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ABSTRACT

Symbol-level precoding (SLP) is a promising technique which al-
lows to constructively exploit the multi-user interference in the
downlink of multiple antenna systems. Recently, this approach has
also been used in the context of non-linear systems for reducing
the instantaneous power imbalances among the antennas. However,
previous works have not exploited SLP to improve the dynamic
properties of the waveforms in the temporal dimension, which are
fundamental for non-linear systems. To fill this gap, this paper pro-
poses a novel precoding method, referred to as spatio-temporal SLP,
which minimizes the peak-to-average power ratio of the transmitted
waveforms both in the spatial and in the temporal dimensions, while
at the same time exploiting the constructive interference effect. Nu-
merical results are presented to highlight the enhanced performance
of the proposed scheme with respect to state of the art SLP tech-
niques, in terms of power distribution and symbol error rate over
non-linear channels.

Index Terms— Symbol-level precoding, Multi-user MISO,
PAPR, Non-linear channel.

1. INTRODUCTION

The utilization of multi-antenna transmitters relying on full fre-
quency reuse has revealed to be an effective strategy towards ful-
filling the constantly increasing throughput requirements of current
wireless communication systems. As a consequence, in recent years
precoding has been a prolific research area, due to its ability to
handle the interference arising between simultaneous transmissions
addressed to different co-channel users.

The conventional precoding strategies aim at mitigating the in-
terference by exploiting the knowledge of the channel state informa-
tion (CSI), through the design a precoding weight matrix (or pre-
coder) to be applied to the multiple data streams [1–3]. On the other
hand, symbol-level precoding (SLP) is a novel strategy [4–13] which
designs the transmitted signals on a symbol-by-symbol basis, using
the knowledge of both the CSI and the data information. The objec-
tive of SLP is not to eliminate the interference, but rather to control
it so as to achieve a constructive interference effect at each receiver.
Different optimization strategies have been considered in the litera-
ture for SLP. In [6] the sum power minimization and the max-min
fair problem were solved for PSK modulations. Extensions of such
works include optimization strategies for multi-level modulations [7]
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and more flexible approaches for exploiting the constructive interfer-
ence [8]. A more detailed review of SLP can be found in [14].

SLP schemes have been recently proposed by the authors also
in the context of non-linear systems [10–13], where the per-antenna
high-power amplifiers (HPAs) [15] introduce an amplitude and phase
distortion on the transmitted streams. The resulting performance
degradation depends on the power variation of the signals both in
the temporal and in the spatial dimensions. The latter one is referred
to the variation of the instantaneous transmit power among the dif-
ferent antennas, which causes a differential distortion effect (the dif-
ferential phase shift discussed in [12, 13]) and therefore deteriorates
the performance. The schemes of [10–13] tackle this problem by re-
ducing the instantaneous power imbalances among the antennas, for
each symbol slot. Nonetheless, these SLP schemes fail at improv-
ing the power dynamic of the waveforms in the temporal dimension,
which is fundamental with respect to non-linearities, since they work
on a symbol-by-symbol basis. In order to fill this gap, this work
proposes a novel SLP method, referred to as spatio-temporal SLP,
which is able to optimize the power dynamic of the waveforms both
in the spatial and in the temporal dimensions, thus further improv-
ing the robustness of the signals to non-linear effects. Specifically,
the proposed scheme performs a minimization of the spatio-temporal
peak-to-average power ratio (PAPR) of the transmitted waveforms,
under Quality-of-Service (QoS) constraints, for multi-level modula-
tion schemes1. It should be mentioned that a first spatio-temporal
SLP formulation has been presented by the authors in [17], which
however is not addressed to non-linear systems and therefore fol-
lows a different optimization strategy.

Notation: (·)T denotes matrix transpose, while (·)† denotes ma-
trix conjugate transpose. | · | and ∠(·) denote the amplitude and the
phase, respectively, while Re(·) and Im(·) are the real and imagi-
nary parts, and ι is used to denote the imaginary unit. Moreover,
‖ · ‖ and ‖ · ‖∞ represent the Euclidean norm and the l∞ norm ,
respectively. Pr(·) denotes the probability of an event, while E(·)
denotes the statistical expectation. Finally, Ia denotes the identity
matrix of size a× a, while ⊗ denotes the Kronecker product.

2. SYSTEM MODEL

Let us consider a single-cell multiple-antenna downlink scenario,
where a base-station delivers K independent data streams to K
single-antenna user terminals through N transmit antennas, with
N ≥ K. Each data stream is divided in blocks of S symbols,

1There are a number of works, such as [16], proposing precoding tech-
niques for PAPR reduction in massive MIMO systems. Nevertheless, the
scheme herein proposed differs from them as it exploits the constructive in-
terference effect of SLP previously discussed. Further, it does not rely on
massive MIMO architectures.

3599978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



Fig. 1: Block scheme of the considered system model relying on spatio-temporal symbol-level precoding.

and the channel is assumed to be quasi-static flat fading. Con-
sidering a data block, we can define the data information matrix
S = [sT1 . . . s

T
K ]T ∈ CK×S , which aggregates the symbol streams

to be delivered to the different users. Similarly, we aggregate in the
matrix D = [dT1 . . .d

T
N ]T ∈ CN×S the precoded symbol streams

feeding the transmit filters. In fact, each symbol stream has to
undergo pulse shaping before the actual transmission. The pulse
shaping operation is performed using a unit energy symmetric pulse
waveform α(t). Denoting by T the symbol period and by ξ the
oversampling factor, the transmitted waveform for the generic n-th
antenna can be represented through its discrete samples spaced by
ts =

T
ξ

, as follows:

xn[l] =

S∑
i=1

dn[i]α[(l − 1)ts − (i− 1)T ], l = 1, . . . , ξS, (1)

where dn[i] is the i-th element of the symbol vector dn, which in
turn is the n-th row of D. By aggregating the output (oversampled)
signals from all the antennas in a matrix X = [xT1 . . .x

T
N ]T ∈

CN×ξS , the pulse shaping operation can be represented in a com-
pact matrix form as X = DATX, where ATX ∈ RS×ξS is a block
Toeplitz matrix having as (i, l)-th element:

[ATX](i,l) = α[(l − 1)ts − (i− 1)T ]. (2)

According to the well-known multi-user MISO channel model,
the received symbols at the users can be written in matrix form as:

Ỹ =HX + Z̃,

where the matrix Ỹ = [ỹT1 . . . ỹ
T
K ]T ∈ CK×nsS represents the

received samples at the K users, H = [hT1 . . .h
T
K ]T ∈ CK×N

is the channel matrix modeling the interference among the differ-
ent data streams, and Z̃ = [z̃T1 . . . z̃

T
K ]T ∈ CK×ξS models the

Additive White Gaussian Noise (AWGN). In order to obtain the re-
ceived signals at the users in the symbol domain, the matched fil-
tering and downsampling operation needs to be modeled. This can
be done again in a matrix form, using the block Toeplitz matrix
ARX ∈ RξS×S , which can be defined in the same fashion of (2).
Overall, grouping the received symbols at the K users in a matrix
Y = [yT1 . . .y

T
K ]T ∈ CK×S , we can write the global communica-

tion model as:

Y = Ỹ ARX =HXARX + Z̃ARX =HDA+Z, (3)

where A = ATXARX ∈ RS×S represents the combination of the
filters at the transmitter and at the receiver, while Z = Z̃ARX ∈
CK×S is the noise in the symbol domain. Without loss of generality,
the noise power is assumed to be 1.

As anticipated, it should be taken into account how the system
model introduced in (3) is actually degraded by the non-linear ef-
fects introduced by the per-antenna HPAs. A practical example of
non-linear HPA is given in Fig. 2, where the (normalized) AM-AM
and AM-PM characteristics of the non-linearized traveling-wave-
tube amplifier (TWTA) model of [18] are represented2. Such charac-
teristics clearly show the introduced amplitude and phase distortion.
The complete system model is represented in the block scheme of
Fig. 1, where it is clear how the symbol matrix D is obtained as
output of a spatio-temporal precoding module, which takes as input
the CSI, i.e. an estimate of H , the filters matrices ATX and ARX

and the data information matrix S. Differently than in previous SLP
works [10, 12], the model in (3) represents the signals not only in
the spatial dimension (i.e., how they vary between the antennas),
but also in the temporal dimension, considering a whole block of
S symbols per stream and the oversampled transmitted waveforms
throughX . This feature allows to take an important step forward in
SLP towards counteracting the non-linear effects. In fact, with the
introduced model it is possible to design the matrix D, namely the
precoded symbol streams feeding the transmit filters, by optimizing
the power dynamic of the transmitted samplesX both in the spatial
and in the temporal dimensions, thus making the signals more robust
to non-linear effects.

In order to facilitate the formulation of the proposed optimiza-
tion scheme, discussed in the next section, it is convenient to further
manipulate the model of (3) by vectorizing the introduced signal
matrices over the temporal dimension (rows first). Hence, we model
the data information streams through the vector s = vec(ST ) =
[s1 . . . sK ]T ∈ CKS×1, the designed symbol streams through
d = vec(DT ) = [d1 . . .dK ]T ∈ CNS×1, the transmitted signals
through x = vec(XT ) = [x1 . . .xN ]T ∈ CNξS×1, the noise
through z = vec(ZT ) = [z1 . . .zK ]T ∈ CKS×1, and the re-
ceived symbols through y = vec(Y T ) = [y1 . . .yK ]T ∈ CKS×1.
Accordingly, the relation between d and x can be written as
x = (IN ⊗ AT

TX)d, and the communication model can be for-
malized as:

y = (H ⊗AT )d+ z = Gd+ z. (4)

This final formulation represents the introduced spatio-temporal sys-

2However, it should be stressed that the proposed scheme is general and
applies to any non-linear model.
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Fig. 2: Normalized AM-AM and AM-PM characteristics of the non-
linearized TWTA of [18].

tem model in a very simple way, formally similar to the spatial model
used in the previous SLP literature. The matrix G = H ⊗ AT ∈
CKS×NS is an equivalent representation of the channel matrix in
this novel spatio-temporal model, therefore it will be referred to as
spatio-temporal channel matrix.

3. SPATIO-TEMPORAL PEAK-TO-AVERAGE POWER
RATIO MINIMIZATION

In this section, we propose a SLP scheme relying on the introduced
spatio-temporal model. The scheme performs the minimization of
the PAPR of the transmitted waveforms both in the spatial and in
the temporal dimensions, under QoS constraints. Moreover, in line
with the previous works on SLP [7], it targets a constructive inter-
ference effect at each receiver and for each symbol slot. Herein, the
formulation is provided assuming an APSK modulation scheme for
the data information3. The spatio-temporal PAPR (ST-PAPR) can
be simply defined, based on the vectorized communication model of
(4), as ‖x‖2∞

‖x‖2/N . Taking also into account the relation between x and
d, the optimization problem, referred to as ST-PAPR-Min, can be
formulated as a non-linear fractional program as follows:

d(s,H,ATX,ARX,γ) = arg min
d

‖(IN ⊗AT
TX)d‖2∞

‖(IN ⊗AT
TX)d‖2

s.t. C1 : |gjid|2 Dκ2
jiγj , j = 1, . . . ,K, i = 1, . . . , S,

C2 : ∠gjid =∠sj [i], j = 1, . . . ,K, i = 1, . . . , S,
(5)

where gji denotes the spatio-temporal channel related to the j-th
user for the i-th symbol slot, thus it is the [(j − 1)S + i]-th row of
G, and sj [i] is the i-th element of sj . Further, γj is the target signal-
to-interference-plus-noise ratio (SINR) that should be granted for the
j-th user, γ = [γ1 . . . γK ]T ∈ CK×1 stacks the target SINR for all
the users, and κji = |sj [i]|/

√
Ej,i[|sj [i]|2] is a magnitude scaling

factor for the symbol sj [i], which allows to account the different am-
plitudes of the symbols in the multi-level constellation (see also [7]).
The notation D represents a generalized inequality, to be read as≥ or
= depending whether the constraint is referred to a boundary symbol
or to an inner symbol of the constellation, respectively. The set of
constraints C1 represents a QoS constraint for each user, while the
set of constraints C2 represents the constructive interference condi-
tion, guaranteeing that each user receives the desired data symbol

3However, it can be easily extended to QAM modulations, as in [7].

with the correct phase. The optimization problem (5) is formally
similar to the spatial PAPR minimization problem addressed in [12].
Thus, it can be solved following the same strategy. In particular,
as a first step we can rewrite the problem by reformulating the con-
straints, as follows4:

d = arg min
d

‖x‖2∞
‖x‖2

s.t. C1 : Re(sj [i])
gjid+ d†g†ji

2
D
√
γj Re2(sj [i]),

j = 1, . . . ,K, i = 1, . . . , S,

C2 : Im(sj [i])
gjid− d†g†ji

2ι
D
√
γj Im

2(sj [i]),

j = 1, . . . ,K, i = 1, . . . , S,

C3 : (ιtji − 1)gjid+ (ιtji + 1)d†g†ji = 0,

j = 1, . . . ,K, i = 1, . . . , S,

(6)

where tji = tan (∠sj [i]), and x has been used in place of
(IN ⊗ AT

TX)d to simplify the notation.
The formulation in (6) is still challenging because of the non-

linear fractional objective function. The problem can be solved
based on the method followed in [12, 13], by applying in a joint
fashion parametric programming [19] and successive convex ap-
proximation (SCA) [20]. Accordingly, by first approximating
the function ‖x‖2 with an affine function around a generic point
z ∈ CNξS×1, and by then applying parametric programming using
an auxiliary variable λ, we can define the optimization function
F (λ,z) = min

d∈S
{‖x‖2∞ − λ(2Re(z†x) − z†z)}, where S repre-

sents the sets of constraints C1, C2, C3. This yields the algorithm
summarized in Table 1, where λ and z are iteratively updated until
convergence. The reader is referred to [12, 13] for a more detailed
derivation of the algorithm.

The parametric problem (7) is convex and can be solved us-
ing the standard convex optimization tools [21]. Both the SCA ap-
proach [20] and the parametric programming [19] have been proven
convergent. Moreover, a numerical analysis has evidenced a fast
convergence of the proposed joint algorithm [13].

4. NUMERICAL RESULTS

In this section we present numerical results to assess the perfor-
mance of the proposed ST-PAPR-Min scheme over non-linear chan-
nels. The presented results are obtained considering a scenario with
N = 5 antennas and K = 3 users, a 16-APSK modulation scheme
for the data information, and a block length of S = 100 symbols,
averaging over different realization of the data S. The pulse shap-
ing operation is performed using square root raised cosine (SRRC)
pulses with a roll-off factor of 0.25, while the oversampling factor ξ
is set to 4. The target SINR, assumed the same for all the users, is
set to 12 dB, while for the spatial channel coefficients we have con-
sidered for simplicity a fixed realization5 as in (8). We consider as
benchmarks the spatial PAPR minimization (SPAPR-Min) scheme
of [12], which minimizes the PAPR only in the spatial dimension,
and the peak power minimization (PPM) scheme of [10], which aims
at minimizing the power peaks again only in the spatial dimension.

4The reader is referred to [12] for a more detailed derivation.
5However, the main conclusions of this work still apply if more general

channel conditions are considered.
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H =

 0.2174− 0.0018ι −1.3545− 0.6424ι 0.5872− 0.0178ι −0.3634− 0.3117ι −0.3564 + 0.6348ι
−0.6673− 0.6922ι 0.3418− 0.3554ι −0.7173 + 1.1137ι 0.8172 + 0.1664ι 0.5835 + 0.3848ι
0.0059− 1.2106ι 0.7984− 0.1389ι 0.3298− 0.3151ι 0.3268 + 0.7113ι 0.1923− 1.5710ι

 (8)

Table 1: Proposed Iterative Algorithm

1. Initialization: Set ε, k = 0, λ = 0, which results in solving
min
d∈S
{‖x‖2∞}.

2. Evaluate λ0 =
‖x‖2∞
‖x‖2 , z0 = x.

3. Solve the following optimization:

d = arg min
d
‖x‖2∞ − λk(2Re(z†kx)− z

†
kzk)

s.t. C1, C2, C3.
(7)

4. Evaluate |F (λk,zk)| and ‖x− zk‖; if |F (λk,zk)| ≥ ε or
‖x− zk‖ ≥ ε go to step 5.

5. Set λk+1 =
‖x‖2∞
‖x‖2 , zk+1 = x, k = k + 1, go to step 3.

Table 2: PAPR and transmit power for the different schemes.

ST-PAPR-Min SPAPR-Min PPM

ST-PAPR [dB] 1.05 7.6 6.5
Temp. PAPR [dB] 1.09 7.3 5.8

Per-ant. Power [dBW] 14.4 9.4 6

First of all, we compare in Table 2 the spatio-temporal PAPR, in
dB, achieved by the proposed scheme and the benchmarks, together
with the average per-antenna transmit power in dBW. Remarkably,
the proposed scheme manages to reduce the ST-PAPR of 6.55 and
5.45 dB compared to the two considered benchmarks, respectively,
at the expense of a higher transmit power. The table also shows the
attained temporal PAPR averaged between the antennas, in order to
highlight that impressive gains are obtained in the temporal dimen-
sion for each RF chain. The improved power dynamic obtained with
the proposed scheme in the temporal dimension is clearly visible
in Fig. 3, where the complementary cumulative distribution func-
tion (CCDF) of the instantaneous power transmitted by one antenna
(|x1[l]|2, considering the antenna indexed by 1, with l being the sam-
ple index) is drawn. Notably, the ST-PAPR-Min approach shows a
much lower power variation in time.

Finally, to validate the performance of the proposed scheme with
respect to non-linearities, we show in Fig. 4 the symbol error rate
(SER) attained by the proposed approach and by the benchmarks
over a channel corrupted by the non-linear model of Fig. 2. The SER
is shown as a function of the input back-off (IBO), in dB, applied to
the signal feeding the non-linear HPAs. This result shows how the
improved PAPR properties achieved by the proposed scheme result
in a remarkable SER reduction when non-linearities are considered.
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Fig. 3: CCDF of the instantaneous transmit power for a single an-
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Fig. 4: Achieved SER versus IBO, in dB, using the non-linear model
of Fig. 2.

5. CONCLUSIONS

In this work, a novel SLP strategy has been proposed, which allows
to optimize the power dynamic of the waveforms both in the spatial
and in the temporal dimensions, thus improving the robustness of
the signals to non-linear effects with respect to the state of the art in
SLP. In particular, the introduced spatio-temporal precoding model
is utilized to minimize the spatio-temporal PAPR guaranteeing some
specific Quality-of-Service targets, while at the same time exploiting
the constructive interference effect typical of SLP. Numerical results
have been presented, in terms of PAPR, power distribution, and sym-
bol error rate over a non-linear channel, showing remarkable gains
with respect to the SLP approaches available in the literature for non-
linear channels.
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