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ABSTRACT

In time-division duplexing (TDD) systems, massive multiple-input
multiple-output (MIMO) relies on the channel reciprocity to obtain
the downlink (DL) channel state information (CSI) with the acquired
uplink (UL) CSI at the base station (BS). However, the mismatches
in the radio frequency (RF) analog circuits at different antennas at
the BS break the end-to-end UL and DL channel reciprocity. To
restore the channel reciprocity, it is necessary to calibrate all the an-
tennas at the BS. This paper addresses the interconnection strategy
for the internal self-calibration at the BS where different antennas
are interconnected via hardware transmission lines. Specifically, the
paper reveals the optimality of the star interconnection and the daisy
chain interconnection respectively. From the results, we see the star
interconnection is the optimal interconnection strategy when the BS
are given the same number of measurements. On the other hand,
the daisy chain interconnection outperforms the star interconnection
when the same amount of time resources are consumed. Numerical
results corroborate our theoretical analyses.

Index Terms— Calibration, Self-calibration, Interconnection,
TDD reciprocity, massive MIMO.

1. INTRODUCTION

In massive multiple-input multiple-output (MIMO), a large number
of antennas are installed at the base station (BS) to enhance the sys-
tem spectral efficiency [1]. To avoid the need to feed back a large
amount of downlink (DL) channel state information (CSI) to the
BS as in frequency-division duplexing (FDD) systems, time-division
duplexing (TDD) is typically assumed for massive MIMO where
the channel reciprocity can be exploited to infer the DL CSI with
the uplink (UL) CSI acquired at the BS [2]. However, in practice,
the transmit and receive branches are composed of totally different
analog circuits. Accordingly, the radio-frequency (RF) gain of the
transmit chain is different from that of the receive chain at the base-
band [3]. These RF gain mismatches destroy the end-to-end TDD
channel reciprocity and lead to severe performance degradation in
massive MIMO systems [3–5]. Careful calibration is thus necessi-
tated to compensate those RF gain mismatches at the RF front ends
(FEs) to restore the end-to-end UL/DL channel reciprocity.

There are two main categories of calibration schemes to com-
pensate the RF gain mismatches. One is the “relative calibration”
and the other one is the “full calibration”. The relative calibration
was proposed to only restore the end-to-end UL and DL channel
reciprocity without addressing the absolute phase or amplitude co-
herence [6]. On the other hand, the full calibration provides full
absolute phase and amplitude coherence between transmitters and
receivers [7].

To accomplish either the relative calibration or the full calibra-
tion, either the “Self-Calibration” scheme [5–10] or the “Over-The-
Air (OTA)” calibration scheme [11–14] can be applied. By utiliz-
ing hardware interconnections with transmission lines [7–9] or ex-

ploiting the mutual coupling effects [5, 6, 10], the self-calibration
scheme can be performed by the BS only without invoking helps
from the served mobile stations (MSs) or other antenna arrays. The
OTA calibration scheme is carried out with the help of the assist-
ing MSs or other antenna arrays [13]. In massive MIMO, the OTA
scheme usually requires a significant amount of CSI feedback from
the MSs [14].

In this paper, we focus on the internal self-calibration scheme
and seek for the optimal interconnection strategy to wire the anten-
nas at the BS together with transmission lines. In particular, we ana-
lyze the optimality of the star interconnection and the daisy chain in-
terconnection respectively under different resource constraints. The
derived results in this paper can serve as the design guidelines for
massive MIMO systems.

The rest of the paper is organized as follows. Section 2 gives the
system model and performance characterization for self-calibration.
Section 3 analyzes the optimality of the star interconnection strategy
without considering the constraint on the time resources. Section
4 shows the optimality of the daisy chain interconnection strategy
when the time resources are limited. Numerical results are provided
in Section 5 and Section 6 concludes the paper.
Notations: Diag{·} denotes the diagonal matrix with the diagonal
elements defined inside the curly brackets. Notations Tr{·}, (·)T ,
(·)H , (·)∗, and |C| stand for matrix trace, transpose operation, Her-
mitian operation, conjugate operation, and the cardinality of the set
C, respectively. A \ B means the relative complement of the set B
in the set A. mod(a, b) represents modulo operation that finds the
remainder after division of a by b. [A]p,q denotes the (p, q)-th entry
of matrixA.

2. SYSTEMMODEL & CALIBRATION PERFORMANCE

2.1. System Model

Consider a TDD multi-user (MU) massive MIMO system with an
M -antenna BS and U single-antenna MSs. As many works have
shown, only calibration of the BS front-ends is required and the ef-
fects of RF gains at the MSs can be neglected [5, 7]. To obtain cali-
bration coefficients at the BS, the self-calibration method with hard-
ware circuit connection is considered in this paper [7]. The complex-
valued transmit and receive RF gains of the antennas at the BS are
denoted as {αm, βm}M

m=1 . During the calibration phase, the BS an-
tennas transmit sounding signals over the transmission lines to obtain
calibration measurements. Let yp,q denote the received signal at the
p-th antenna due to the transmission from the q-th antenna. Without
loss of generality, the transmitted sounding signal is assumed to be
1. It then follows that

yp,q = βphp,qαq + np,q , (1)

where hp,q represents the gain of the calibration channel between
the p-th antenna and the q-th antenna and np,q is the additive white
Gaussian noise (AWGN) with zero mean and variance σ2

n. Note that
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hp,q = 0 if there is no interconnection wiring between the p-th an-
tenna and the q-th antenna and hp,q = hq,p due to the reciprocity of
the calibration channel. Note that every transmission line is bidirec-
tional and two measurements are obtained with each transmission
line. By stacking all the calibration measurements in (1) together,
the received signals in matrix-form is

Y = RHT +N , (2)
where [Y ]p,q := yp,q , R := Diag{β1, β2, · · · , βM}, T :=
Diag{α1, α2, · · · , αM}, [H]p,q := hp,q , and [N ]p,q := np,q .

2.2. Performance Characterization

In this study, we only focus on the full calibration schemes, but
similar results can also be derived when the relative calibration is
considered. To restore the end-to-end channel reciprocity, the BS
only need to know the values of those transmit and receive RF gains
subject to a common scaling, e.g. {sααm}Mm=1 and {sββm}Mm=1.
In order to proceed with our quantitative analyses, we assume there
is a “reference antenna”, e.g. the f -th antenna, whose RF gains:
αf and βf are known [10]. The other antennas are called “ordinary
antennas” accordingly. For a particular interconnection strategy,
given all the measurements Y in (2), the corresponding Cramer-Rao
low bounds (CRLBs) for those unknown calibration coefficients,
i.e. {αm, βm}M

m=1 \ {αf , βf}, can be derived. Note these CRLBs
serve as lower bounds for the variances of the estimation errors of
all possible unbiased estimators [15]. Let the matrixA represent the
interconnection strategy. Specifically, it is defined as

Ap,q :=

{
1, Antenna-p, q are interconnected
0, otherwise . (3)

And let Ā be the submatrix obtained by removing the f -th row and
the f -th column from the interconnection matrix A. In this paper,
we endeavor to find the optimal interconnection strategy or wiring at
the BS which connects different antennas in the most efficient way to
enable the best estimates of the calibration coefficients. To proceed
with our derivations, we make the following assumption:

• AS-1: All the transmission lines have the same length and
damping, i.e. hp,q = h when the p-th antenna and the q-th
antenna are interconnected.

Let θ be a 2(M − 1)-by-1 unknown vector defined as θ :=
[αT ,βT ]T , where α := [α1, ..., αf−1, αf+1, ..., αM ]T and β :=
[β1, ..., βf−1, βf+1, . . . , βM ]T . According to the signal model in
(2), under AS-1, we haveH = hA and the CRLB matrix for θ with
an interconnection strategy A can be derived as [15]

CRLB(θ|A) = J
−1(θ), (4)

where the Fisher information matrix J(θ) is given by

J(θ) =
|h|2

σ2
n

·

[
A DH

D B

]
, (5)

with

D :=Diag {β} · Ā · Diag{α∗},

A :=Diag
{ ∑

i∈C1

|βi|
2, . . . ,

∑
i∈Cm,m�=f

|βi|
2, . . . ,

∑
i∈CM

|βi|
2
}
,

B :=Diag
{ ∑

i∈C1

|αi|
2, . . . ,

∑
i∈Cm,m�=f

|αi|
2, . . . ,

∑
i∈CM

|αi|
2
}
,

(6)

and Cm denotes the set of the indices of the antennas that are inter-
connected to the m-th antenna directly in this particular intercon-
nection strategy A. In this paper, we call an interconnection path

Fig. 1. The interconnection strategy with 5 antennas. Antenna-1 is
chosen as the reference antenna and there are two calibration paths
for antenna-5.

Fig. 2. The daisy chain interconnection strategy with M antennas.
“Ant-f” is the reference antenna, and number of antennas along the
calibration path of the m-th antenna in addition to the reference an-
tenna is dm.

between one ordinary antenna and the reference antenna a “calibra-
tion path”. For example, the purple path shown in Fig. 1 is one
calibration path of antenna-5. Note that to be able to estimate all the
calibration coefficients, the chosen interconnection strategy A must
be “effective” in the sense that there must be at least one calibration
path between each ordinary antenna and the reference antenna. Be-
sides, to ensure an effective interconnection strategy, the BS must
be equipped with at least (M − 1) transmission lines and at least
2(M − 1) calibration measurements need to be obtained. In the
following sections, the optimality of different interconnection strate-
gies is analyzed based on the corresponding CRLBs for the unknown
calibration coefficients.

3. OPTIMALITY OF THE STAR INTERCONNECTION

To gain more insights from the CRLB results in (4), we further make
the following assumption:

• AS-2: The transmit and receive RF gains exhibit equal am-
plitudes, i.e. |αm| = a, |βm| = b, ∀m ∈ [1,M ].

AS-2 is made mainly due to the following concern. Constant trans-
mit and receive amplitudes ensure identical receive signal-to-noise
ratio (SNR) in the calibration measurements at each BS antenna. The
current study only focuses on the impact of the internal interconnec-
tion strategy. Assuming that the BS has a total budget of (M − 1)
transmission lines to interconnect different antenna ports at the BS,
under AS-2, closed-form expressions for the CRLBs in (4) can be
derived. Further, the optimal interconnection strategies for internal
full calibration can be characterized according to the derived analyt-
ical results.

To derive the closed-form CRLB expressions, we consider the
daisy chain interconnection strategy as shown in Fig. 2, where the
reference is set to f = 1. According to (5), under AS-1 and AS-
2, the Fisher information matrix for the daisy chain interconnection
strategy withM antennas is given as

Jdaisy(θ) =
|h|2

σ2
n

·

[
A DH

D B

]
, (7)

where

A = 2b2 · Diag{1, 1, . . . , 1, 1/2},

B = 2a2 · Diag{1, 1, . . . , 1, 1/2},
(8)
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Fig. 3. An interconnection network with 7 antennas. The antenna-3
is chosen as the reference antenna.

Fig. 4. The three decoupled interconnection subnetworks of the in-
terconnection network in Fig 3. The three subnetworks are all the
daisy chain interconnection networks.

[D]p,q =

{
βp+1α

∗
q+1, |p− q| = 1

0, otherwise , (9)

with p, q ∈ [1,M ]. Hence, the diagonal elements of the matrix
J−1
daisy(θ) can be directly obtained according to the inverse of the par-

titioned matrix Jdaisy(θ). Specifically, we can obtain

[J−1
daisy(θ)]m,m=

{
mρb, m ∈ [1,M − 1]
(m−M + 1)ρa, m ∈ [M, 2M − 2]

. (10)

where ρb := σ2
n/(b

2|h|2) and ρa := σ2
n/(a

2|h|2).
For an arbitrary effective interconnection strategy with (M − 1)

transmission lines, the interconnection network can be decoupled
into a set of daisy chain interconnection subnetworks. For example,
the interconnection network in Fig. 3 can be decoupled into three
daisy chain interconnection subnetworks as shown in Fig. 4. Since
αf , βf , and h are assumed to be known, the CRLBs for αm and
βm are determined by the calibration path of the m-th antenna and
the SNR in the corresponding measurements. Hence, the CRLBs for
the calibration coefficients of an arbitrary interconnection strategy
can be obtained by computing the CRLBs with the decoupled daisy
chain interconnection subnetworks independently. Note the CRLBs
with each subnetwork can be directly obtained with the results in
(10). We call the number of antennas along the calibration path of
an ordinary antenna excluding the reference antenna as the “calibra-
tion distance”. Let dm denote the calibration distance of the m-th
antenna. According to the results in (10), under AS-1 and AS-2, for
an arbitrary effective interconnection strategy, the CRLBs for αm

and βm, ∀m �= f , can be derived as

CRLB(αm)=dmρb,CRLB(βm)=dmρa. (11)

Meanwhile, for an arbitrary effective interconnection strategy, ac-
cording to the results in (11), the average CRLBs for α and β can

be obtained as follows:
CRLB(α)Average = d̄ρb,CRLB(β)Average = d̄ρa, (12)

where d̄ :=
∑M−1

m=1 dm/(M − 1) represents the average calibration
distance. In particular, for the star interconnection strategy, i.e. all
the ordinary antennas are directly interconnected to the reference an-
tenna, the average calibration distance d̄ = 1. This shows that the
star interconnection achieves the smallest average CRLB. In sum-
mary, we can establish the following result.

Proposition 1. Considering a BS withM antennas interconnected
with (M−1) transmission lines, assuming only total 2(M−1)mea-
surements are available, under AS-1 and AS-2, the star interconnec-
tion minimizes the average CRLB for all the unknown calibration
coefficients during internal self-calibration.

Proposition 1 indicates the star interconnection strategy is the
optimal interconnection when the BS has 2(M − 1) measurements.
In next section, we will analyze the optimality of the daisy chain
interconnection strategy under limited time resources.

4. OPTIMALITY OF THE DAISY CHAIN

As mentioned in [7], the daisy chain interconnection strategy re-
quires fewer time resources to collect the 2(M − 1) measurements.
However, the authors in [7] only demonstrated that the daisy chain
interconnection could outperform the star interconnection with nu-
merical simulations. In this section, we will prove the optimality of
the daisy chain interconnection and the corresponding condition.

When M = 2, there is only one unique interconnection strat-
egy. In the following analyses, it is thus assumed that M ≥ 3. To
characterize the constraint on the time resources, we assume that
each measurement of the sounding signal consumes T seconds. To
obtain 2(M − 1) measurements, with the star interconnection strat-
egy, we need Tstar = 2(M − 1)T seconds. However, with the daisy
chain interconnection strategy, we only need Tdaisy = 4T seconds to
collect the same amount of measurements due to the fact that these
measurements can be performed in parallel [7]. Consider an arbi-
trary effective interconnection strategy with (M − 1) transmission
lines. LetNm be the number of antennas that directly interconnected
to the m-th antenna. Define Nmax := max{Nm|m = 1, ...,M}.
Note that 2 ≤ Nmax ≤ M − 1 whenM ≥ 3. To obtain 2(M − 1)
measurements, we need at least 2NmaxT seconds. It can be ob-
served that Nmax = 2 if and only if the interconnection is the daisy
chain interconnection. Further, we see Nmax = M − 1 if and only
if the interconnection is the star interconnection. We can first have
the following proposition summarizing our findings.

Proposition 2. For a BS withM ≥ 3 antennas interconnected with
(M−1) transmission lines, we need Tarb seconds to obtain 2(M−1)
calibration measurements with an arbitrary interconnection strat-
egy. The required time Tarb satisfies the following condition:

4T ≤ Tarb ≤ 2(M − 1)T, (13)

where the first equality holds if and only if the interconnection is the
daisy chain interconnection, and the second equality holds if and
only if the interconnection is the star interconnection.

Assume that the BS has a total budget of Tstar = 2(M − 1)T
seconds to collect the calibration measurements. For an arbitrary ef-
fective interconnection strategy, we can utilize the additional Td :=
(Tstar − Tarb) seconds to acquire additional measurements. Define
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I := �Tstar
Tarb

� ≥ 1 and F := mod(Tstar, Tarb). In the following deriva-
tions, it is assumed that (I − 1)Tarb seconds are used to obtain ad-
ditional (I − 1) independent 2(M − 1) measurements for all the
unknown calibration coefficients and the remaining F seconds are
not considered1. As a result, the average CRLBs for α and β with
an arbitrary effective interconnection strategy are give by

CRLB(α)Average = ρbd̄/I,CRLB(β)Average = ρad̄/I. (14)

According to Proposition 2, the daisy chain interconnection strat-
egy consumes the least amount of time resources to collect the mea-
surements and the additional time resources can be utilized to im-
prove the calibration performance. For the daisy chain interconnec-
tion strategy, as defined in (12), the average calibration distance d̄ is
given by

d̄ =
(M − 2f)

2
+

(f − 1)2

M − 1
+ 1. (15)

Meanwhile, we have I = � (M−1)
2

� when 2(M − 1)T seconds are
available to acquire the 2(M − 1) calibration measurements. Note
that the average calibration distance d̄ in (15) is minimized when
f = M+1

2
. Accordingly, the average CRLB is minimized when

f = �M+1
2

� for the daisy chain interconnection strategy. Now we
can establish the following results.

Proposition 3. For a BS with M antennas interconnected with
(M −1) transmission lines, assuming total 2(M −1)T seconds are
available to acquire the 2(M − 1) calibration measurements, under
AS-1 and AS-2, the daisy chain interconnection strategy gives the
best calibration performance when f = �M+1

2
�. The corresponding

average CRLBs are

CRLB(α)Average = ρbd̄/I,CRLB(β)Average = ρad̄/I, (16)

where d̄/I = (M + 1)/(2M − 2) when M is odd and d̄/I =
(M2)/(2M2 − 6M + 4) whenM is even.

From Proposition 3, we see d̄/I < 1 when M ≥ 5. In other
words, the daisy chain interconnection outperforms the star inter-
connection when M ≥ 5. Further, it can be seen that the value
of d̄/I becomes smaller as the number of antennas increases when
M ≥ 5. As M → ∞, for the daisy chain interconnection strategy,
the asymptotic average CRLBs for α and β are given by

lim
M→∞

CRLB(α)Average= ρb/2, lim
M→∞

CRLB(β)Average= ρa/2. (17)

These asymptotic average CRLBs are just half of the corresponding
results for the star interconnection strategy. The above results show
that, with a total budget of 2(M − 1)T seconds for calibration, the
daisy chain interconnection strategy outperforms the star intercon-
nection when M ≥ 5. The relative performance gain decreases as
M goes large and the average CRLBs are bounded by (17).

5. NUMERICAL RESULTS

In this section, numerical results are provided to verify our analyti-
cal results. In our simulations, we compare the star interconnection
and the daisy chain interconnection for self-calibration at the BS. In
order to align with our analytical CRLBs in (11), we assume that
the RF gains of the reference antenna , i.e. αf and βf , are given
and fixed. In the meantime, the interconnection channel h is also

1The remaining F seconds can further be used to improve the total cali-
bration performance, and the effects of the remaining F seconds can also be
analyzed with similar methods in the paper.
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Fig. 5. Full calibration for different interconnection strategies. (“Star
Interconnection”: star interconnection strategy is used for full cali-
bration at the BS; “Daisy Chain Interconnection”: daisy chain in-
terconnection is used for full calibration at the BS; “CRLB”: av-
erage CRLB over all the unknown calibration coefficients; “ML”:
simulated average MSE of all the estimated calibration coefficients
for different interconnection strategies with the maximum-likelihood
(ML) estimator; Symbol I in the legend means 2I(M − 1) indepen-
dent measurements are obtained.)

assumed to be known. Note the interconnection channel h is time-
invariant and can be estimated in advance. Then we can obtain the
ML estimates of the calibration coefficients, i.e. αm and βm, for any
effective interconnection strategy implemented at the BS. Some key
parameters assumed in the simulations are listed as follows.

• The number of antennas at the BS is set toM = 129;
• The amplitudes of the transmit and receive RF gains are equal
to 1, i.e. |αm| = |βm| = 1, ∀m ∈ [1,M ]. The phases of the
RF gains are uniformly distributed within [−π, π];

• The transmitted sounding signal is equal to 1;
• The reference antenna is the 64-th antenna, i.e. f = 64;
• The SNR in the calibration measurements varies from 10dB
to 40dB.

In Fig. 5, the average CRLB and the simulated average mean-square-
error (MSE) of all unknown calibration coefficients are compared
under different constraints. The results show that the star inter-
connection outperforms the other interconnection strategies when
I = 1, i.e. 2(M − 1) calibration measurements are available. How-
ever, when we have 2(M − 1)T seconds time resources, the daisy
chain interconnection strategy shows better calibration performance
than the star interconnection strategy.

6. CONCLUSIONS

In this paper, we have studied the interconnection strategy for inter-
nal self-calibration in massive MIMO systems. Based on the derived
CRLBs for the unknown calibration coefficients, on the one hand,
we have shown that the star interconnection is the optimal strategy
to interconnect the antennas at the BS for internal self-calibration
when the BS has 2(M − 1) measurements. On the other hand,
when the number of antennas becomes large, the daisy chain inter-
connection outperforms the star interconnection when the BS only
has 2(M − 1)T seconds to collect the calibration measurements.
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