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ABSTRACT
In this work we consider the challenging problem of chan-
nel estimation at the receiver of a massive multiple-input
multiple-output system with hybrid analog/digital beamform-
ing and low-resolution quantization. We propose a dithered
beamforming architecture, where random control signals are
injected to the analog part of the receiver beamformer and to
the analog-to-digital converters to introduce randomness into
the signal capturing process and combat the stair-case quanti-
zation effects. The statistical properties of the dithered output
are captured via an Expectation-Maximization approximation
of the maximum a-posteriori estimator. A low-complexity al-
gorithm is proposed which exhibits performance close to the
oracle-based least-squares estimation of the sparse channel.

Index Terms— low resolution analog-to-digital converter
(ADC), hybrid analog/digital beamforming, millimeter wave
(mmWave) massive MIMO

1. INTRODUCTION

Fifth generation (5G) networks are expected to integrate al-
most every device and terminal in the near future, promising
peak data rates up to 20Gb/s and average data rates greater
than 100Mb/s. Energy efficiency (EE) becomes an impor-
tant design criterion for the sustainable evolution of 5G net-
works [1] and tranceiver redesign offers great promise to im-
prove EE but current literature is limited and further investiga-
tion is required [2]. The key enabler technologies to achieve
these data rates are massive multiple-input multiple-output
(MM) and the use of millimeter wave (mmWave) frequen-
cies. Although promising, these approaches present several
challenges that roadblock the design of energy efficient net-
works. On one hand is the a huge number of radio-frequency
(RF) chains that have to be connected to the antennas. On the
other is the large amounts of power required from the high
resolution analog-to-digital converters (ADCs) under large-
bandwidth operation with multi gigabit requirements.

Channel estimation of mmWave-based MM systems with
few-bit ADCs poses major difficulties compared to conven-
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Fig. 1. Proposed dithered beamforming architecture. The ran-
dom control signals are represented by red dashed arrows.

tional systems due to beamforming and the large number of
antenna elements [3, 4]. Recently, techniques based on Ap-
proximate Message Passing (AMP) algorithm have been pro-
posed for estimation of the MM with low-resolution ADCs [5,
6, 7]. In [6] a modification of the conventional Expectation-
Maximization (EM) algorithm has been proposed which ex-
ploits the sparse modeling of the mmWave channel. However
the technique degrades for the case of medium to high SNR
regimes due to the non-linearities of the quantization. In [5] a
generalized approximate message passing algorithm has been
proposed that overcomes this divergence for large number of
training length, however the same number of RF chains and
antennas was assumed. In [7], an EM algorithm with the It-
erative Hard Thresholding method has been proposed for the
case of 1-bit ADCs.

In this work we consider the channel estimation prob-
lem for a mmWave-based massive MIMO with hybrid A/D
beamforming, where the number of RF chains is lower than
the number of antennas, while each chain employs a low-
resolution ADC (1-3 bits). We introduce a dithered beam-
forming architecture where random control signals are added
to the analog part of the beamformers and to the ADC prior
the quantization of the input signal. Dithering has been suc-
cessfully used for combat quantization effects [8], but never
has been considered for massive MIMO beamforming. To
recover the channel we consider the maximum a-posteriori
estimator and we propose a low-complexity modification of
the Expectation-Maximization (EM) algorithm which ex-
ploits the sparse representation of the mmWave channel into
the beamspace (virtual) domain [9].
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2. PROBLEM FORMULATION

We consider the beamspace (virtual) representation of a
MIMO channel with uniform linear arrays (ULA) [9, 10].
For simplicity we consider the narrowband case [11, 12],
although the proposed architecture can be extended to a
frequency-selective scenario [5]. For Mt transmit anten-
nas and Mr receive antennas, the Mr ×Mt channel matrix
H ∈ CMr×Mt can be expressed as

H = UrZUH
t =

Mt∑
i=1

Mr∑
i=1

[Z]ikar(φi)aHt (θk) (1)

where at(θk) = 1√
Mt

[1, e−jθk , . . . , e−j(i−1)θk ]T is the
steering vector of the transmitter with θk = k/Mt the
normalized uniformly spaced spatial angles. The matrices
Ur ∈ CMr×Mr , Ut ∈ CMt×Mt are DFT matrices while
Z ∈ CMr×Mt is a sparse matrix with a few non-zero ele-
ments. Specifically, each element of the sparse matrix [Z]ij
is assumed to follow the Bernoulli-Gaussian distribution, i.e.,

p([Z]ij) = (1− η)δ([Z]ij) +
η√

2πσh
e
−
|[Z]ij |

2

2σ2
h

where δ(·) is the Dirac delta function and η = L
MtMr

denotes
the sparsity of virtual channel.

In the hybrid analog/digital (A/D) beamforming archi-
tecture, the number of transmitter RF chains Mrf

t is usu-
ally smaller than the number of the transmitting antennas
Mt and similarly for the receiver Mrf

r < Mr. At each
training instance t, the transmitter generates the vector
s(t) ∈ CM

rf
t ×1, which is the input to the analog RF precoder,

FRF (t) ∈ CM
rf
t ×Mt . This signal is transmitted through the

sparsely modeled channel Ĥ and the received vector is pro-
cessed by the analog RF combiner WRF (t) ∈ CMr×Mrf

r .
The output of the combiner can be written as:

yc(t) =
(

sT (t)FTRF (t)Ut ⊗WH
RF (t)Ur︸ ︷︷ ︸

Ψc(t)∈CMr×MrMt

)
zc+WH

RF (t)nc(t)

(2)
where zc = vec(Z), nc ∈ CMrf

r ×1 and nc ∼ CN (0, σ2
nIMr

),
is the additive white complex Gaussian noise (AWGN) vector
i.e., is generated based on the complex normal vector distri-
bution. By concatenating all the T training sequences the into
the real-valued equivalent form we have:

ȳ =

[
Re(ȳc)
Im(ȳc)

]
= Ψ̄

[
Re(zc)
Im(zc)

]
+

[
Re(n̄c)
Im(n̄c)

]
(3)

where Ψ̄ =

[
Re(Ψ̄c) −Im(Ψ̄c)
Im(Ψ̄c) Re(Ψ̄c)

]T
∈ R2TMr×2MrMt

and ȳc ∈ CTMr×1, n̄c ∈ CTMrf
r ×1, Ψ̄c ∈ CTMr×MrMt are

the concatenated complex quantities for the received signal,
the AWGN and the system matrix, respectively.
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Fig. 2. Removal of the large scale patterns of the system ma-
trix ‖Ψc‖ for Mt = Mr = 8, Mrf

t = Mrf
r = 4, T = 64.

We consider that the mmWave-based massive MIMO re-
ceiver employs low-resolution quantization at the ADCs. Let
us denote the K-level quantization of ȳ ∈ R2TMr×1 as

q̄ = Q
(
ȳ
)

(4)

where q̄ = [q1 . . . q2TMr
]T ∈ R2TMr×1. Each output ele-

ment takes one of the K distinct values i.e., q1
i , . . . , q

K
i . with

qki = −(M + 1) + k∆ depending on the quantizer lower
and upper thresholds [lki , u

k
i ]. The lower and upper quan-

tizer boundary values are set to qmin = −κ
√
E{y2

i } and
qmax = κ

√
E{y2

i }, ∀i and for κ ∈ [1, 5], respectively. The
quantizer’s step-size is given by ∆ = qmax−qmin

M , while the
average power E{y2

i } can be obtained via an automatic gain
control circuit.

Before proceeding, let us describe in more detail two main
issues that render the channel estimation problem more chal-
lenging in the case of channel estimation at the receiver of
a massive MIMO with hybrid A/D beamforming and low-
resolution quantization. The first issue comes from the chan-
nel subspace sampling limitation [13] which prevents the di-
rect estimation of the CSI due to the beamforming matrices.
In the conventional case, where the beamforming matrices are
composed by DFT columns, the resulting measurement ma-
trix Ψc has a block structure with areas of similar values,
as shown in Fig. 2 (left). This implies that rank(Ψc) =
rank(WH

RF (t)Ur) ≤ MtMr and infinite condition number.
Moreover, taking into account the quantization of the received
signal, the overall system, given by (4), is a non-linear one due
to the staircase ADCs, especially for the low-resolution cases
(1-3 bits).

3. DITHERED BEAMFORMING

To overcome the aforementioned problems for channel esti-
mation, we introduce a novel architecture, termed as dithered
beamforming. Dithering is a commonly used technique where
an external signal is injected to the input to combat the non-
linear quantization effects, improve the robustness and the
asymptotic stability of the system [14, 15]. In our design, two
external signals are injected at the MIMO receiver, one in the
spatial angles and another in the amplitude, as shown in Fig.
1. Therefore, the use of dithering is two-fold: first we improve
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the properties of the measurement matrix by introducing ran-
domness into the signal capturing process. Afterwards, the
outputs of the RF combiner are perturbed by adding random
analog memory-less signals to overcome the stair-case effects
of low-resolution ADCs.

Let us consider that the steering vectors of precod-
ing/combiner matrices have quantized physical angles which
are generated as random variables following the uniform dis-
tribution. The spatial angle of the k-th antenna element the
transmitter will be expressed as:

θk = 2π sin(QKω (ωk)) (5)

where QKω (·) denotes a Kω-level quantizer and ωk ∼
U(0, 2π). Then, for each training instance t at the k-th
antenna and the i-th RF chain we use the precoding element

[FRF (t)]ki =
1√
Mt

ej(i−1) sin(θtk(t)) (6)

and accordingly for the combiner at the receiver. Thus, the
resulting measurement matrix Ψ̄ will be stochastic and the
block structure is removed [16], as shown in Fig. 2 (right).
This is similar to the compressive sensing approach where
a random measurement matrix is used to recover the sparse
signal based on small number of measurements [17].

For the amplitude dithering, several approaches have been
proposed for the signle-input-single-output case (SISO), e.g.,
random or deterministic, non-subtractive or subtractive [15].
In this work we consider a non-subtractive random dithering
for a MIMO system, d̄ ∈ R2TMrf

r ×1 ∼ N (0,Σd), hence,
the overall system is described as:

r̄ = Q
(
Ψ̄z + n̄ + d̄

)
∈ R2TMr×1 (7)

where the overall noise can be modelled as n̄+d̄ ∼ N
(
0,Σ

)
,

where Σ = σ2
nWH

rfWrf + Σd.
Note that the proposed formulation introduces dithering

for a MIMO system where the covariance matrix Σ deter-
mines its performance. Up to the authors knowledge this is
the first time where correlated MIMO dithering is considered
and extended investigation is left for the subsequent works.

It can be proved that when the number of quantized an-
gles is large (e.g., Kω > 8), the restricted isometry property
[17] for the beamforming matrices is satisfied, thus the ap-
proximation WH

rfWrf ≈ IN holds for large enough Kω . To
this end, the MIMO dithering system can be decomposed into
independent SISO dithering systems. For the SISO case with
random dithering, the dither variance has a crucial impact on
the performance of dithered quantization and its optimal value
depends on the bit resolution and on the dynamic range ∆ of
the quantizer [15].

4. LOW-COMPLEXITY CHANNEL ESTIMATOR

In this section we develop a low-complexity channel estima-
tor for the dithered beamforming architecture. We consider

the case where Kω = 8, hence random dithering can be de-
scribed using a common parameter, i.e., the variance σ2

d. To
recover the CIR based on the non-linear input/output relation
of (7), we provide a modified EM algorithm which approxi-
mates the maximum a-posteriori (MAP) estimator. The EM
algorithm solves the following problem:

Eȳ|̄r,z
{
∂

∂z
ln p(r̄, ȳ|zl)

}
= 0 (8)

where the conditional probability density function (PDF) in-
volving r̄ and ȳ random variables is given by p(r̄, ȳ|z) =

ID(r̄)(ȳ) 1
(2πσ2)N/2

e
−‖ȳ−Ψ̄z‖22

2σ2 [18]. EM algorithm is defined
by the following two steps for the (l + 1)-th iteration (details
are omitted due to space limitations):

• E-step: Compute bl = [bl1, . . . , b
l
2TMr

] with

bli = − σ√
2π

e−
(li−[Ψ̄zl]i)

2

2σ2 − e−
(ui−[Ψ̄zl]i)

2

2σ2

erf(−li+[Ψ̄zl]i√
2σ

)− erf(−ui+[Ψ̄zl]i√
2σ

)
(9)

where li, ui are the lower/upper bounds of the quantizer
for [Ψ̄zl]i respectively; erf(·) is the error function.

• M-step: Estimate the sparse channel zl+1 ∈ R2MrMt×1

via solution of the linear system of equations:

Azl+1 = βl (10)

with βl , Ψ̄T Ψ̄zl + bl and A , Ψ̄T Ψ̄ + C−1
h .

The performance of EM algorithm is determined by the
solver of (10). Given that prior PDF of the CSI, i.e., p([Z]ij),
is known, several sparse solvers can be employed for the es-
timation of z, e.g., AMP [19], CoSaMP [20], SGP [21], of-
fering trade-offs between complexity, performance and prior
knowledge. Since the matrix dimensions are expected to be
very large in the massive MIMO case, matrix inversion is pro-
hibitively complex.

On this premise, we employ an approximate subspace
gradient pursuit technique which has low computational com-
plexity with comparable performance, given that the chan-
nel sparsity η is known. At the (l + 1)-th iteration of the
EM algorithm, the support set Ω of the sparse channel vector
is updated based on the approximated gradient vector gl+1.
Specifically, Ω is the union of the previously selected one and
the index which represents the element of the gradient with
the highest energy. Note that by A|Ω we denote the subma-
trix which is obtained keeping the columns of A with indices
in Ω. Afterwards, the sparse vector is approximated based on
a line search update, where t is an auxiliary vector represent-
ing the pruned version of z (for further details see [21]).

The proposed low-complexity EM technique is presented
in Algorithm 1 in more detail. The complexity order of the
proposed algorithm is determined by the matrix-vector prod-
uct of line 6, which is O(MrMtL). The number of non-zero
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Algorithm 1 Proposed low-complexity EM algorithm
Input: β, Ψ̄,Ch, σ, ui, li
Output: z

1: Initialization: t = 0, z = 0, A = Ψ̄T Ψ̄ + C−1
h

2: for l = 1, . . . do
3: // Expectation step
4: Estimate bl via (9)
5: // Update the approximate gradient
6: gl+1 = βl −A|Ωtl|Ω
7: // Update the support set
8: Ω = arg max(|z(n− 1)|, L− 1) ∪ arg max(|gl|, 1)
9: // Approximate the channel vector

10: α =
(gl|Ω)T gl|Ω

(gl|Ω)TA|Ωgl|Ω

11: zl+1
|Ω = tl|Ω + αgl|Ω

12: // Prune the non-zero values
13: tl+1

|Ω = zl+1
|Ω

14: tl+1
|Ωc = 0

15: end for

coefficients in the sparse vector t is L which is much lower
than the number of the antennas MtMr. Note that the com-
plexity order for the matrix inversion would require two or-
ders of magnitude higher complexity, i.e., O((MrMt)

3).

5. SIMULATION RESULTS AND CONCLUSION

In this section, we evaluate the performance of the proposed
algorithm through simulation results. We assume that the
transmitter and the receiver have Mt = Mr = 32 antennas
and Mrf

t = Mrf
r = 8 RF chains. The training sequence

s(t) × CMt×1, t = 1, . . . , T is composed of 4-QAM sym-
bols with E{‖s(t)‖22} = 1. We assume ULA antenna arrays
with λ/2 spacing. The mmWave channel is considered to be
quasi-static, i.e., it remains static during the transmission of
the T = 512 training vectors. The number of channel paths
was set to L = 40, i.e., the sparsity level is η ∼ 1%, and its
variance to σ2

z = L. The dithering variance σ2
d has been set to

the optimal value for each bit resolution, and is obtained by
exhaustive search.

In Fig. 3 we evaluate the convergence behaviour of the
proposed algorithm (Algorithm 1) depicted in for two SNR
cases, i.e., 0dB and 15dB. To evaluate the steady-state perfor-
mance we have also plotted the oracle-based EM algorithm,
where (10) is solved by using least-squares with known sup-
port set Ω, i.e., zoracle|Ω = A−1

|Ω β. We see that the proposed
algorithm is able to achieve very rapid convergence rates for
both SNR values, despite only using an approximate solution
for (10). For the 1-bit case, the MSE performance of the pro-
posed technique is almost optimal, while for 2 and 3 bits cases
is 1dB higher than the optimal.

In Fig. 4 we compare the MSE with respect to the SNR
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for dithered and non-dithered cases. Apart from the proposed
one, we also have included an AMP-based solution of (10)
[19]. Channel estimation without dithering for SNRs over
10dB exhibits very large errors due to non-linear phenomena
of the quantization. However, the proposed dithered beam-
forming technique is able to mitigate these effects. Note also
that the proposed algorithm achieves superior performance to
the AMP technique; AMP is more appropriate for the cases
where the |Ω| is unknown and has to be also recovered.

In conclusion, this work has considered channel esti-
mation at the receiver of a massive MIMO system with
hybrid A/D beamforming and low-resolution quantization.
A dithered beamforming architecture has been introduced
where random control signals are added to the analog part
of the combiner and to the ADC prior to the quantization of
the input signal. A low-complexity EM algorithm has been
proposed to exploit the sparse representation of the mmWave
channel. From the results of our study we conclude that the
proposed dithered beamforming architecture is able to miti-
gate the effects of ill-condition of the system matrix as well as
the non-linear effects of quantization that occur during chan-
nel estimation. Also, the proposed algorithm can achieve
almost optimal MSE performance with low complexity re-
quirements.
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