.

3. COORDINATED ATTACK ON DPG

We next describe an attack scheme on the DPG method and show
that a straightforward attack scheme can be successful under mild
assumptions on the network topology. To set up the stage, let us
define A ⊆ V , A 6= ∅ as the set of attackers and N := V \A as the
set of trustworthy agents.

The attackers’ goal is to steer the final state limt→∞ θi(t) to
a target state x ∈ C for all agents in V , instead of converging to
a stationary point of (1). To do so, the attackers follow a different
update rule than (2), i.e., we have

θj(t) = x+ zj(t), ∀ j ∈ A ; (4)

meanwhile the trustworthy agents, i.e., agent i with i ∈ N , apply
the same DPG rule in Eq. (2). In the above, zj(t) is an artificial
noise introduced to obfuscate the trustworthy agents into believing
that these agents are trustworthy as they appear to be converging.
The artificial noise satisfies

H4. For all j ∈ A, the artificial noise zj(t) vanishes almost surely
as t→∞, i.e., limt→∞ ‖zj(t)‖ =a.s. 0.

Notice that the attackers’ states are not affected by the trustworthy
agents’ states at any time. Equivalently we can model the time vary-
ing graph such that for any i ∈ N and j ∈ A, we have (j, i) /∈ E(t),
i.e., there is no information flow from any trustworthy agent to an
attacker. For the attack to be successful, we require the following as-
sumption which is mild. LetE(N ; t) be the edge set of the subgraph
of G(t) with only the nodes in N .

H 5. There exists B1, B2 < ∞ such that for all t ≥ 1, (a) the
composite sub-graph (N,∪t+B1

`=t+1E(N ; `)) is connected; (b) there
exists a pair i ∈ N , j ∈ A with (i, j) ∈ E(t)∪ . . .∪E(t+B2−1).

We show that:

Proposition 1. Under H1, H3(a), H4 and H5. If the gradient is
bounded such that ‖∇fi(θ)‖ ≤ M for some M and for all θ ∈ C,
and γ(t)→ 0, then:

limt→∞maxi∈N ‖θi(t)− x‖ =a.s. 0 . (5)

The proof is relegated to Appendix 5.1 and it involves analyzing
the attacked DPG dynamics using a new result on the product of
transition matrices of the time varying graphs involved. Notice that
our result can be easily specialized to the case with a static transition
matrix. Proposition 1 shows that the attackers can always succeed in
steering the trustworthy agents to the attackers’ desired vector.

Note that the attack strategy in (4) could be driven by the attacker
trying to solve another instance of (1) with the DPG method, where
the sum of the objective functions only extends to the attacker set A.
If the optimum point of this instance of (1) is unique and given by x,
assuming that the sub-graph G[A] satisfies H1 to H3, the deviation
of the attackers’ DPG iterates, θj(t), from x forms a sequence zj(t)
that satisfies H4.

3.1. Detecting and Locating the Attackers

Our next endeavor is to detect the presence of attackers and to lo-
calize them. If successful, we can eliminate the influences from the
attackers such that the attackers no longer steer the final state away
from the optimal solution to (1). In the following, the proposed
scheme requires accruing historical information about the iterates
from K different instances of the DPG (2).

Naturally, we shall focus on the case when H1–H5 hold from the
previous section such that the attack is successful. Concretely, at the
kth instance, we apply the DPG to:

minθ∈Rd f
k(θ) = (1/n)

∑n
i=1 f

k
i (θ) s.t. θ ∈ C , (6)

and the iterates of DPG dynamics for the above are denoted using
{θki (t)}ni=1. After running the DPG for K different instances, we
consider the following difference vector:

ηm := (1/K)
∑K
k=1

(
θkm(∞)− θkm(0)

)
, (7)

which is the difference between the initial value and the steady state
value held by node, averaged over all K instances. Note that in
practice, it is impossible to compute this metric at t = ∞, so we
just choose a sufficiently large t at which the system approaches the
steady state. It is important to note that for agent i, the vector above
can be computed locally as long as m ∈ N in

i , i.e., m is in the in-
neighbor set of agent i where N in

i := {j : (j, i) ∈ E}, note that
E = ∪∞t=1E(t) is the union of the edge set over an infinite horizon.

Detection Task. We propose to use the vector ηm for the detec-
tion task, which is a hypothesis test for:

Hi0 —there is no attacker inN in
i , i.e., A ∩N in

i = ∅;

Hi1 —there exists an attacker inN in
i , i.e., A ∩N in

i 6= ∅ .

The detection task corresponds to —

Di :=
1

|N in
i |

∑
m∈N in

i

∣∣∣∣∣∣1>
ηm − 1

|N in
i |

∑
j∈N in

i

ηj

∣∣∣∣∣∣
Hi0
≶
Hi1

δI , (8)

where δI > 0 is a predefined threshold. To explain the intuition
behind the test (8), we observe that under bothHi0 andHi1,

ηm −
1

|N in
i |

∑
j∈N in

i

ηj =
( 1

|N in
i |

∑
j∈N in

i

θkj (0)
)
− θkm(0) , (9)

where the equality is due to the fact that θki (∞) = θkj (∞) for all
i, j regardless of the hypothesis [cf. Fact 1 and Proposition 1]. Now,
suppose that the trustworthy agents are initialized using a distribu-
tion of the same mean θ̄ while the attackers’ initial values follow a
distribution of the mean x̄, such that x̄ 6= θ̄. From (9), it is ob-
vious that Di = 0 when there is no attacker in the neighborhood
N in
i ; while Di = Ω

(
|1>(x̄− θ̄)|

)
6= 0 when there is at least one

attacker in the neighborhoodN in
i .

Formally, to characterize the detection performance, we need
the following assumptions on the statistics of the initial values for
trustworthy agents and the attackers:

H6. A trustworthy agent i ∈ N is initialized by θki (0), which is a
sub-Gaussian random vector with mean θ̄ and covariance σ2

θI .

H7. An attacker j ∈ A is initialized by θkj (0) defined in (4), which
is a sub-Gaussian random vector with mean x̄, and covariance σ2

xI ,
and zkj (0) is a sub-Gaussian random vector with zero mean, and
covariance σ2

zI .
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Under the assumptions above, the following can be established:

Proposition 2. Define µi =
|N∩N in

i |
|N in
i |

1>(x̄− θ̄) and

σ
2
i =

(
|N in
i |

2 − 2|N in
i |+ |A ∩ N

in
i |

|N in
i |2

)
σ
2
z +
|N ∩ N in

i |
2

|N in
i |2

(σ
2
x + σ

2
θ) .

Under the stated assumptions, we have

P(Di > δI | Hi0) ≤ 2|N in
i | exp

(
−Kd δ2I

2σ2
θ |N in

i |(|N in
i | − 1)

)
,

P(Di > δI | Hi1) ≥ 1− exp

(
−Kdmax {0,−δI + |µi|}

2σ2
i

)
.

The proof of Proposition 2 is provided in Appendix 5.3. In general,
observe that the performance improves when:

1) the number of instancesK and dimension d accrued increases;
2) |1>(x̄− θ̄)| increases and the variances σx, σz, σθ decrease;
3) the number of trustworthy agents near agent i increases.

Apparently, as the number of attackers in the network increases, the
detection performance will deteriorate.
Localization Task. Suppose that agent i detects the existence or
presence of an attacker in his/her neighborhood. Our next focus is
on the localization task, whose goal is to distinguish between:

Hij0 — agent j is not an attacker, i.e., j /∈ A,

Hij1 — agent j is an attacker, i.e., j ∈ A,
(10)

for all j ∈ N in
i . Similarly, we propose checking the metric:

Lij :=
∣∣∣1>ηj∣∣∣ Hij1≶

Hij0

εI , j ∈ N in
i (11)

for all j ∈ N in
i . Consider the same set of assumptions as before

– H6, H7 – we observe that under Hij0 , the metric can be approxi-
mated as Lij ≈ |1>

(
θ̄ − x̄

)
| > 0; while under Hij1 , the metric is

approximately zero Lij ≈ 0. The performance can be bounded as:

Proposition 3. Under the stated assumptions, we have

P(Lij < εI | Hij0 ) < exp

(
−Kd

(max
{

0,−εI + |1>(θ̄ − x̄)|
}

)2

2(σ2
x + σ2

θ)

)
P(Lij < εI | Hij1 ) ≥ 1− 2 exp

(
−Kdε2I/(2σ2

z)
)
.

The proof of Proposition 3 is provided in Appendix 5.3. We observe
that the localization performance improves under the same condi-
tions 1) and 2) for that in detection.

4. SIMULATIONS AND CONCLUSIONS

In this section, we provide numerical experiments to evaluate the
performance of the proposed detection and localization methods. We
run several trails of the DPG, each of which contains K instances.
We calculate the metrics in (8) and (11) based on the accumulated
data and test the detection and localization performance. We con-
sider a Manhattan topology with n = 8 normal nodes (c.f., (2)) and
one stubborn node (c.f., (4)), as shown in Fig. 3 in [22]. For simplic-
ity, we take an example of the least square problem; i.e.,

fk(θ) =
∑n
i=1 f

k
i (θ) =

∑n
i=1

∣∣(aki )Tθ − yki
∣∣2 , k = 1, ...,K.

Fig. 1. ROCs temporal difference detection performance at the
neighboring nodes of the attacker.

Fig. 2. ROCs temporal difference localization performance at the
neighboring nodes of the attacker.

Herein, fki can be seen as a utility function for instance k. We write
the expected transition matrix as E [W (t)] = I − 1

2n
Σ + P+P>

2n
.

where [P ]ij = Pij and Σ is defined as a diagonal matrix with
[Σ]ii =

∑n
j=1(Pij +Pji). Therefore, in our setting the randomized

gossip-based decentralized protocol is run with probability Pij =
1/|N in

i | between node i and node j at each time t, and is terminated
at T∞ = 2000. The Monte Carlo simulation is run with 300 tri-
als. At each trail under each instance, we set xk ∼ U [−0.5, 0.5]d

and zkj (t) ∼ U [−λ̂t, λ̂t], where λ is the second largest eigenvalue
of E[W (t)]. Also, we change the specific functions fki (θ) by ran-
domly generating aki ∼ U [0.5, 2.5]d, (θ?)k ∼ U [0, 1]d and then
let yki = (aki )T (θ?)k and pass aki and yki to the decentralized opti-
mization algorithm with the initialization θk(0) ∼ U [0, 1]d. In the
simulation, we take d = 2

In Figure 1, we show curves of the attacker detection perfor-
mance at the nodes next to an attacker. In the legend, K is the num-
ber of instances; dim means that among total d dimensions, how
many of which is observed to calculate the metric. If dim = 2, we
have exactly the same metric as (8) and (11); if dim = 1, we re-
place the vector 1 in (8) and (11) by the vector [1, 0]. We can see
that, by employing the temporal difference method, the trustworthy
agents next to an attacker can detect the network is under attack. The
detection performance improves with K when dim is fixed, and im-
proves with dim when K is fixed. When the attacker is next to the
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trustworthy agent, we can detect the attacker when the product of
K and dim is 100, but in general localization appears to be more
demanding. In Figure 2, we show the localization ROC curves. No-
tice that the localization task is invoked only when one trustworthy
agent has detected an attack in the neighborhood. In the simulations
we assume that the neighborhood detection test was completed cor-
rectly, which means that the performance shown are optimistic. The
numerical results show that the tests improve withK and d. The test
is quite reliable when the product of K and dim is 100.

To conclude, in this paper we have studied how to detect the
malicious node in a network running an instance of the DPG opti-
mization algorithm. Considering the nature of the problem, we first
prove that under a coordinated attack, the attackers can steer the net-
work towards their desired optimum point. We therefore proposed
a attack detection and a localization method and studied its perfor-
mance analytically and by simulations. The efficacy of the method
is demonstrated by numerical experiments. Future work include the
extension to other distributed optimization algorithms, the analysis
of other detection strategies and the Byzantine resilience of our de-
tection methods.

5. APPENDIX

5.1. Proof of Proposition 1

Define the following product of matrices:

Φ(t, s) := W (t)W (t− 1) · · ·W (s), t ≥ s , (12)

and Φij(t, s) := [Φ(t, s)]ij . For i ∈ N , we observe the inequality:

‖θi(t+ 1)− x‖ =
∥∥PC(θ̄i(t)− γ(t)∇fi

(
θ̄i(t)

))
− x

∥∥
≤
∥∥θ̄i(t)− x∥∥+ γ(t)‖∇fi(θ̄i(t))‖

≤
∥∥∥∑
j∈N

Wij(t)(θj(t)− x)
∥∥∥+

∑
j∈A

Wij(t)‖zj(t)‖+ γ(t)M.

Here, the first inequality is due to the projection inequality. Using
the fact that

∑
j∈AWij(t) ≤ 1, the second last term can be bounded

by z̄(t) := maxj∈A ‖zj(t)‖.
Now define B := (n − 1)B1 + B2, we can proceed with the

recursion above to get:

‖θi((k + 1)B)− x‖ ≤
∥∥ ∑
j∈N

Φij((k + 1)B − 1, kB)(θj(kB)− x)
∥∥

+
∑(k+1)B−1
`=kB

(
γ(`)M + z̄(`)

)
. (13)

Using the triangular inequality, it is easy to bound the first term on
the right hand side above as:(∑

j∈N

Φij((k + 1)B − 1, kB)
)
·max
j∈N

∥∥θj(kB)− x
∥∥.

Let us invoke the following lemma, whose proof can be found in
Appendix 5.2:

Lemma 1. Under H1, H3(a), H5. It holds that

maxi∈N
∑
j∈N φij(t+B, t+ 1) ≤ 1− ηB < 1, ∀ t ≥ 0 . (14)

Substituting the above into (13) and (14) yields the inequality:

max
i∈N
‖θi((k + 1)B)− x‖ ≤ (1− ηB) ·max

i∈N

∥∥θi(kB)− x
∥∥

+
∑(k+1)B−1
`=kB

(
γ(`)M + z̄(`)

)
,

for all k ≥ 1. AsB <∞, the latter term vanishes as k →∞. Com-
bining these observations and applying Corollary 3 in [23] implies
that maxi∈N

∥∥θi(kB)−x
∥∥→ 0. Consequently, (5) holds since for

all s ∈ [1, B − 1], θi(kB + s)− θi(kB) can also be bounded by a
vanishingly small quantity.

5.2. Proof of Lemma 1

Define D(t) := [Wij(t)]i,j∈N and ΦD(t, s) := [Φij(t, s)]i,j∈N ,
i.e., the lower right sub-block ofD(t),Φ(t, s). It can be shown that

ΦD(t, s) = D(t)D(t− 1) · · ·D(s), t ≥ s . (15)

We are interested in the matrix-vector product ΦD(t + B, t + 1)1.
Notice that under H1, H5(b), there exists t? ∈ [t + 1, t + B2] such
that:

[ΦD(t?, t+ 1)1]j? ≤ 1− η for some j? ∈ N . (16)
Since t + B − t? ≥ (n − 1)B1, under H5(a) and using similar
arguments as in the proof of Lemma 2 in [4], we can show

Φij(t+B, t? + 1) ≥ ηt+B−t
?

, ∀ i, j ∈ N . (17)

Consequently, for all i ∈ N , we have:

[ΦD(t+B, t+ 1)1]i =
∑
`∈N

Φi`(t+B, t? + 1)[ΦD(t?, t+ 1)1]`

≤ 1− η · Φi,j?(t+B, t? + 1) ≤ 1− ηB ,

where the first equality is obtained by simply expanding the matrix-
matrix product; and the second inequality is due to (16). This con-
cludes the proof of Lemma 1.

5.3. Proof of Propositions 2 and 3

The proof is similar to that in [22, Theorem 1]. It is easy to check
that under Hi0, Di is a zero mean r.v. with sub-Gaussian parameter
σ2
θ(|N in

i | − 1)/(Kd|N in
i |). Applying the union bound gives

P(Di > δI | Hi0)

≤|N in
i |P


∣∣∣∣∣∣∣1>

ηm − ∑
j∈N in

i

ηj

|N in
i |


∣∣∣∣∣∣∣ >

δI

|N in
i |
| Hi0

 , ∃m ∈ N in
i ,

By using Hoeffding’s inequality [24] on the above, we obtain the
desired result for the false alarm rate.

On the other hand, underHi1, we have 1>(ηm− 1

|N in
i |

∑
j∈N in

i
ηj)

being a r.v. with mean µi and sub-Gaussian parameter σ2
i /(Kd) for

m ∈ A ∩N in
i . Then,

P(Di < δI | Hi1) ≤ P


∣∣∣∣∣∣∣e>j

ηm − ∑
j∈N in

i

ηj

|N in
i |


∣∣∣∣∣∣∣ < δI | Hi1

 , ∀m ∈ N in
i ,

≤P


e
>
j

ηm − ∑
j∈N in

i

ηj

|N in
i |

− µi
︸ ︷︷ ︸

η̂

> −δI + |µi| | Hi1


, ∀m ∈ N in

i .

Apparently, η̂ is a sub-Gaussian r.v. with mean zero and parame-
ter σ2

i /(Kd). By using Hoeffding’s inequality we have the desired
lower bound for the detected rate.

For the localization task, we have 1>ηj being a zero mean r.v.
with sub-Gaussian parameter σ2

z/(Kd) underHij1 , and being a sub-
Gaussian r.v. with mean 1>(x̄− θ̄) and variance (σ2

x + σ2
θ)/(Kd)

under Hij0 . Then, Hoeffding’s inequality gives the desired bounds
for localization performance. This completes the proofs.
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