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ABSTRACT
Maintaining reliable millimeter wave (mmWave) connections
to many fast-moving mobiles is a key challenge in the theory
and practice of 5G systems. In this paper, we develop a new
algorithm that can jointly track the beam direction and chan-
nel coefficient of mmWave propagation paths using phased
antenna arrays. Despite the significant difficulty in this prob-
lem, our algorithm can simultaneously achieve fast tracking
speed, high tracking accuracy, and low pilot overhead. In
static scenarios, this algorithm can converge to the minimum
Cramér-Rao lower bound of beam direction with high prob-
ability. Simulations reveal that this algorithm greatly outper-
forms several existing algorithms. Even at SNRs as low as
5dB, our algorithm is capable of tracking a mobile moving at
an angular velocity of 5.45 degrees per second and achieving
over 95% of channel capacity with a 32-antenna phased array,
by inserting only 10 pilots per second.

Index Terms— Beam and channel tracking, fast tracking
speed, high accuracy, mmWave, phased antenna arrays.

1. INTRODUCTION
Millimeter-wave (mmWave) communication is promising to
support the vastly growing data traffic for future wireless sys-
tems [1–3]. In the mmWave band, only several distinctive
propagation paths exist, i.e., the line-of-sight path and a few
relatively strong reflected paths [4, 5]. Therefore, the direc-
tional beamforming with large antenna arrays is necessary to
provide sufficiently strong received signal power.

To overcome the hardware limitation on the number of
radio frequency (RF) chains with large array size and high
carrier frequency, analog beamforming with phased antenna
arrays was proposed [3, 6–9]. A phased array can receive the
signal that is projected onto a certain spatial subspace, with a
cost of requiring much more pilots than the fully digital arrays
to find the rare and precious paths. When users move quickly,
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it is needed to track the dynamic paths and even more pilots
are required. Hence, one fundamental challenge is how to
accurately track a large number of dynamic paths from many
high-mobility terminals/reflectors using limited pilots, e.g., in
V2V/V2I, high-speed railway, and UAV scenarios [10].

The compressed sensing based algorithms (e.g., [11–13])
were proposed for phased arrays, which can reduce pilot over-
head and make beam direction acquisition faster. However,
these algorithms are designed for static or quasi-static scenar-
ios, and will encounter performance deterioration under high-
mobility scenarios. To cope with high-mobility scenarios, the
algorithms in [14–16] use the prior information to track the
dynamic beam directions. However, these solutions do not
optimize the tracking scheme with the optimal training beam-
forming vectors, which leads to poor tracking accuracy.

Since the tracking of a large number of dynamic paths
can be decoupled into tracking each path with low pilot over-
head, we have proposed a beam tracking algorithm in [17,18]
to optimize both the training beamforming vectors and track-
ing scheme. However, it assumes known channel coefficients,
while both channel coefficient and beam direction might be
unknown and time-varying in a real mobile system. In this pa-
per, we further develop a recursive beam and channel tracking
(RBCT) algorithm to jointly track the dynamic beam direction
and channel coefficient. In static scenarios, the Cramér-Rao
lower bound (CRLB) of beam direction is derived, which is a
function of the training beamforming vectors. We also obtain
the minimum CRLB by optimizing these training beamform-
ing vectors, and establish three theorems to verify that the
RBCT algorithm can converge to the minimum CRLB with
high probability. Simulations reveal that the RBCT algorithm
can achieve much faster tracking speed, lower tracking error,
and lower pilot overhead than several existing algorithms.

2. SYSTEM MODEL

Consider a phased array in Fig. 1, where M omnidirectional
antennas are placed on a line, with a distance d between two
neighboring antennas. Each antenna is connected through a
phase shifter to the same RF chain. In time-slot n, the pilot
symbols arrive at the array from an angle-of-arrival (AoA)
θn∈ [−π2 ,

π
2 ]. The channel vector is given by

hn = βna(xn), (1)

where xn = sin(θn) is the sine of the AoA θn, a(xn) =[
1,ej

2πd
λ xn ,· · · ,ej 2πd

λ (M−1)xn
]H

is the steering vector of the
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Fig. 1. System model.

arriving beam, λ is the wavelength, and βn=βre
n+jβim

n is the
complex channel coefficient.

To track the beam direction xn and channel coefficient
βn simultaneously, at least two observations using different
beamforming vectors are needed. Hence, we assume that two
pilot symbols are applied in each time-slot. To receive the i-th
(i = 1, 2) pilot symbol, let wn,i be the beamforming vector
in time-slot n, denoted by

wn,i =
a(xn + δn,i)√

M
, (2)

which is assumed to have the same form as the steering vector.
Combining the output signals of the phase shifters yields

yn,i = wH
n,ihns+ zn,i = βnw

H
n,ia(xn)s+ zn,i, (3)

where s is the pilot symbol that is known by the receiver, and
zn,i ∼ CN (0, σ2

0) is an i.i.d. circularly symmetric complex
Gaussian random variable. Given ψn = [βre

n , β
im
n , xn]T and

Wn=[wn,1,wn,2], the conditional probability density func-
tion of yn=[yn,1, yn,2]T is given by

p(yn|ψn,Wn) =
1

π2σ4
0

e
−
‖yn−sβnWH

na(xn)‖2
2

σ20 . (4)

A beam and channel tracker determines the beamforming
matrix Wn, and provides an estimate ψ̂n = [β̂re

n , β̂
im
n , x̂n]T

of the channel coefficient βn and the sine xn of the AoA.
Let ξ= (W1,W2, . . . , ψ̂1, ψ̂2, . . .) be a beam and channel
tracking policy. In particular, we consider the set Ξ of causal
beam and channel tracking policies: The estimate ψ̂n of time-
slot n and the beamforming matrix Wn+1 of time-slot n+ 1
are determined by using the history of beamforming matrices
(W1, . . . ,Wn) and channel observations (y1, . . . ,yn).

3. BEAM AND CHANNEL TRACKING PROBLEM
Our goal is to develop a joint beam and channel tracking algo-
rithm to minimize the beam tracking error. For any time-slot
n, the joint beam and channel tracking problem is given by

min
ξ ∈ Ξ

E
[
(x̂n − xn)

2
]

s.t. E
[
β̂n

]
= βn, E [x̂n] = xn,

(5)

where the constraint ensures that ψ̂n = [β̂re
n , β̂

im
n , x̂n]T is an

un-biased estimate of ψn=[βre
n , β

im
n , xn]T.

Problem (5) is a constrained sequential control and esti-
mation problem that is difficult to solve optimally, where the

beamforming matrix Wn is the control action. First, the sys-
tem is only partially observed through the channel observa-
tion yn. Second, both the beamforming matrix Wn and the
estimate ψ̂n need to be optimized: On the one hand, the opti-
mization of Wn is a non-convex optimization problem of δn,i
in (2), which is discussed in Section 3.1. On the other hand,
as will be discussed in Section 5, the optimization of ψ̂n is
also non-convex and has multiple local optimal estimates.

3.1. Cramér Rao Lower Bound of Beam Tracking
Now, we try to establish a lower bound of the mean square
error (MSE) in (5) in static scenarios, where the ground true
of beam direction and channel coefficient is invariant for all
time-slot n, i.e., ψn = [βre,βim,x]T

∆
= ψ. Given the beam-

forming matrices (W1, . . . ,Wn) of the first n time-slots, the
MSE in (5) is lower bounded by the CRLB as follows [19]:

E
[
(x̂n − x)

2
]
≥

( n∑
i=1

I(ψ,Wi)

)−1


3,3

, (6)

where [·]i,k obtains the matrix element in row i and column k,
and I(ψ,Wi) is the 3×3 Fisher information matrix, i.e., [20]

I(ψ,Wi)
∆
=E
[
∂ log p(yi|ψ,Wi)

∂ψ
· ∂ log p(yi|ψ,Wi)

∂ψT

]

=
2|s|2

σ2
0

 ‖gi‖22 0 Re
{
gH
i ei
}

0 ‖gi‖22 Im
{
gH
i ei
}

Re
{
gH
i ei
}

Im
{
gH
i ei
}

‖ei‖22

 , (7)

where gi =WH
i a(x), ei =βWH

i ȧ(x), and ȧ(x)
∆
= ∂a(x)

∂x . By
optimizing the beamforming matrices (W1, . . . ,Wn) on the
RHS of (6), we obtain the minimum CRLB as below:( n∑

i=1

I(ψ,Wi)

)−1


3,3

≥ min
W1,...,Wn

( n∑
i=1

I(ψ,Wi)

)−1


3,3

= min
Wi

1

n

[
I(ψ,Wi)

−1
]
3,3
, (8)

where because the linear additive property of Fisher informa-
tion matrix [20], the optimal W1, . . . ,Wn are the same, and
from (7), we can get[

I(ψ,Wi)
−1
]
3,3

=
σ2

0

2|sβ|2
·

‖gi‖22
‖gi‖22 ‖ei‖

2
2 −

∣∣gH
i ei
∣∣2 . (9)

Problem (8) is non-convex with respect to δi,1 and δi,2, which
makes it too hard to obtain the analytical solution. However,
we can still use the numerical method to find the solution,
which yields the optimal beamforming matrix W∗ as below:

W∗=
1√
M

[
a(x− δ∗),a(x+ δ∗)

]
, (10)

where δ∗ M→∞−−−−→ 2λ
3Md , and when M ≥ 8, δ∗ is very close to

2λ
3Md . In Fig. 2, the optimal receiving beam directions are
depicted by plotting 1

[I(ψ,Wi)−1]3,3
vs. δi,1 and δi,2, where

M=32, d=0.5λ, and the signal-to-noise ratio (SNR) |sβ|
2

σ2
0

is

5dB. It can be observed that δ∗ is almost the same as 2λ
3Md and

there are two symmetric optimal solutions. Therefore, we will
set δ∗ = 2λ

3Md in the proposed RBCT algorithm in Section 4.
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ψ̂n=ψ̂n−1−
an

‖sĝn‖22 (l2n−|cn|2)
·

 l2n−Im{cn}2 Re{cn} Im{cn} −‖ĝn‖22 Re{cn}
Re{cn} Im{cn} l2n−Re{cn}2 −‖ĝn‖22 Im{cn}
−‖ĝn‖22 Re{cn} −‖ĝn‖22 Im{cn} ‖ĝn‖42

·
Re{sHĝH

n(yn−sβ̂n−1ĝn)}
Im{sHĝH

n(yn−sβ̂n−1ĝn)}
Re{sHêH

n(yn−sβ̂n−1ĝn)}

. (13)

Fig. 2. Optimization of Problem (8) using numerical method.Stage 1:
M pilots for beam sweeping

Stage 2:
2 pilots per time-slot for tracking

time-slotPilot

Data

Fig. 3. Frame structure.

4. RECURSIVE BEAM AND CHANNEL TRACKING
We propose a two-stage algorithm to approach the minimum
CRLB in (8), which is given below:
Recursive Beam and Channel Tracking (RBCT):
1) Coarse Beam Sweeping: M pilots are used successively
(see Fig. 3). The beamforming vector to receive the m-th
observation ỹm is set as w̃m = 1√

M
a
(

2m
M −

M+1
M

)
,m =

1, . . . ,M . Obtain the initial estimate ψ̂0 =[β̂re
0 , β̂

im
0 , x̂0]T by

x̂0 =arg max
x̂∈X

∣∣∣a(x̂)HW̃ỹ
∣∣∣ , β̂0 =

[
W̃Ha(x̂0)

]+
ỹ, (11)

where ỹ = [ỹ1, . . . , ỹM ]T, W̃ = [w̃1, . . . , w̃M ], X ={
1−M0

M0
, 3−M0

M0
, . . . , M0−1

M0

}
, the sizeM0(M0 ≥M) ofX de-

termines the estimation resolution, and X+ ∆
= (XHX)−1XH.

2) Beam and Channel Tracking: In time-slot n, two pilots
are received at the beginning (see Fig. 3) using beamforming
vectors wn,1 and wn,2, given by

wn,1 =
a(x̂n−1 − δ∗)√

M
, wn,2 =

a(x̂n−1 + δ∗)√
M

, (12)

and the estimate ψ̂n = [β̂re
n , β̂

im
n , x̂n]T is updated by (13)

on the top of the page, where ĝn = WH
na(x̂n−1), ên =

β̂n−1W
H
nȧ(x̂n−1), ln = ‖ĝn‖2‖ên‖2, and cn = ĝH

nên.
In Stage 1, the exhaustive sweeping is used, and the ini-

tial estimate ψ̂0 is obtained in (11) by using the orthogonal
matching pursuit method (e.g., [13]). This ensures that the
initial beam direction x̂0 is within the mainlobe set, i.e.,

B (x0)
∆
=
(
x0 −

λ

Md
, x0 +

λ

Md

)
. (14)

In Stage 2, the recursive tracker is motivated by the fol-
lowing maximization likelihood problem:

max
ψ̂n

{
max
Wn

n∑
i=1

E
[
log p

(
yi|ψ̂n,Wi

)∣∣∣∣ψ̂n,W1,. . . ,Wi,
y1,. . . ,yi−1

]}
,(15)

where Wn = [wn,1,wn,2] is subject to (2). We propose a
two-layer nested optimization algorithm to find the solution

of (15). In the outer layer, we use the stochastic Newton’s
method to update the estimate ψ̂n, given by [19]

ψ̂n=ψ̂n−1−anE
[
H(ψ̂n−1,Wn)

]−1

·
∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1

=ψ̂n−1+anI(ψ̂n−1,Wn)−1 ·
∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1

,(16)

where H(ψ̂n−1,Wn) =
∂2 log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1∂ψ̂
T
n−1

is the Hessian

matrix, I(ψ̂n−1,Wn) can be calculated by using (7), an is
the step-size that will be specified later, and

∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1

=− 2

σ2
0

Re{sHĝH
n(yn−sβ̂n−1ĝn)}

Im{sHĝH
n(yn−sβ̂n−1ĝn)}

Re{sHêH
n(yn−sβ̂n−1ĝn)}

,
(17)

with ĝn =WH
na(x̂n−1) and ên = β̂n−1W

H
nȧ(x̂n−1). Plugging

I(ψ̂n−1,Wn) and (17) in (16), we get (13). In the inner layer,
it is equivalent to minimize the CRLB to update Wn, i.e.,

min
Wn

[
I(ψ̂n−1,Wn)−1

]
3,3
, (18)

which results in (12).
Remark. Different from the beam tracking algorithm in [17,
18], the RBCT algorithm uses two pilots and jointly updates
the beam direction and channel coefficient in each time-slot.

5. ASYMPTOTIC OPTIMALITY ANALYSIS
There are multiple stable points for (13), which correspond
to the local optimal estimates for Problem (5) [21]. Hence
Problem (5) is non-convex for the estimate ψ̂n. To study these
stable points, we rewrite (13) as follows:

ψ̂n = ψ̂n−1 + an

(
f
(
ψ̂n−1,ψn

)
+ ẑn

)
, (19)

where f
(
ψ̂,ψn

)
∆
= E

[
I(ψ̂,Wn)−1 · ∂ log p(yn|ψ̂,Wn)

∂ψ̂

∣∣∣ψn],
and ẑn

∆
= I(ψ̂n−1,Wn)−1·∂ log p(yn|ψ̂n−1,Wn)

∂ψ̂n−1

−f
(
ψ̂n−1,ψn

)
.

A stable point ψ̂n−1 should satisfy: f
(
ψ̂n−1,ψn

)
=0 ,

and
∂f(ψ̂n−1,ψn)

∂ψ̂
T
n−1

is a negative definite matrix. Let Sn denote

the stable points set at time-slot n. Then, we can verify ψn∈
Sn, whose details are given in our technical report [22].

Note that except for the real direction xn, the antenna ar-
ray gain is quite low at other local optimal stable points in
Sn. Hence, one key challenge is how to ensure that the RBCT
algorithm converges to the real direction xn, instead of other
local optimal stable points in Sn.

In static beam tracking, where ψn=ψ=[βre,βim,x]T and
Sn=S, we adopt the diminishing step-sizes [19, 21, 23]:

an =
α

n+N0
, n = 1, 2, . . . , (20)

where α > 0 and N0 ≥ 0. We use the stochastic approxi-
mation and recursive estimation theory [19,21,23] to analyze
the RBCT algorithm. To support the more general joint beam
and channel tracking scenario than [17, 18], three new theo-
rems are developed to resolve the challenge mentioned above:
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Theorem 1 (Convergence to Stable Points). If an is given
by (20) with any α > 0 and N0 ≥ 0, then ψ̂n converges to a
unique point within S with probability one.

Hence, for general step-size parameters α and N0 in (20),
x̂n converges to a stable point in S.
Theorem 2 (Convergence to the Real Beam Direction x).
If (i) x̂0 ∈B (x), (ii) an is given by (20) with any α> 0, then
there exist N0≥0 and C>0 such that

P ( x̂n → x| x̂0 ∈ B (x)) ≥ 1− 6e
−C|s|

2

α2σ20 . (21)

By Theorem 2, if the initial point x̂0 is in the mainlobe
B(x), the probability that x̂n does not converge to x decades
exponentially with respect to |s|2

α2σ2
0

. Hence, one can increase

the transmit SNR |s|
2

σ2
0

and reduce the step-size parameter α to
ensure x̂n→x with high probability.
Theorem 3 (Convergence to x with the Minimum MSE).
If (i) an is given by (20) with α = 1 and any N0 ≥ 0, and (ii)
ψ̂n → ψ, then

lim
n→∞

nE
[
(x̂n − x)

2 ∣∣ψ̂n → ψ
]

=
[
I(ψ,W∗)−1

]
3,3
. (22)

Theorem 3 tells us that α should not be too small: If α =
1, then the minimum CRLB on the RHS of (8) is achieved
asymptotically with high probability.
Proof description of Theorem 1-3. The main difference from
[17, 18] is that the RBCT algorithm considers vector vari-
able/function rather than the scalar ones in [17, 18]. Hence,
the main proof structures are similar, while the parts that in-
volve these vectors are different. Due to space limitation, the
detailed proofs are provided in our technical report [22].

6. NUMERICAL RESULTS
We compare the RBCT algorithm with three reference al-
gorithms: the compressed sensing algorithm [13], the IEEE
802.11ad algorithm [14], and the beam tracking algorithm
[18]. The first two algorithms have the same configuration as
that in Section VI of [18]. The third one uses the same train-
ing beamforming vectors as the RBCT algorithm, i.e., in each
time-slot, it receives two pilots with the beamforming vectors
in (12), and the beam direction is tracked by using both obser-
vations. Moreover, its channel coefficient is obtained with a
least square estimator by using these observations. Consider
the system model in Section 2 with M=32 antennas, and the
antenna spacing is d = 0.5λ. The pilot symbol is s = 1+j

2 ,

and the transmit SNR |s|2
σ2 is set as 5dB. To ensure fairness,
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we assume that 2 pilot symbols are received in each time-slot,
hence all the algorithms have the same pilot overhead.

In static scenarios, we set the step-size as an = 1
n , n≥ 1.

The real AoA θ is randomly generated by a uniform distri-
bution on [−90◦, 90◦] in each realization, and the results are
averaged over 10000 random realizations. Figure 4 plots the
MSE over time. It can be observed that the MSE of the RBCT
algorithm converges to the minimum CRLB in (8), which is
much smaller than the reference algorithms.

In dynamic scenarios, we set the step-size as a constant
value, i.e., an = 1, n ≥ 1. The channel variation is mod-
eled as: The AoA θn = θn−1 + δn−1 · ω where θ0 = 0,
δn ∈ {−1,1} denotes the rotation direction, and ω∈ [0, 0.04]
is a fixed angular velocity. The rotation direction δn is chosen
such that θn varies within [−π3 ,

π
3 ]. The channel coefficient

βn(E
[
|βn|2

]
= 1) is subject to Rician fading with a K-factor

κ= 15dB, according to the channel model proposed in [24].
In Fig. 5 and 6, one can observe that the RBCT algorithm can
support much higher angular velocities and data rates than
other algorithms. According to Fig. 6, the RBCT algorithm
can achieve 95% of channel capacity when the angular veloc-
ity is 0.19rad (1.09 degrees) per time-slot. If 5 time-slots last
for one second, i.e., 10 pilots per second received, then the
RBCT algorithm is capable of tracking a mobile moving at
an angular velocity of 5.45 degrees per second and achieving
over 95% of channel capacity.

7. CONCLUSION
We have developed a joint beam and channel tracking algo-
rithm for mmWave phased antenna arrays, and established its
convergence and asymptomatic optimality. Our simulation
results show that the proposed algorithm can achieve much
faster tracking speed, lower beam tracking error, and higher
data rate than several state-of-the-art algorithms, with the
same pilot overhead.
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