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ABSTRACT 12], voltage control of a power networkl, 14], to name a few.
. . . . Existing algorithms to solvel] are (sub)gradient method§, [L3],

This paper considers the problem of tracking a network-wide SOz jtemating direction method of multipliera,[L2], as well as gra-
lution that dynamically minimizes the summation of time-varying dient, Newton, and interior point methods based on the prediction-
local cost functions of agents, when some of the agents are malfungg raction scheme?[3].
tio_ning. The malfunctioning agents broadcast faulty values to th_eir Nevertheless, most of the existing works assume that the agents
neighbors, and lead the optimization process to a wrong direction,i iy follow prescribed optimization protocols: accessing dy-
To mitigate the influence of the malfunctioning agents, we proposamic focal cost functions, exchanging local iterates, and perform-
a total variation (TV) norm regularized formulation t_hat drives theing local computations. This assumption does not always hold true
local variables of the regular agents to be close, while allows thengnce some of the agents might be unreliable in practice. Generally

to be different with the faulty values broadcast by the malfunction-speaking there are two kinds of unreliable agents:

ing agents. We give a sufficient condition under which consensus . . . . .

of the regular agents is guaranteed, and bound the gap between the 1+ Malicious agentsAgents send malicious information to their

consensual solution and the optimal solution we pursue as if the mal- neighbors soasto deliberately guide the optimization process

functioning agents do not exist. A fully decentralized subgradient to awrong direction that they expect to reach.

algorithm is proposed to solve the TV norm regularized problem in 2. Malfunctioning agents. Agents send faulty values to their

a dynamic manner. At every time, every regular agent only needs neighbors, not deliberately but due to failures of communi-

one subgradient evaluation of its current local cost function, in addi- cation or computation units.

tion to combining messages received from neighboring regular angthis paper focuses on handling malfunctioning agents in decentral-

malfunctioning agents. The tracking error is proved to be boundedzed dynamic optimization. For works on mitigating the impact of

given that the variation of the optimal solution is bounded. Numeri-malicious agents in adversarial environments, readers are referred to

cal experiments demonstrate the robust tracking performance of thecent papersip, 16,17).

proposed algorithm at presence of the malfunctioning agents. The impact of malfunctioning agents has been analyzed in the

Index Terms— Decentralized networks, dynamic optimization, CONtext of average consensus over a social netwiKLp, 20]. Itis
robust optimization, malfunctioning agents shown that the malfunctioning agents shall bias the network opinions
from the consensual state of the regular aget@ks fnd the locations

of the malfunctioning agents are critical to evolution of the network

1. INTRODUCTION opinions [L9]. Decentralized detection and localization methods are
proposed in 20] to identify the malfunctioning agents. To the best
Consider an undirected network consistingrofigents, which at  of our knowledge, there is no existing work that considers the in-
time k try to cooperatively solve a decentralized dynamic optimiza-fluence of the malfunctioning agents on the tracking performance of

tion problem decentralized dynamic optimization.
min 2": 5 0 _Our \(vo_rk is_ tightly related to41], whose gqal .is decentraliz_ed
zk v ’ staticoptimization at presence of the malfunctioning agents. Differ-
i=1

ent from thedynamiccase studied in this papeg1] assumes that
Here fF : R? — R is a convex and differentiable local cost func- the local cost functiong) are invariant across time. To handle
tion only available to agentat timek andz"® € R? is the common the faulty values broadcast by the malfunctioning agents, the total
optimization variable to all agents. At timle every agent is al- variation (TV) norm of the vector that stacks all the local variables
lowed to exchange its current local iterate with network neighborsis penalized. Through minimizing the summation of the local cost
followed by local computation so as to track the dynamic optimal sofunctions and the TV norm, most local variables (from the regular
lution. The purpose of this paper is to develop a robust decentralizealgents) are able to reach consensus and those outliers (from the mal-
dynamic optimization algorithm that solves) @t presence of mal- functioning agents) are tolerated. A subgradient method is proposed
functioning agents. By malfunctioning agents, we mean those whap solve this robust decentralizathtic optimization problem. Our
instead of transmitting local iterates to neighbors, send wrong valuesork also adopts the TV norm penalty to handle the malfunction-
(for example, faulty constants or random variables) due to failures dhg agents and a subgradient algorithm as the optimization tool, but

communication or computation units. extends their applications to thliynamicregime. We give a suffi-
Decentralized dynamic optimization problems in the form19f ( cient condition under which consensus of the regular agents is guar-
are popular in multi-agent networks with time-varying task2][3]. anteed, and also give an upper bound on the tracking error of the

Examples include adaptive filtering and estimation in a wireless serregular agents. These results provide theoretical guarantees to the
sor network 4,5, 6], target tracking using a group of robot §, 9], tracking performance of the subgradient method at presence of the
dynamic resource allocation over a communication netwboki[1, malfunctioning agents.
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Another related work isZ2], which considers decentralized challenging for thedynamictask, especially when the faulty values
stochasticoptimization. Instead of tracking a dynamic optimal so- are time-varying.
lution, [22] minimizes the summation of the local cost functions Observe that at presence of the malfunctioning agents, at time
fF across all nodes and all timesk. Therefore, the local iter- %, our goal is no longer solvindlf but finding the dynamic optimal
ates are expected to reach a steady-state consensual solution, gigetution that minimizes the summation of the regular agents’ local
that the stochastic noise of the local cost functions is bounded. Toost functions
allow for data heterogeneity across the netwo] [introduces o .
proximity constraints such that neighboring local variables are close T = arg min Z i (@). )
enough, but not necessarily consensual. Though not explicitly Tier
claimed in R2], this approach is also able to alleviate the influenceDirectly solving @) is intractable because the identities of malfunc-
of the malfunctioning agents. A saddle point method is proposed ttioning agents are not available in advance. To address this issue,
solve this constrained stochastic optimization problem. Our workve introduce a TV norm penalty on the transmitted values, which
is different from R2] in terms of problem setting (dynamic ver- include the local iterates of the regular agents and the faulty values
sus stochastic), mathematical formulation (TV norm penalty versufrom the malfunctioning agents. For ageéntefineR; as the set of
proximity constraints), and algorithm design (subgradient versuds regular neighbors and; := A;\R; as the set of its malfunc-

saddle point). tioning neighbors. At timé:, we expect to approximately solve
The main contributions of this paper are as follows.
. - " .= [zF*] = arg min Z Ik (3)
1. We formulate a TV norm regularized problem, which is ro- aki=(zk] £

bust to presence of the malfunctioning agents (Se@jok/e

give a suﬁlplent condition under which consensus of the regu- Y Z 1 Z e — e+ Z Ik — 2|

lar agents is guaranteed, and bound the gap between the con- 3 i gl i i)
sensual solution and the optimal solution we pursue as if the E€R JER: JEM;

malfunctioning agents do not exist (Secti&nrheoreml). . . ] ]
wherez” := [z7] € R"? is a vector that stacks all the local variables

2. We propose a fully decentralized subgradient algorithm t0y% of regular agentsy** := [25*] € R"? is the optimal solution of
solve the TV norm regularized problem in a dynamic manner,3) and is a positive constant penalty factor. The second term in
Atevery time, every regular agent only needs one subgradienthe cost function of3) is the TV norm penalty on the transmitted
evaluation, in addition to combining messages from neighborya|yes, whose minimization forces ever§ to be close to most of
ing regular and malfunctioning agents (SectiynWe prove  the received values on agenbut allows it to be different to those re-
that the tracking error is bounded, given that the variation ofcejved outliers21]. Therefore, when the malfunctioning agents are
the optimal solution is bounded (SectinTheoren®). sparse within the network, the TV norm penalty helps mitigate their

3. We provide extensive numerical experiments, demonstratingiegative influence. For the applications of TV norm in identifying
the robust tracking performance of the proposed algorithm agParse outliers, readers are referred® 24].

presence of the malfunctioning agents (Sectipn We propose a subgradient method to approximately s@jvia (
a decentralized and dynamic manner. The subgradient of the cost

function in @) with respect tac¥ is
2. FORMULATION AND ALGORITHM

Let us consider a connected undirected networke@igentsV = VfF(af) + A | Y sign(af —2j) + Y sign(zf - 2f) |,
{1,---,n} with n = |V], and a set of edged. If an edge(i, j) € JER; JEM;

A, then agentsand; are neighbors, and can communicate with each

other. We denote the set of ageist neighbors asV;. The agents wheresign(-) is an element-wise sign function. Given € R,
aim at solving the decentralized dynamic optimization problem insign(a) equals tol whena > 0, —1 whena < 0, and an arbi-
the from of (1). We assume that the network is synchronized, and atrary value within[—1, 1] whena = 0. Note that this subgradient

time k every agent strictly conforms to the following protocol: can be easily generalized to the case fffais nondifferentiable, as
Step 1.Accessing local cost functiofi®. long as we replac¥® fF (z¥) by a subgradient ofF atz¥. For every
Step 2.Computing local iterate’ ¢ R”. regular agent, its subgradient update at tinkeis

Step 3.Broadcasting local iteratel* to neighborgi € A;. ot
However, some of the agents in the network are malfunction- ¥
ing, meaning that they broadcast faulty values other than local iter-
ates. To be specific, denatef as the set of malfunctioning agents —a\ Z sign(azf — %) + Z sign(zf — 28|,
andR := V\M as the set of regular agents. Define= |R| and JER; JEM;
m := |M]|. The subset of edges connecting the regular agemssn
denoted byt C A. Attime k, malfunctioning agent € M broad-  wherea is a positive constant stepsize. We use a constant stepsize,
casts a variable? € RP?, instead ofz¥, to its neighborgi € M. other than a diminishing one, for the purpose of adapting to the dy-
The faulty value may come from failure of the computation unit, ornamic cost functions2p).
breakdown of the communication unit. Different frot8[19,20,21] The subgradient method to solve the robust decentralized dy-
that assume the faulty values are constant acrossktjme also al-  namic optimization problem is outlined in Algorithm 1. The algo-
low that they are time-varying (for example, random variables orithm has two parameters, penalty factoand stepsizev. Every
values generated from certain functions of time). Although identiregular ageni € R initializes its local iterate as?. At time k, it
fying the malfunctioning agents is possible in decentraligtadic ~ accesses the local cost functigfi, followed by receiving local it-
optimization R0], their detection and localization are much more erate&cf from regular neighborg € R; and broadcast valueé“

= ot - aV ) “)
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from malfunctioning neighborg € M,. With all these informa- Before stating the main result, we introduce an auxiliary prob-
tion, it updates the local iterate" ™ according to 4). For regular  lem in the form of

agent;, its communication cost per iteration consists of broadcasting

ap-dimensional vector to and receiving/;| p-dimensional vectors g = arg m1n Z FEGE + A Z Z 7" — zj . ()
from its neighbors. The computation cost, which mainly comes from = i€ER jEM;

evaluating the local gradief¥ £ (z¥), is lightweight.

The first-order optimality condition of5j is that, for any malfunc-
tioning agentj, there exists; € R? whose value satisfies the defi-
nition of sign(§** — 2¥) such that

Algorithm 1 A Subgradient Method for Robust Decentralized Dy-
namic Optimization

Input: z? € RP fori € R, A > 0anda > 0 1 b ks
1. for k=0,1,---, every regular agernite R do A Z VT + Z Z v =0. ©)

2:  Access local cost functiofi’. ieR IER JEM;

3 Receiver} from regular neighborg € R; andz* . S ) .

4 from malfuncUor?nng ne|g?1bor§§e€/\/l “ For notational simplicity, define a vectéf := [v¥] € R™ whose
: i : ko._ ke (ko ; .

5. Update local iterate* ! according to4). ith block by == V(™) /A + X ;e m, v Thus, 6) is equiv-

6: end for alent tozl672 = 0. The following theorem asserts th&) (s a

good surrogate 020 which minimizes the summation of the regular
agents’ local cost functions.
3. PERFORMANCE ANALYSIS

Theorem 1. Suppose that Assumptiods4 hold true. Define a
This section analyzes the tracking performance of the proposed alectoru := [ue] € RI¢IP whoseeth block isu. € RP. If there
gorithm at presence of the malfunctioning agents. Thedrémies-  existsu whose elements are within the rangeefl, 1], such that
tigates the TV norm regularized probleB) @t any timek, showing A ® Iyu + b* = 0 holds, then the optimal solutior™ := [+}*] of
the condition under which the optimal solution @) §s consensual  (3) is consensual and the distance between every hiftland the
and its gap from the optimal solution o2)(is bounded. Then in optimal solutioni** of (2) satisfies|z}* — #**|| < A*, where
Theorem2, we bound the tracking error of Algorithm 1, given that

the variation of the dynamic optimal solution t8) (s bounded. All AR — /\f Z IM,].
the proofs are left in a longer versiod7]. T Y er My myk
We make the following assumptions on the dynamic local cost ‘

functions /", which are normal for convex analysis. Note that p1] analyzes conditions under whicB)@chieves con-
Assumption 1. (Lipschitz Continuous Gradients)ocal cost func-  sensus, as well ag(and @) are equivalent, given that all the agents
tions /! are differentiable and have Lipschitz continuous gradientsare regular. Here we extend the result to the case that the malfunc-
with Lipschitz constantd/,» > 0, for all regular agentsi € R tioning agents exist and play negative roles. In additi@d] fon-

and timesk; namely, for any pair of points; and y;, it holds  siders thestatic TV norm regularized problem, while we further in-
IV i (@) = VEw)| < M |lzs — yill. vestigate thelynamictracking performance, as shown below.

' We further show that Algorithm 1, which approximately solves
(3) using one subgradient evaluation per time, other than running an
inner loop of multiple subgradient evaluations at each time index,
tracks the optimal solution oBJ with bounded error.

Assumption 2. (Strong Convexity)Local cost functionsf? are
strongly convex with strong convexity constamek > 0, for all
regular agents € R and timesk; namely, for any pair of pomtsL
andy;, itholds[z: —yi] "[V £ (1) = VfF (9:)] = m gl — yil*.

Assumption 3. (Bounded Gradients at Optimum)ocal cost func-  Theorem 2. Given that the conditions of Theorelas well as As-
tions fF have bounded gradients at™*, the dynamic optimal so- sumption5 hold true, the tracking error of Algorithm 1 is upper
lution to (2), for all regular agentsi € R and timesk; namely,  bounded by

IV £ @) < oo.

We also assume that the network of the regular agents is bidi- [|z* — z**|| <c*||z° — 2| (7)
rectionally connected. Otherwise, consensus among regular agents 1 &
is generally impossible. R (2C\ﬁ maxy A" 4 ¢y/r® + d> )

Assumption 4. (Network Connectivity)The network consisting of

all regular agentsi € R, denoted byR, £), is bidirectionally con-  if the stepsizex < 1/(min;er m;» + maxier M;x). Herec :=

nected. _ o C (I2emp Mg [ (mp M p)) Y2, d = (8a2A2 Y, o ING[2)Y2
For future usage, define the node-edge incidence matrix are two constants.

[aic] € R™*I€! of the network with all regular agents.df= (i, j) €

&, then we set;e = 1 andajc = —1 (the order ofi andj is Sincec is a constant within the range ¢, 1), Theorem2 im-
arbitrary, but by default we consider the ordered efigg) with  plies that the influence of the initial tracking eripe® — z°*|| van-
i < j). If an agent is not attached to an edgethena;. = 0. ishes at an exponential rate. The steady-state tracking error-as

The last assumption is about the variation of the dynamic optiwo, is proportional tamax; A* (the gap between the optimal solu-
mal solution of @) over time, which must be bounded to guaranteetions of ) and §)), © (the variation of the dynamic optimal solution

reasonable tracking performance. of (2)), as well as(} -, » |A;]?)'/2 (a constant determined by the
Assumption 5. For any two successive timés- 1 andk, the vari-  topology of regular and malfunctioning agents).

ation of the dynamic optimal solution ¢2) is bounded by a positive Theorem2 shows how Algorithm 1 tracks the optimal solution
constant®; namely||z"* — z(:—V*|| < ©. of (3). Combining Theorem$ and2, it is straightforward assert that
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Fig. 1. DGD with three malfunctioning agents broadcasting the samé=ig. 2. Algorithm 1 with three malfunctioning agents broadcasting

faulty vectors, [5; 5], [10; 10] or [20; 20]. the same faulty vectors, [5; 5], [10; 10] or [20; 20].

. . . . . ! ——A=0
Algorithm 1 is also able to track the dynamic optimal solution2)f ( 1=0.02
with bounded error e s
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Fig. 3. Algorithm 1 with three malfunctioning agents broadcasting

4. NUMERICAL EXPERIMENTS the same faulty vectors [10; 10].

We compare the proposed algorithm with the dynamic version of

the celebrated decentralized gradient descent (DGD) me®fjd [ .
which does not consider mitigating the influence of the me\lfunction-_of the faplty vectors becomes larger, the bias between _the_ (_jecentral—
ing agents. At time:, DGD updates the local variables as !zed estimate and the true signal also becomes more 3|gn|f!cant. The
impact of the faulty vectors can be further observed in the right plot,
which shows the overall tracking error of the network. As the faulty
vectors vary from[5, 5] to [20, 20], the steady-state tracking error
increases from aroun@5 to around2. Performance of Algorithm
forall i € R. Herej is a positive constant stepsize, afid = L With stepsizex = 0.1 and regularization parametar = 0.1 is
[wi;] € R™*™ is the mixing matrix of the entire network including illustrated in Fig. 2. Thanks to the TV norm regularization term,
both regular and malfunctioning agents. In the numerical experith® network is not sensitive to the faulty vectors broadcast by the
ments, we choosE” according to the maximum-degree rugs], malfunctioning agents. The left plot shoyvs that, no matter how the
We consider a random geometric graph, which uniformly ran-faulty vectors vary, the decentralized estlma_\te ofa ranc_lomly chosen
domly places100 agents in a two-dimensional aré@ 3] x [0, 3] regular agent is always close to the true sigifal The right plot

and treats two agents as neighbors if and only if their distancd€PiCts that the steady-state tracking errors are always aand
is less thanl. The agents track a moving target whose true po_Which are much smaller than those of DGD, for all the three cases.

sition ¥ € R evolves along @/4 circle, starting from(0, 0), Impact of Regularization Parameter \. Randomly choose: = 3

heading to(—3,3) and then(6,0), and ending at(3,3). The malfunction@ng agents among = 100 agents and suppose that the
velocity of the target is constant and eatfd circle takes100 ~ Malfunctioning agents broadcast the same faulty vedtirsio].

time slots. At timek, regular agent measures a true positiaef 1€ Stepsize remains to he = 0.1 but the regularization param-
through a linear observation functiff = HFi* + ¥, where eter \ varies from0, 0.02, 0.1,0.3100.5. Note thatA = 0 corre-
elements of the measurement matfg® € R2*2 follow nor- sponds to that the malfunctioning agents do not collaborate with any

mal distribution (0, 1) and elements of the measurement noiseCthers, no matter regular or malfunctioning, and independently opti-

el € R? follow normal distribution\'(0,1). Thus, the regu- Mize their own local cost functions. The left plot of Figshows the

lar agents aim at finding"* := argmin Y, fF(*), where decentralized estimates of a random regular agent, which are not far
g away from the true signal and are robust to the setting @bserv-

ing the right plot, we can see that too large or too smdibth yield

large steady-state tracking error. Note that a lardelps consensus

fof the regular agents, but the reached consensus is not necessarily

regular agents is connected. Suppose that the malfunctioning agerﬂgse to the dynamic optimal solution. On the other hand, a small

broadcast the same faulty vectors. We consider three different seéb i”scévr\]'zlfzfsrgggrl]a\;iggfgés 'tr%:iu:r;negrli?: :ﬂ 2302nt2$n?se?£¥$§te
tings for faulty vectors: for alk and for alli € M, zF = [5;5], . p

¥ = [10:10], or 25 — [20;20]. Performance of DGD with step- that setting a propex helps achieve the tradeoff between consensus

size 3 = 0.2, which is hand-tuned to yield balanced tracking per-and approximation accuracy.

formance, is illustrated in Figl. The left plot compares the true Acknowledgement This work is supported in part by the China
signal”® and the decentralized estimates of a randomly chosen red¥ational Science Foundation under Grant 61573331 and the Anhui
ular agent for different levels of faulty values. When the magnitudeProvincial Natural Science Foundation under Grant 1608085QF130.

o= wigah + Y wizy — BV filal), 9)

JER; JjEM;

fE@®) = |HFzZ* — yF||?/2. The performance metric is tracking
error defined by, [|2F — || /r.

Comparison with DGD. Randomly choose: = 3 malfunctioning
agents among. = 100 agents, but guarantee that the network o
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