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ABSTRACT

This paper considers the problem of tracking a network-wide so-
lution that dynamically minimizes the summation of time-varying
local cost functions of agents, when some of the agents are malfunc-
tioning. The malfunctioning agents broadcast faulty values to their
neighbors, and lead the optimization process to a wrong direction.
To mitigate the influence of the malfunctioning agents, we propose
a total variation (TV) norm regularized formulation that drives the
local variables of the regular agents to be close, while allows them
to be different with the faulty values broadcast by the malfunction-
ing agents. We give a sufficient condition under which consensus
of the regular agents is guaranteed, and bound the gap between the
consensual solution and the optimal solution we pursue as if the mal-
functioning agents do not exist. A fully decentralized subgradient
algorithm is proposed to solve the TV norm regularized problem in
a dynamic manner. At every time, every regular agent only needs
one subgradient evaluation of its current local cost function, in addi-
tion to combining messages received from neighboring regular and
malfunctioning agents. The tracking error is proved to be bounded,
given that the variation of the optimal solution is bounded. Numeri-
cal experiments demonstrate the robust tracking performance of the
proposed algorithm at presence of the malfunctioning agents.

Index Terms— Decentralized networks, dynamic optimization,
robust optimization, malfunctioning agents

1. INTRODUCTION

Consider an undirected network consisting ofn agents, which at
time k try to cooperatively solve a decentralized dynamic optimiza-
tion problem

min
x̃k

n∑
i=1

fk
i (x̃k). (1)

Herefk
i : Rp → R is a convex and differentiable local cost func-

tion only available to agenti at timek andx̃k ∈ Rp is the common
optimization variable to all agents. At timek, every agent is al-
lowed to exchange its current local iterate with network neighbors,
followed by local computation so as to track the dynamic optimal so-
lution. The purpose of this paper is to develop a robust decentralized
dynamic optimization algorithm that solves (1) at presence of mal-
functioning agents. By malfunctioning agents, we mean those who,
instead of transmitting local iterates to neighbors, send wrong values
(for example, faulty constants or random variables) due to failures of
communication or computation units.

Decentralized dynamic optimization problems in the form of (1)
are popular in multi-agent networks with time-varying tasks [1,2,3].
Examples include adaptive filtering and estimation in a wireless sen-
sor network [4,5,6], target tracking using a group of robots [7,8,9],
dynamic resource allocation over a communication network [10,11,

12], voltage control of a power network [13, 14], to name a few.
Existing algorithms to solve (1) are (sub)gradient methods [6, 13],
alternating direction method of multipliers [1, 12], as well as gra-
dient, Newton, and interior point methods based on the prediction-
correction scheme [2,3].

Nevertheless, most of the existing works assume that the agents
faithfully follow prescribed optimization protocols: accessing dy-
namic local cost functions, exchanging local iterates, and perform-
ing local computations. This assumption does not always hold true
since some of the agents might be unreliable in practice. Generally
speaking, there are two kinds of unreliable agents:

1. Malicious agents.Agents send malicious information to their
neighbors so as to deliberately guide the optimization process
to a wrong direction that they expect to reach.

2. Malfunctioning agents.Agents send faulty values to their
neighbors, not deliberately but due to failures of communi-
cation or computation units.

This paper focuses on handling malfunctioning agents in decentral-
ized dynamic optimization. For works on mitigating the impact of
malicious agents in adversarial environments, readers are referred to
recent papers [15,16,17].

The impact of malfunctioning agents has been analyzed in the
context of average consensus over a social network [18,19,20]. It is
shown that the malfunctioning agents shall bias the network opinions
from the consensual state of the regular agents [18], and the locations
of the malfunctioning agents are critical to evolution of the network
opinions [19]. Decentralized detection and localization methods are
proposed in [20] to identify the malfunctioning agents. To the best
of our knowledge, there is no existing work that considers the in-
fluence of the malfunctioning agents on the tracking performance of
decentralized dynamic optimization.

Our work is tightly related to [21], whose goal is decentralized
staticoptimization at presence of the malfunctioning agents. Differ-
ent from thedynamiccase studied in this paper, [21] assumes that
the local cost functionsfk

i are invariant across timek. To handle
the faulty values broadcast by the malfunctioning agents, the total
variation (TV) norm of the vector that stacks all the local variables
is penalized. Through minimizing the summation of the local cost
functions and the TV norm, most local variables (from the regular
agents) are able to reach consensus and those outliers (from the mal-
functioning agents) are tolerated. A subgradient method is proposed
to solve this robust decentralizedstatic optimization problem. Our
work also adopts the TV norm penalty to handle the malfunction-
ing agents and a subgradient algorithm as the optimization tool, but
extends their applications to thedynamicregime. We give a suffi-
cient condition under which consensus of the regular agents is guar-
anteed, and also give an upper bound on the tracking error of the
regular agents. These results provide theoretical guarantees to the
tracking performance of the subgradient method at presence of the
malfunctioning agents.
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Another related work is [22], which considers decentralized
stochasticoptimization. Instead of tracking a dynamic optimal so-
lution, [22] minimizes the summation of the local cost functions
fk

i across all nodesi and all timesk. Therefore, the local iter-
ates are expected to reach a steady-state consensual solution, given
that the stochastic noise of the local cost functions is bounded. To
allow for data heterogeneity across the network, [22] introduces
proximity constraints such that neighboring local variables are close
enough, but not necessarily consensual. Though not explicitly
claimed in [22], this approach is also able to alleviate the influence
of the malfunctioning agents. A saddle point method is proposed to
solve this constrained stochastic optimization problem. Our work
is different from [22] in terms of problem setting (dynamic ver-
sus stochastic), mathematical formulation (TV norm penalty versus
proximity constraints), and algorithm design (subgradient versus
saddle point).

The main contributions of this paper are as follows.

1. We formulate a TV norm regularized problem, which is ro-
bust to presence of the malfunctioning agents (Section2). We
give a sufficient condition under which consensus of the regu-
lar agents is guaranteed, and bound the gap between the con-
sensual solution and the optimal solution we pursue as if the
malfunctioning agents do not exist (Section3, Theorem1).

2. We propose a fully decentralized subgradient algorithm to
solve the TV norm regularized problem in a dynamic manner.
At every time, every regular agent only needs one subgradient
evaluation, in addition to combining messages from neighbor-
ing regular and malfunctioning agents (Section2). We prove
that the tracking error is bounded, given that the variation of
the optimal solution is bounded (Section3, Theorem2).

3. We provide extensive numerical experiments, demonstrating
the robust tracking performance of the proposed algorithm at
presence of the malfunctioning agents (Section4).

2. FORMULATION AND ALGORITHM

Let us consider a connected undirected network ofn agentsV =
{1, · · · , n} with n = |V|, and a set of edgesA. If an edge(i, j) ∈
A, then agentsi andj are neighbors, and can communicate with each
other. We denote the set of agenti’s neighbors asNi. The agents
aim at solving the decentralized dynamic optimization problem in
the from of (1). We assume that the network is synchronized, and at
timek every agenti strictly conforms to the following protocol:

Step 1.Accessing local cost functionfk
i .

Step 2.Computing local iteratexk
i ∈ Rp.

Step 3.Broadcasting local iteratexk
i to neighborsj ∈ Ni.

However, some of the agents in the network are malfunction-
ing, meaning that they broadcast faulty values other than local iter-
ates. To be specific, denoteM as the set of malfunctioning agents
andR := V\M as the set of regular agents. Definer := |R| and
m := |M|. The subset of edges connecting the regular agents inV is
denoted byE ⊆ A. At time k, malfunctioning agenti ∈ M broad-
casts a variablezk

i ∈ Rp, instead ofxk
i , to its neighborsj ∈ Ni.

The faulty value may come from failure of the computation unit, or
breakdown of the communication unit. Different from [18,19,20,21]
that assume the faulty values are constant across timek, we also al-
low that they are time-varying (for example, random variables or
values generated from certain functions of time). Although identi-
fying the malfunctioning agents is possible in decentralizedstatic
optimization [20], their detection and localization are much more

challenging for thedynamictask, especially when the faulty values
are time-varying.

Observe that at presence of the malfunctioning agents, at time
k, our goal is no longer solving (1) but finding the dynamic optimal
solution that minimizes the summation of the regular agents’ local
cost functions

x̃k∗ := arg min
x̃k

∑
i∈R

fk
i (x̃k). (2)

Directly solving (2) is intractable because the identities of malfunc-
tioning agents are not available in advance. To address this issue,
we introduce a TV norm penalty on the transmitted values, which
include the local iterates of the regular agents and the faulty values
from the malfunctioning agents. For agenti, defineRi as the set of
its regular neighbors andMi := Ni\Ri as the set of its malfunc-
tioning neighbors. At timek, we expect to approximately solve

xk∗ := [xk∗
i ] = arg min

xk:=[xk
i ]

∑
i∈R

fk
i (xk

i ) (3)

+ λ
∑
i∈R


1

2

∑
j∈Ri

‖xk
i − xk

j ‖1 +
∑

j∈Mi

‖xk
i − zk

j ‖1

 ,

wherexk := [xk
i ] ∈ Rrp is a vector that stacks all the local variables

xk
i of regular agents,xk∗ := [xk∗

i ] ∈ Rrp is the optimal solution of
(3), andλ is a positive constant penalty factor. The second term in
the cost function of (3) is the TV norm penalty on the transmitted
values, whose minimization forces everyxk

i to be close to most of
the received values on agenti, but allows it to be different to those re-
ceived outliers [21]. Therefore, when the malfunctioning agents are
sparse within the network, the TV norm penalty helps mitigate their
negative influence. For the applications of TV norm in identifying
sparse outliers, readers are referred to [23,24].

We propose a subgradient method to approximately solve (3) in
a decentralized and dynamic manner. The subgradient of the cost
function in (3) with respect toxk

i is

∇fk
i (xk

i ) + λ


 ∑

j∈Ri

sign(xk
i − xk

j ) +
∑

j∈Mi

sign(xk
i − zk

j )


 ,

wheresign(·) is an element-wise sign function. Givena ∈ R,
sign(a) equals to1 whena > 0, −1 whena < 0, and an arbi-
trary value within[−1, 1] whena = 0. Note that this subgradient
can be easily generalized to the case thatfk

i is nondifferentiable, as
long as we replace∇fk

i (xk
i ) by a subgradient offk

i atxk
i . For every

regular agenti, its subgradient update at timek is

xk+1
i = xk

i − α∇fk
i (xk

i ) (4)

− αλ


 ∑

j∈Ri

sign(xk
i − xk

j ) +
∑

j∈Mi

sign(xk
i − zk

j )


 ,

whereα is a positive constant stepsize. We use a constant stepsize,
other than a diminishing one, for the purpose of adapting to the dy-
namic cost functions [25].

The subgradient method to solve the robust decentralized dy-
namic optimization problem is outlined in Algorithm 1. The algo-
rithm has two parameters, penalty factorλ and stepsizeα. Every
regular agenti ∈ R initializes its local iterate asx0

i . At time k, it
accesses the local cost functionfk

i , followed by receiving local it-
eratesxk

j from regular neighborsj ∈ Ri and broadcast valueszk
j
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from malfunctioning neighborsj ∈ Mi. With all these informa-
tion, it updates the local iteratexk+1

i according to (4). For regular
agenti, its communication cost per iteration consists of broadcasting
a p-dimensional vector to and receiving|Ni| p-dimensional vectors
from its neighbors. The computation cost, which mainly comes from
evaluating the local gradient∇fk

i (xk
i ), is lightweight.

Algorithm 1 A Subgradient Method for Robust Decentralized Dy-
namic Optimization

Input: x0
i ∈ Rp for i ∈ R, λ > 0 andα > 0

1: for k = 0, 1, · · · , every regular agenti ∈ R do
2: Access local cost functionfk

i .
3: Receivexk

j from regular neighborsj ∈ Ri andzk
j

4: from malfunctioning neighborsj ∈Mi.
5: Update local iteratexk+1

i according to (4).

6: end for

3. PERFORMANCE ANALYSIS

This section analyzes the tracking performance of the proposed al-
gorithm at presence of the malfunctioning agents. Theorem1 inves-
tigates the TV norm regularized problem (3) at any timek, showing
the condition under which the optimal solution of (3) is consensual
and its gap from the optimal solution of (2) is bounded. Then in
Theorem2, we bound the tracking error of Algorithm 1, given that
the variation of the dynamic optimal solution to (2) is bounded. All
the proofs are left in a longer version [27].

We make the following assumptions on the dynamic local cost
functionsfk

i , which are normal for convex analysis.
Assumption 1. (Lipschitz Continuous Gradients)Local cost func-
tionsfk

i are differentiable and have Lipschitz continuous gradients
with Lipschitz constantsMfk

i
> 0, for all regular agentsi ∈ R

and timesk; namely, for any pair of pointsxi and yi, it holds
‖∇fk

i (xi)−∇fk
i (yi)‖ ≤ Mfk

i
‖xi − yi‖.

Assumption 2. (Strong Convexity)Local cost functionsfk
i are

strongly convex with strong convexity constantsmfk
i

> 0, for all
regular agentsi ∈ R and timesk; namely, for any pair of pointsxi

andyi, it holds[xi−yi]
T [∇fk

i (xi)−∇fk
i (yi)] ≥ mfk

i
‖xi−yi‖2.

Assumption 3. (Bounded Gradients at Optimum)Local cost func-
tions fk

i have bounded gradients at̃xk∗, the dynamic optimal so-
lution to (2), for all regular agentsi ∈ R and timesk; namely,
‖∇fk

i (x̃k∗)‖ < ∞.
We also assume that the network of the regular agents is bidi-

rectionally connected. Otherwise, consensus among regular agents
is generally impossible.
Assumption 4. (Network Connectivity)The network consisting of
all regular agentsi ∈ R, denoted by(R, E), is bidirectionally con-
nected.

For future usage, define the node-edge incidence matrixA =
[aie] ∈ Rr×|E| of the network with all regular agents. Ife = (i, j) ∈
E , then we setaie = 1 and aje = −1 (the order ofi and j is
arbitrary, but by default we consider the ordered edge(i, j) with
i < j). If an agenti is not attached to an edgee, thenaie = 0.

The last assumption is about the variation of the dynamic opti-
mal solution of (2) over time, which must be bounded to guarantee
reasonable tracking performance.
Assumption 5. For any two successive timesk− 1 andk, the vari-
ation of the dynamic optimal solution of(2) is bounded by a positive
constantΘ; namely‖x̃k∗ − x̃(k−1)∗‖ ≤ Θ.

Before stating the main result, we introduce an auxiliary prob-
lem in the form of

ỹk∗ := arg min
ỹk

∑
i∈R

fk
i (ỹk) + λ

∑
i∈R

∑
j∈Mi

‖ỹk − zk
j ‖1. (5)

The first-order optimality condition of (5) is that, for any malfunc-
tioning agentj, there existsvj ∈ Rp whose value satisfies the defi-
nition of sign(ỹk∗ − zk

j ) such that

1

λ

∑
i∈R

∇fk
i (ỹk∗) +

∑
i∈R

∑
j∈Mi

vj = 0. (6)

For notational simplicity, define a vectorbk := [bk
i ] ∈ Rrp whose

ith block bk
i := ∇fk

i (ỹk∗)/λ +
∑

j∈Mi
vj . Thus, (6) is equiv-

alent to
∑

i∈R bk
i = 0. The following theorem asserts that (3) is a

good surrogate of (2), which minimizes the summation of the regular
agents’ local cost functions.

Theorem 1. Suppose that Assumptions1–4 hold true. Define a
vectoru := [ue] ∈ R|E|p whoseeth block isue ∈ Rp. If there
existsu whose elements are within the range of[−1, 1], such that
A⊗ Ipu + bk = 0 holds, then the optimal solutionxk∗ := [xk∗

i ] of
(3) is consensual and the distance between every blockxk∗

i and the
optimal solutionx̃k∗ of (2) satisfies‖xk∗

i − x̃k∗‖ ≤ ∆k, where

∆k :=
λ
√

p∑
i∈Rmfk

i

∑
i∈R

|Mi|.

Note that [21] analyzes conditions under which (3) achieves con-
sensus, as well as (2) and (3) are equivalent, given that all the agents
are regular. Here we extend the result to the case that the malfunc-
tioning agents exist and play negative roles. In addition, [21] con-
siders thestaticTV norm regularized problem, while we further in-
vestigate thedynamictracking performance, as shown below.

We further show that Algorithm 1, which approximately solves
(3) using one subgradient evaluation per time, other than running an
inner loop of multiple subgradient evaluations at each time index,
tracks the optimal solution of (3) with bounded error.

Theorem 2. Given that the conditions of Theorem1 as well as As-
sumption5 hold true, the tracking error of Algorithm 1 is upper
bounded by

‖xk − xk∗‖ ≤ck‖x0 − x0∗‖ (7)

+
1

1− c

(
2c
√

r maxk ∆k + c
√

rΘ + d
)

,

if the stepsizeα < 1/(mini∈Rmfk
i

+ maxi∈RMfk
i
). Herec :=

(1−2αmfkMfk/(mfk+Mfk ))1/2, d := (8α2λ2p
∑

i∈R |Ni|2)1/2

are two constants.

Sincec is a constant within the range of(0, 1), Theorem2 im-
plies that the influence of the initial tracking error‖x0 − x0∗‖ van-
ishes at an exponential rate. The steady-state tracking error, ask →
∞, is proportional tomaxk ∆k (the gap between the optimal solu-
tions of (2) and (5)), Θ (the variation of the dynamic optimal solution
of (2)), as well as(

∑
i∈R |Ni|2)1/2 (a constant determined by the

topology of regular and malfunctioning agents).
Theorem2 shows how Algorithm 1 tracks the optimal solution

of (3). Combining Theorems1 and2, it is straightforward assert that
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Fig. 1. DGD with three malfunctioning agents broadcasting the same
faulty vectors, [5; 5], [10; 10] or [20; 20].

Algorithm 1 is also able to track the dynamic optimal solution of (2)
with bounded error

‖xk − [x̃k∗]‖ ≤ck‖x0 − x0∗‖ (8)

+
1

1− c

(
(1 + c)

√
r maxk ∆k + c

√
rΘ + d

)
.

Here[x̃k∗] ∈ Rrp stacksr optimal solutionx̃k∗ of (2).

4. NUMERICAL EXPERIMENTS

We compare the proposed algorithm with the dynamic version of
the celebrated decentralized gradient descent (DGD) method [26],
which does not consider mitigating the influence of the malfunction-
ing agents. At timek, DGD updates the local variables as

xk+1
i =

∑
j∈Ri

wijx
k
j +

∑
j∈Mi

wijz
k
j − β∇fi(x

k
i ), (9)

for all i ∈ R. Hereβ is a positive constant stepsize, andW =
[wij ] ∈ Rn×n is the mixing matrix of the entire network including
both regular and malfunctioning agents. In the numerical experi-
ments, we chooseW according to the maximum-degree rule [28].

We consider a random geometric graph, which uniformly ran-
domly places100 agents in a two-dimensional area[0, 3] × [0, 3]
and treats two agents as neighbors if and only if their distance
is less than1. The agents track a moving target whose true po-
sition x̌k ∈ R2 evolves along a3/4 circle, starting from(0, 0),
heading to(−3, 3) and then(6, 0), and ending at(3, 3). The
velocity of the target is constant and each1/4 circle takes100
time slots. At timek, regular agenti measures a true positioňxk

through a linear observation functionyk
i = Hk

i x̌k + ek
i , where

elements of the measurement matrixHk
i ∈ R2×2 follow nor-

mal distributionN (0, 1) and elements of the measurement noise
ek

i ∈ R2 follow normal distributionN (0, 1). Thus, the regu-
lar agents aim at finding̃xk∗ := arg min

∑
i∈R fk

i (x̃k), where
fk

i (x̃k) = ‖Hk
i x̃k − yk

i ‖2/2. The performance metric is tracking
error defined by

∑
i∈R ‖xk

i − x̃k∗‖/r.
Comparison with DGD. Randomly choosem = 3 malfunctioning
agents amongn = 100 agents, but guarantee that the network of
regular agents is connected. Suppose that the malfunctioning agents
broadcast the same faulty vectors. We consider three different set-
tings for faulty vectors: for allk and for all i ∈ M, zk

i = [5; 5],
zk

i = [10; 10], or zk
i = [20; 20]. Performance of DGD with step-

sizeβ = 0.2, which is hand-tuned to yield balanced tracking per-
formance, is illustrated in Fig.1. The left plot compares the true
signalx̌k and the decentralized estimates of a randomly chosen reg-
ular agent for different levels of faulty values. When the magnitude
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Fig. 2. Algorithm 1 with three malfunctioning agents broadcasting
the same faulty vectors, [5; 5], [10; 10] or [20; 20].
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Fig. 3. Algorithm 1 with three malfunctioning agents broadcasting
the same faulty vectors [10; 10].

of the faulty vectors becomes larger, the bias between the decentral-
ized estimate and the true signal also becomes more significant. The
impact of the faulty vectors can be further observed in the right plot,
which shows the overall tracking error of the network. As the faulty
vectors vary from[5, 5] to [20, 20], the steady-state tracking error
increases from around0.5 to around2. Performance of Algorithm
1 with stepsizeα = 0.1 and regularization parameterλ = 0.1 is
illustrated in Fig. 2. Thanks to the TV norm regularization term,
the network is not sensitive to the faulty vectors broadcast by the
malfunctioning agents. The left plot shows that, no matter how the
faulty vectors vary, the decentralized estimate of a randomly chosen
regular agent is always close to the true signalx̌k. The right plot
depicts that the steady-state tracking errors are always around0.3,
which are much smaller than those of DGD, for all the three cases.
Impact of Regularization Parameterλ. Randomly choosem = 3
malfunctioning agents amongn = 100 agents and suppose that the
malfunctioning agents broadcast the same faulty vectors[10; 10].
The stepsize remains to beα = 0.1 but the regularization param-
eterλ varies from0, 0.02, 0.1, 0.3 to 0.5. Note thatλ = 0 corre-
sponds to that the malfunctioning agents do not collaborate with any
others, no matter regular or malfunctioning, and independently opti-
mize their own local cost functions. The left plot of Fig.3 shows the
decentralized estimates of a random regular agent, which are not far
away from the true signal and are robust to the setting ofλ. Observ-
ing the right plot, we can see that too large or too smallλ both yield
large steady-state tracking error. Note that a largeλ helps consensus
of the regular agents, but the reached consensus is not necessarily
close to the dynamic optimal solution. On the other hand, a small
λ allows the regular agents to be “selfish” such that network-wide
consensus is often violated. The numerical experiments demonstrate
that setting a properλ helps achieve the tradeoff between consensus
and approximation accuracy.

Acknowledgement. This work is supported in part by the China
National Science Foundation under Grant 61573331 and the Anhui
Provincial Natural Science Foundation under Grant 1608085QF130.

3642



5. REFERENCES

[1] Q. Ling and A. Ribeiro, “Decentralized dynamic optimization
through the alternating direction method of multipliers,” IEEE
Transactions on Signal Processing, vol. 62, no. 5, pp. 1185–
1197, 2014.

[2] A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A.
Ribeiro, “Decentralized prediction-correction methods for net-
worked time-varying convex optimization,” IEEE Transactions
on Signal Processing, vol. 64, no. 17, pp. 4576–4591, 2016.

[3] M. Fazlyab, S. Paternain, V. Preciado, and A. Ribeiro,
“Prediction-correction interior-point method for time-varying
convex optimization,” arXiv: 1608.07544, 2016.

[4] S. Tu and A. Sayed, “Mobile adaptive networks,” IEEE Journal
of Selected Topics in Signal Processing, vol. 5, no. 4, pp. 649–
664, 2011.

[5] F. Jakubiec and A. Ribeiro, “D-MAP: Distributed maximum
a posteriori probability estimation of dynamic systems,” IEEE
Transactions on Signal Processing, vol. 61, no. 2, pp. 450–466,
2013.

[6] R. Cavalcante and S. Stanczak, “A distributed subgradient
method for dynamic convex optimization problems under
noisy information exchange,” IEEE Journal of Selected Top-
ics in Signal Processing, vol. 7, no. 2, pp. 243–256, 2013.

[7] K. Zhou and S. Roumeliotis, “Multirobot active target track-
ing with combinations of relative observations,” IEEE Trans-
actions on Robotics, vol. 27, no. 4, pp. 678–695, 2010.

[8] M. Ye and G. Hu, “Distributed optimization for systems with
time-varying quadratic objective functions,” In: Proceedings of
CDC, 2015.

[9] S. Rahili and W. Ren, “Distributed continuous-time convex
optimization with time-varying cost functions,” IEEE Trans-
actions on Automatic Control, vol. 62, no. 4, pp. 1590–1605,
2017.

[10] C. Enyioha, A. Jadbabaie, V. Preciado, and G. Pappas, “Dis-
tributed resource allocation for epidemic control,” arXiv:
1501.01701, 2015.

[11] T. Chen, Q. Ling, and G. Giannakis, “An online convex op-
timization approach to dynamic network resource allocation,”
arXiv: 1701.03974, 2017.

[12] M. Maros and J. Jalden, “ADMM for distributed dynamic
beam-forming,” IEEE Transactions on Signal and Information
Processing over Networks, 2017.

[13] H. Liu, W. Shi, and H. Zhu, “Decentralized dynamic optimiza-
tion for power network voltage control,” IEEE Transactions on
Signal and Information Processing over Networks, 2017.

[14] C. Enyioha, S. Magnusson, K. Heal, N. Li, C. Fischione, and V.
Tarokh, “On variability of renewable energy and online power
allocation,” IEEE Transactions on Power Systems, 2017.

[15] B. Kailkhura, S. Brahma, and P. Varshney, “Data falsification
attacks on consensus-based detection systems,” IEEE Trans-
actions on Signal and Information Processing over Networks,
vol. 3, no. 1, pp. 145–158, 2017.

[16] E. Nurellari, D. McLernon, and M. Ghogho, “A secure op-
timum distributed detection scheme in under-attack wireless
sensor networks,” IEEE Transactions on Signal and Informa-
tion Processing over Networks, 2017.

[17] S. Sundaram and B. Gharesifard, “Distributed optimization un-
der adversarial nodes,” arXiv: 1606.08939, 2016.

[18] D. Acemoglu, G. Como, F. Fagnani, and A. Ozdaglar, “Opin-
ion fluctuations and disagreement in social networks,” Mathe-
matics of Operations Research, vol. 38, no. 1, pp. 1–27, 2013.

[19] E. Yildiz, A. Ozdaglar, D. Acemoglu, and A. Scaglione, “Bi-
nary opinion dynamics with stubborn agents,” ACM Transac-
tions on Economics and Computation, vol. 1, no. 4, article 19,
2013.

[20] R. Gentz, S. Wu, H. Wai, A. Scaglione, and A. Leshem, “Data
injection attacks in randomized gossiping,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 2,
no. 4, pp. 523–538, 2016.

[21] W. Ben-Ameur, P. Bianchi, and J. Jakubowicz, “Robust dis-
tributed consensus using total variation,” IEEE Transactions on
Automatic Control, vol. 61, no. 6, pp. 1550–1564, 2016.

[22] A. Koppel, B. Sadler, and A. Ribeiro, “Proximity without con-
sensus in online multi-agent optimization,” IEEE Transactions
on Signal Processing, vol. 65, no. 12, pp. 3062–3077, 2017.

[23] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D: Nonlinear Phe-
nomena, vol. 60, no. 1–4, pp. 259–268, 1992.

[24] A. Chambolle, “An algorithm for total variation minimization
and applications,” Journal of Mathematical Imaging and Vi-
sion, vol. 20, no. 1–2, pp. 89–97, 2004.

[25] A. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol.
102, no. 4, pp. 460–497, 2014.

[26] A. Nedic and A. Ozdaglar, “Distributed subgradient methods
for multiagent optimization,” IEEE Transactions on Automatic
Control, vol. 54, no. 1, pp. 48–61, 2009.

[27] W. Xu, Z. Li, and Q. Ling, “Robust decentralized dynamic
optimization at presence of malfunctioning agents,” Avail-
able Online: home.ustc.edu.cn/˜qingling/pdf/
rddo-submitted.pdf

[28] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov
chain on a graph,” SIAM Review, vol. 46, no. 4, pp. 667–689,
2004.

3643


